
1

UPGRAID: Usage-base striPe replicatinG RAID
Jorge Guerra, Joseph Naps†, Raju Rangaswami, Luis Useche, Ellen Wagner‡

jguerra@cs.fiu.edu naps@wisc.edu raju@cs.fiu.edu luis@cs.fiu.edu ewagner09@wooster.edu
†Univeristy of Wisconsin - Madison

‡College of Wooster
Florida International University

Abstract— Redundant Array of Inexpensive Disks (RAID) is
the standard for large scale, fault-tolerant storage solutions. The
various RAID levels combine space and/or performance optimiza-
tion to meet the needs of the user. In the paper we introduce
UPGRAID, which can be seen as a new RAID level built upon
RAID5. The idea behind UPGRAID is that, by allocating a small
amount of disk space for RAID stripe replication, substantial
gains can be seen in both reducing response time during normal
operation and reducing overall reconstruction time when a drive
fails. This decrease is important as reconstruction is the most
vulnerable time for a RAID5 system because another disk failure
would render the array useless. Here we cover UPGRAID’s
design and implementation.

I. INTRODUCTION

Redundant, failure-tolerant disk systems come in two basic
forms: those that optimize for performance (e.g. RAID1), and
those that optimize for space utilization (e.g. RAID5). Past
research has argued for a hybrid system that would allow for
the benefits of both performance and space optimization [1],
[2]. In this study we begin the development of UPGRAID
(Usage-based striPe replicatinG RAID) as a new RAID con-
figuration based on RAID5. When compared to a RAID5
system, UPGRAID aims to reduce the average response time
for a majority of cases while also not significantly degrading
response time in a small fraction of cases. UPGRAID also
looks to speed up the reconstruction process, thereby improv-
ing availability, which is favored as the “key metric” in server
systems [3].

UPGRAID operates by adding stripe-level replication for
frequently accessed data on top of the basic RAID5 system.
Each drive contains two partitions: a larger partition that is
part of the RAID5 array and a smaller partition that is used
for storing the replicas of popular stripes. It then dynamically
identifies and replicates popular stripes onto a drive other than
the stripes’ corresponding data or parity drive.

During normal operation UPGRAID read requests can be
sent to the drive that is under the least load at that time. For
write operations to popular stripes UPGRAID needs to update
the replica stripe in addition to the standard RAID5 data and
parity updates. However, the application can be potentially
notified of I/O completion as soon as the replica stripe is
written to, thus eliminating the need to wait for the potentially
lengthy RAID5 write update. The downside is the additional
bandwidth needed to update the replica stripes. To counter
this write overhead, UPGRAID must dynamically control the
number of stripes that have been replicated at any given time.

During reconstruction reads to a popular stripe that has not
been reconstructed are substantially faster. Unlike RAID5, a
popular stripe need not be computed from parity information
since the replica can be used in the original’s place. For writes
to popular stripes updating the replica is all that is needed. The
reconstruction phase itself is also made faster due to the fact
that replicas can be used to rebuild popular stripes of the failed
drive.

II. APPROACH

At its core UPGRAID is a RAID5 system. The modifica-
tions during normal operation can be broken down into four
main cases: read replication, write replication, read indirection,
and write indirection. The details of these four cases will now
be discussed in more detail.

A. Read Replication

When a read request is received to an unmapped stripe. . .

1) UPGRAID determines if the stripe is eligible for repli-
cation.

2) If the stripe is eligible, a read request to the entire stripe
is generated.

3) Once that read request completes, a write is generated
and put into a queue to await being sent to an UPGRAID
partition.

B. Write Replication

Write replication begins in a similar manner to that of read
replication but has some added complications. . .

1) UPGRAID determines if the stripe is eligible for repli-
cation.

2) If the stripe is eligible a read request to the entire stripe
is generated.

3) At this point there are sixteen pages (in the page of
a sixty-four KB stripe) with the data from the original
stripe as seen in Figure 1.

4) The data from the original write must now be overlaid
on top of the data read from the stripe to preserve the
modifications from the write as in Figure 2.

5) The modified write is sent to a queue to await submis-
sion to the proper UPGRAID partition.



2

Fig. 1. The data pages following a read to the RAID5 partition

Fig. 2. The data pages with the original write overlaid on top

C. Read Indirection

When UPGRAID receives a read request to a mapped
stripe the following occurs. . .

1) UPGRAID determines if the request should be sent to
the RAID5 partition or UPGRAID partition by looking
at the head position of each drive. This drive that has the
smallest distance to move is chosen to fulfill the request.

2) The request is then sent to the appropriate disk and
the application proceeds upon completion of that read
request.

D. Write Indirection

Write replication is the simplest case. . .

1) The write request to the RAID5 partition is cloned.
2) This cloned request gets sent to the appropriate location

on the UPGRAID partition at the same offset into
the stripe as the original write, thereby preserving the
mirroring property between the two stripes.

III. POPULARITY

A. Ranking

The popularity of the individual stripes combines both
frequency of access and recency of access to calculate an
overall popularity rating for the stripe. The system works by
taking the number of accesses to a stripe per unit time and
calculating an access graph like that in Figure 3, where the X-
axis represents the passage of time and the Y-axis represents
the number of accesses to a stripe during that unit of time.

Once the access curve has been defined the ranking is
determined by feeding the values at the various units of
time into an exponential function depicted in Figure 4. This
exponential function allows for both frequency and recency to
be taken into account. The growth properties of the exponential
function insure that a greater weight is put on recency of access
as opposed to frequency.

B. Bottom-K

In addition to keeping the ranks of all of the stripes in
the UPGRAID partitions, the popularity system must also be
able to keep track of the lowest ranked (bottom-k) stripes on
each disk for the purpose of efficiently removing stripes from
the UPGRAID partitions when new, more popular, stripes are
replicated. UPGRAID maintains a matrix of these bottom-k

Fig. 3. Example access graph, the points represent the number of accesses
per unit time

Fig. 4. The same graph with the exponential curve that defines its popularity

stripes in order to facilitate this process. By doing so, finding
a suitable stripe for removal becomes a quick and efficient
process.

IV. IMPLEMENTATION ISSUES

A. Indirection Map

For the purpose of indirection a stripe map is kept that
allows UPGRAID to know where replicated RAID5 stripes are
stored on the UPGRAID partitions. In addition to this data, a
reverse map is kept for the purpose of removing stripes from
the UPGRAID partitions. A write counter is also maintained
so the system knows how many writes are pending to a stripe
in the UPGRAID partition.

B. Replication Overhead

One issue is the overhead that is associated with replication
of stripes. Even if the request was to a small portion of the
stripe, the entire stripe must be read from the RAID5 partition
and written to the UPGRAID partition. This overhead must be
managed by the UPGRAID popularity system. This is done
by still considering frequency, albeit to a lesser extent than
recency. This would allow a stripe that has its use interrupted
to not immediately be removed from the extended partition.



3

The other factor that requires experimentation is determining
the threshold popularity to qualify for replication. Presently
this threshold is a function of the maximum stripe ranking of
the least popular (bottom-k) stripes.

C. Size of Extended Partition

At the present time ten percent of the individual drive
space for the UPGRAID partitions is being used. A value
that is too small would be prone to the replication overhead
described above because stripes would be replicated too often.
A partition that is too large would waste space on the disk and
leave replicated stripes in the UPGRAID partitions that really
are not that popular anymore. Determination of this optimal
size requires additional experimentation with a fully stable
system.

V. RELATED WORK

Two works that took a similar vein to UPGRAID were Hot-
Mirroring [1] and AutoRAID [2]. Both approaches followed
the common idea of using a small portion of the drive space
as a scratch pad to improve overall array function. All three
approaches share the same basic disk partition schema.

A. Hot-Mirroring

Hot mirroring shares the same two-partition layout as
UPGRAID. One of these partitions is the “RAID5 Cold
Area” and the other is the “Mirrored Hot Area”. The popular
data is replicated to the hot area while the cold area retains
basic RAID5 functionality. The main differences between
UPGRAID and Hot-Mirroring are as follows. . .

• Determination of Popular Blocks - The popularity tech-
nique used by Hot-Mirroring is called “Hot-Block Clus-
tering” [4]. The basic idea is that it takes advantage
of access locality when deciding which data should be
replicated. It assumes that all blocks of normal write
accesses are hot and replicates them into the mirrored
hot area. One problem is that, if a system containsa large
amount of read-only data that is read on a regular basis,
then this would not be moved into the hot area, posing a
serious problem for such systems. By taking into account
both reads and writes and replicating at the granularity of
a stripe, UPGRAID is able to take advantage of both read-
heavy and write-heavy loads while also taking advantage
of the access locality of a stripe.

• Removal of Unpopular Block From Replication Area -
Hot-Mirroring uses a defined migration phase in which
to move blocks from the replication area to the RAID5
area. This approach decreases observed overhead as the
migration does not take place during a user request but
at the same time runs the risk of removing too much
data. Such a case would be if data that is deemed
cold but then is access shortly after its miration to the
RAID5 partition. UPGRAID dynamically removes stripes
from the replication area when a new stripe reaches
a large enough popularity. Experimentation will reveal

if this dynamic approach improves the overall system
performance.

• Determining when Data is to be Removed - Hot-
Mirroring’s method for determining when data should
be removed from the hot zone is based on the time
since the last access to this data. While this is a simple
metric, it does not take into account the possibility of
data being accessed at regular, albeit larger, intervals. This
creates the possibility of data that is momentarily popular
taking precedence over data that is accessed constantly
throughout the life of the system. By using recency and
frequency of access UPGRAID guards against this kind
of problem.

B. AutoRAID

AutoRAID also shares the same basic partition strategy
that is employed in Hot-Mirroring and UPGRAID. The
differences between AutoRAID and UPGRAID include. . .

• Defined Migration Phase - Like Hot-Mirroring Au-
toRAID uses a migration phase in which to move cold
blocks from the replication area to the RAID5 area.
This is done to account for sudden write bursts so
there is space on the replication partitions for the new
data. UPGRAID does this migration dynamically as new
stripes are replicated.

• Focus on Writes - AutoRAID also focuses on write
operations when looking at which data is to be replicated.
This does not benefit read-heavy unless the same data is
also write-active.

VI. FUTURE WORK

As of now the following tasks must be completed. . .

1) While the replication and indirection code has been writ-
ten, it still needs to be tested under large synchronous
and asynchronous loads.

2) The read heuristic mentioned in step (1) of read indirec-
tion has yet to be completed. The Linux RAID1 code
does an operation similar to this. More investigation
into their techniques would most likely produce a good
approach to this problem.

3) The popularity code must be tested to ensure it has been
properly incorporated into the UPGRAID system.

A. Reconstruction

Reconstruction is a large part of the overall UPGRAID
system that has yet to be looked into. We explored two basic
strategies. . .

1) One approach was the Disk-Oriented Approach
(DOR) [5]. This basic idea of DOR is that a thread is
created for each disk in the RAID array in addition to
one master thread to control the reconstruction process.
The master thread is responsible for request information
from the individual disk threads while the disk threads



4

are tasked with retrieving the request information from
their disk. This would most likely be a good starting
point as it is a simpler algorithm than the second option.

2) The second approach was the popularity-based algorithm
PRO [6]. PRO seems like a more attractive option as
it fits into the overall popularity idea that UPGRAID
is built upon. Here the reconstructed disk is separated
into “hot zones”, and then these zones are reconstructed
based on their real time access popularity. At first
glance it seems like this approach could tie in nicely
to UPGRAID’s popularity management to greatly speed
up reconstruction.

VII. CONCLUSION

Since a stable version was not ready by the end of the
summer session, the only conclusions that can be drawn at
this point are along the lines of a proof of concept. The code
that has been written thus far shows that everything that we
want to do is possible within the Linux kernel, which is a
good sign. With a little more polishing and testing, some hard
experimental data could be generated and would give an idea
of the impact of UPGRAID on a real system.

REFERENCES

[1] K. Mogi and M. Kitsuregawa, “Hot Mirroring: A Method of Hiding
Parity Update Penalty and Degradation During Rebuilds For RAID
5,” In Proceedings of the ACM SIGMOD International Conference On
Management Of Data, 1996.

[2] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan, “The HP AutoRAID
Hierarchical Storage System,” In Proceedings of the Symposium on
Operating System Principles, 1995.

[3] J. Hennessy, “The Future of Systems Research,” IEEE Computer, vol. 32,
no. 8, pp. 27–33, August 1999.

[4] K. Mogi and M. Kitsuregawa, “Hot Block Clustering for Disk Arrays with
Dynamic Striping - exploitation of access locality and its performance
analysis,” In Proceedings of the 21st VLDB Conference, pp. 90–99, 1995.

[5] M. Holland, G. A. Gibson, and D. P. Siewiorek, “Fast, On-Line Failure
Recovery in Redundant Disk Arrays,” In Proceedings of the International
Symposium on Fault-Tolerant Computing, pp. 422–443, 1993.

[6] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song, “PRO: A Popularity-based Multi-threaded Reconstruction
Optimization for RAID-Structured Storage Systems,” FAST ’07: 5th
USENIX Conference on File and Storage Technologies, pp. 277–290,
2007.


