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With the diverging improvements in CPU speeds and memory access latencies, detecting and

removing memory access bottlenecks becomes increasingly important. In this work we present

METRIC, a software framework for isolating and understanding such bottlenecks using partial

access traces. METRIC extracts access traces from executing programs without special compiler or
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linker support. We make four primary contributions. First, we present a framework for extracting

partial access traces based on dynamic binary rewriting of the executing application. Second, we

introduce a novel algorithm for compressing these traces. The algorithm generates constant space

representations for regular accesses occurring in nested loop structures. Third, we use these traces

for offline incremental memory hierarchy simulation. We extract symbolic information from the

application executable and use this to generate detailed source-code correlated statistics including

per-reference metrics, cache evictor information, and stream metrics. Finally, we demonstrate how

this information can be used to isolate and understand memory access inefficiencies. This illustrates

a potential advantage of METRIC over compile-time analysis for sample codes, particularly when

interprocedural analysis is required.
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1. INTRODUCTION

Over the past decade, processor speeds have increased much faster than mem-
ory access speeds. Due to this trend, application execution times are increas-
ingly dominated by the time spent in accessing memory. Tools are needed that
can efficiently profile the memory access behavior of the program and help in
detecting, isolating, and understanding the causes of potential memory access
inefficiencies. In this article, we present one such tool, METRIC. METRIC em-
ploys incremental memory hierarchy simulation using partial memory access
traces and generates detailed high-level metrics characterizing the applica-
tion’s memory use.

Simulation may be performed offline using previously extracted access traces
or online as the application executes. In spite of the accuracy that trace-driven
memory simulation affords, efficiency requirements dictate that it be used judi-
ciously. For instance, software tracing incurs high runtime overheads, making
full application simulation with reasonable datasets infeasible. Furthermore,
even programs with short execution times may generate traces requiring giga-
bytes of storage. These limitations can be alleviated with partial data traces
representing a subset of the access footprint of the target. Such traces tend to
be comparatively small and less expensive to collect, while still capturing the
most critical data access points. Our focus is on scientific benchmarks, which
generally employ algorithms with convergence criteria that are checked on a
regular basis at the end of a timestep. The computation of each timestep is
highly repetitive and thus, representative for the overall application behavior,
as shown elsewhere [Vetter and Mueller 2003]. Generating and exploiting par-
tial data traces for online incremental memory hierarchy simulation addresses

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 12, Publication date: April 2007.



METRIC: Memory Tracing via Dynamic Binary Rewriting • 3

both high tracing overheads and large storage requirements, without sacrificing
accuracy. This is the approach we take.

METRIC stands for “MEmory TRacIng without re-Compiling”. We draw on
previous experience with partial data traces [Mueller et al. 2001] and binary
rewriting [Marathe and Mueller 2002] to detect memory hierarchy bottlenecks.
METRIC is also influenced by our work with large-scale benchmarks [Vetter
and Mueller 2003], another example of data-centric computation where data
sizes exceed cache capacities.

In this article, we make the following contributions:

— We develop an approach that uses dynamic binary rewriting to extract mem-
ory access traces from executing applications.

— We develop a novel algorithm for efficient access trace compression of pro-
grams with nested loop structures.

— We present a cache analysis methodology (partially based on prior work by
Mellor-Crummey et al. [2001]) that uses partial access traces to generate
cache metrics—including detailed evictor information—correlated to high-
level constructs such as source-code locations and data structures.

— We show how METRIC can be used to understand a diverse range of memory
access inefficiencies, some of which are hard to detect with static compiler
analysis.

METRIC builds on the DynInst instrumentation framework [Buck and
Hollingsworth 2000a] to exploit dynamic binary rewriting, or postlink-time ma-
nipulation of binary executables, enabling program transformation potentially
even while the target is executing. Unlike conventional instrumentation, which
generally requires compiler interaction (e.g., for profiling) or inclusion of special
libraries (e.g., for heap monitoring), this approach obviates the requirements
of recompiling or relinking.

Dynamic binary rewriting can capture memory references of the entire ap-
plication, including library routines, and works equally well for the mixed lan-
guage applications commonly found in production of scientific codes [Vetter
and Mueller 2003]. The techniques can be adapted to address changing input
dependencies and application modes, namely, changes over time in applica-
tion behavior. Furthermore, binary manipulation techniques have been shown
to offer new opportunities for program transformations, and these potentially
yield performance gains beyond the scope of static code optimization without
profile-guided feedback [Bala et al. 2000].

2. THE METRIC FRAMEWORK

The METRIC framework, shown in Figure 1, uses partial access traces for mem-
ory hierarchy simulation. Our framework extracts these comparatively small,
low-overhead access traces without compiler or linker support, that is, traces
can be extracted from arbitrary executables. To achieve this, we dynamically
modify the executing application by injecting instrumentation code via binary
rewriting. We instrument memory access instructions to precisely capture the
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Fig. 1. The METRIC framework.

data access stream of the target application, and the user may activate or de-
activate tracing so that data reference streams are selectively generated. This
facility builds the foundation for capturing partial memory traces.

Figure 1 shows two phases in the process of analyzing bottlenecks with MET-
RIC: online and offline. In the online phase, we instrument the application and
extract the memory access trace. After trace generation is complete, the instru-
mentation is removed and the target application continues its execution without
overhead. The traces are then used offline for memory hierarchy simulation in
a background process or on a separate processor.

The flow of control is as follows. The user provides the application pro-
cess id (PID) and the names of the target function(s) to the controller pro-
gram. The controller program attaches to the executing target and uses
DynInst to access the control flow graph (CFG) for these target functions. The
text section of the target application is parsed and the memory access and
scope change instructions are instrumented. Scope change instructions trans-
fer control to enter or exit program scopes (e.g., functions and loop nests).
Recording the scope change instructions allows the memory hierarchy sim-
ulator to aggregate the generated memory usage metrics at multiple lev-
els of detail (scope) in the target application’s source code. The instrumen-
tation consists of calls to handler functions in a shared library. The shared
library is loaded into the target’s address space through a special one-shot
instrumentation.

Once instrumentation is complete, the target is allowed to continue. As the
instrumented application executes, different handler functions in the shared
library get invoked, depending on the type of event being recorded, namely,
load, store, enter scope, and exit scope. The handler functions, in turn, call the
compression routines, which attempt to detect regular patterns in the incoming
stream. The compression routines maintain statistics about the regularity of
the access stream seen at each memory access instruction. These metrics are
presented to the user along with the memory access metrics generated by the
memory simulator (in the next step).
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After a specified number of events has been logged or a time threshold
reached, instrumentation is removed, and the target continues executing with-
out overhead. The compressed partial event trace is then used offline for incre-
mental cache simulation. The cache simulator driver reverse maps addresses to
variables in the source, using information extracted by the controller program,
and tags accesses to source-code locations (source filename::line number). In
addition to summary-level information, the cache simulator generates detailed
evictor information for source-related data structures. This information is pre-
sented to the user, along with the per-reference regularity metrics calculated
by the compression algorithm.

For relating memory statistics to source code, we exploit source-related de-
bugging information embedded in binaries. The application must provide the
symbolic information in the binary (e.g., generally by using the -g flag when
compiling). Most modern compilers allow inclusion of symbolic information even
if compiling with full optimizations. In particular, IBM’s AIX and Intel/KAI
compilers for the PowerPC do not suffer in their optimization levels when de-
bugging information is retained. While some debugging information may suffer
in accuracy due to certain optimizations, memory references are usually not af-
fected. Thus, compiling with symbolic information only increases executable
size, without significant performance degradation.

3. TRACE GENERATION AND COMPRESSION

A large number of memory accesses can be generated within a short duration
of monitoring, especially for memory-intensive codes. This access trace needs
to be efficiently compressed before committing to stable storage. In addition,
our compression algorithm maintains metrics describing the regularity of the
access stream seen at each particular access point. These metrics provide key
information during the analysis phase.

With this work we target scientific applications that tend to have highly
regular accesses, usually in nested loops. We tailor our compression algorithm
for this scenario. Our compression strategy is shown in Figure 2. The access
stream to be compressed consists of individual records described by the tuple
<point id, EA>. Moreover, Point id denotes the access instruction and EA is the
data address generated by the instruction. The task of compression is split into
two parts. The ordering among different access instructions is compressed sep-
arately from the data address generated by the individual access instructions.
The idea is to use different compression algorithms suited to these distinct
tasks to achieve more effective compression. It is necessary to record the access
ordering for correct memory hierarchy simulation during the later phases.

3.1 Compressing Access Ordering

For applications with nested loops, the memory access instructions in the loop
are executed in a very regular and predictable order. To exploit this regularity,
we use the SEQUITUR compression algorithm to compress the IP/PC of such
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memory references. SEQUITUR is described by Nevill-Manning and Witten
[1997a]. It converts a trace of symbols into a context-free grammar, and has
time overhead linear in the number of symbols in the trace [Nevill-Manning
and Witten 1997b]. The expansion of the grammar can be used to regenerate the
original trace. SEQUITUR requires memory proportional to the total number
of symbols occurring in the grammar. Since the total number of unique instruc-
tion addresses in the trace is usually small compared to the total program size,
SEQUITUR is well-suited for our purpose. We have observed extremely high
compression rates with SEQUITUR on the SPEC2K FP benchmarks. In addi-
tion, decompression can proceed incrementally, that is, compressed traces can
be used directly for cache simulation, without an intermediate trace expansion
step.

3.2 Compressing Trace Accesses

The accesses generated by each access point, namely, the data addresses of
memory references, are compressed separately. In other words, our compression
scheme exploits the local value locality of each access point. The compression
algorithm is tailored for regular accesses generated by tightly nested loops. The
basic unit of representation for the compressed stream is the regular section
descriptor (RSD), an extension of Havlak and Kennedy’s RSDs [1991]. Each
RSD is a tuple <point id, start address, length, address stride>. Intuitively,
each RSD compactly represents a stream of regular accesses generated at a
given access point. The point id is the access point generating this RSD. The
start address denotes the starting address of the stream, and the length in-
dicates the number of accesses in the RSD. The address stride denotes the
change in addresses between successive addresses in the RSD. The stride of
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A[i] = B[2*i+2] + C[5*i];

For (I = 0; I < N; I++)
 {

}

Generated RSDs

RSD_1<  1, &A[0], N, 1>

RSD_3<   3, &C[0], N, 5>

RSD_2<   2, &B[2], N, 2>

RSD< access_point, start_address, length, address_stride>

Program Code

Fig. 3. Example RSDs.

RSD < 1, &A[0][0], M, 1>

RSD < 1, &A[1][0], M, 1>

RSD < 1, &A[2][0], M, 1>

RSD < 2, &B[1][1], M, 1>

RSD < 2, &B[2][1], M, 1>

RSD < 2, &B[N][1], M, 1>

<1, start_addr, M,1>

PRSD < 2, &B[1][1], N, 200, RSD_2>

< 2, start_addr, M, 1>

RSDs of A[I][J]

{

{

For (j = 0; j < M; j++)

}

}

For (i = 0; i < N; i++)

Generated PRSDs

RSDs of B[I+1][J+1]

Generated RSDs

PRSDs of A[I][J]

PRSD <1, &A[0][0], N, 200, RSD_1>

PRSDs of B[I+1][J+1]

, M, 1>RSD < 1, 

int A[200][200], B[200][200];

PRSD<point_id, start_addr, length, stride, PRSD/RSD>RSD<point_id, start_addr, length, stride>

A[i][j] = B[i+1][j+1]

Program Code

Fig. 4. Example PRSDs.

RSDs may be an arbitrary function. We restrict ourselves to constants in this
article, since we require fast online techniques to recognize RSDs. In different
contexts, we may want to consider linear functions or higher-order polynomi-
als. Recurring references to a scalar or to the same array element map to RSDs
with a constant address stride of zero. An example RSD is shown in Figure 3,
assuming that each array element has size one.

RSDs are only sufficient to describe accesses generated by a single innermost
loop. In order to efficiently describe accesses by a nest of loops, we introduce
the power regular section descriptor (PRSD). A PRSD is described by the tuple
<point id, start address, length, address stride, child RSD>. A PRSD is sim-
ilar to an RSD, but instead of generating addresses, it generates instances of
PRSDs or RSDs. The address stride of the PRSD represents the difference in ad-
dresses between the starting addresses of two consecutive child PRSD/RSDs.
Thus the recursive structures of the PRSD allows efficient representation of
regular accesses generated in tight loop nests.

An example PRSD is shown in Figure 4, assuming the size of integers is one
and that arrays are laid out in row-major order. The RSDs for the A[i][j] and
B[i+1][j+1] access points are calculated separately. There are N RSDs for each
access point, each corresponding to one iteration of the outer i loop. These RSDs
are compactly represented by the PRSDs shown on the right side. For example,
consider the PRSD for the access point of A[i][j]. The PRSD has length N, the
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length of the outer loop. The address stride of the PRSD is 200, since the starting
addresses of A[i][j] in consecutive iterations of the i loop differ by 200.

Each instance of the PRSD is an RSD that has M elements and an address
stride of one. This RSD describes all iterations in the inner j loop. The compres-
sion of data accesses proceeds as follows. The PRSD detector checks whether the
incoming data access is predictable by a PRSD/RSD. If the access is predictable,
the PRSD/RSD data structures are updated. Accesses may cause evictions of
currently existing PRSDs/RSDs (as described in the next section). These evicted
PRSDs/RSDs are further compressed by a second-stage compressor based on
the open source BZIP2 package [Seward 2005]. BZIP2 compresses using a block
sorting algorithm described by Burrows and Wheeler [1994].

RSDs with less than three elements are considered irregular accesses. Ir-
regular accesses are compressed by a separate instance of the BZIP2-based
second-stage compressor. In addition to compression, the PRSD detector also
computes metrics characterizing the regularity of the data accesses gener-
ated by each access point. These metrics are presented in later sections
and help to achieve a deeper understanding of the program’s memory access
behavior.

4. ONLINE DETECTION OF PRSDS AND RSDS

In this section we introduce our algorithm for efficient detection of PRSDs and
RSDs from the data access stream generated at each access point. To simplify
the notation, we consider RSDs to be a special instance of PRSDs in the de-
scription of the algorithm. The height of the PRSD denotes the number of child
RSDs encapsulated by the PRSD, and indicates the degree of hierarchy of the
PRSD. By contrast, RSDs have height zero (since they themselves do not have
child RSDs).

The algorithm is intuitive. It builds-up hierarchical structures (i.e., PRSDs)
as data accesses are generated at the access point. If a PRSD exists for the
access point and it can predict the incoming data access, then the PRSD length
is simply incremented, and processing ends. Changes in the access stream (e.g.,
the beginning of a new loop iteration) can cause the current PRSD to fail to pre-
dict the incoming access. This triggers formation of a new PRSD, and potentially
flushes the current PRSD to the output buffer.

4.1 Levels

For each access point, we maintain a list of numbered levels. Each level contains
a single PRSD. Higher-numbered levels contain more deeply nested PRSDs,
namely, PRSDs with increasing heights. The current data access to be com-
pressed is processed at the lowest level, that is, level zero. This may trigger the
movement of any existing RSD at level zero to the next level, which may trigger
the upward movement of PRSDs to higher-numbered levels.

Each level is always in one of three states: empty, single, or compound. A
level in state empty has no PRSDs. Similarly, a level in state single has only a
single PRSD. A level in state compound has a composite PRSD. The idea is that
an incoming PRSD at this level would be checked against the composite PRSD
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Fig. 5. PRSD detector flowchart: processing in a level.

to see if it qualifies as a “child” of the composite PRSD. If so, we only need to
increment the length of the composite PRSD by one—the incoming PRSD was
expected. For streams with long regular accesses, we expect the level to be in
the compound state for long stretches of processing.

4.2 Per-Level Processing

Figure 5 shows the processing at each level. All levels are initially empty. Let
X denote the incoming element to be processed at the current level number. As
described earlier, the data access to be compressed is processed at level zero.
Thus, X for level zero will be simply a data address. At higher-numbered levels,
X will be a PRSD.

The processing of X is determined by the current state of the level. If the
level is empty, the incoming element is simply stored, the level state changed
to single, and processing ends.
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If the level is in state single, there already exists a PRSD “Y” at this level.
We try to combine the incoming element X with the current element Y to form
a more deeply nested PRSD with a height equal to the height of Y plus one.
This checking is done by the function is compatible sibling. Two PRSDs are
compatible if they have the same height and length, and their children are
compatible with each other (checked recursively by is compatible sibling). If
the elements are compatible, a new PRSD (“composite PRSD”) is formed with
length two and a height equal to the height of Y plus one. This new PRSD will
have the same start address as the start address of Y and an address stride of
the difference between the start addresses of Y and X, and will encapsulate Y
as the child prsd.

If X and Y are not compatible siblings, a change in the data access pattern is
detected, for example, caused by a phase change in the program. We then flush
all PRSDs in the current and higher-numbered levels, reset the level state to
empty, and resume processing. In this manner, phase changes are gracefully
detected and handled.

Finally, the level might be in the compound state, indicating the pres-
ence of a composite PRSD “Y”. If so, we check whether the incoming element
X can be considered a child of this PRSD. This check is performed by the
is compatible child function. The function first checks whether X is a com-
patible sibling of the children of Y, using the is compatible sibling function
introduced before. Next, the function checks if the start address of X is equal to
Y.start address + Y.length ∗ Y.address stride, that is, if X is the next instance of
the PRSDs produced by Y. If is compatible child succeeds, we simply incre-
ment the length of Y and processing ends.

If X is not a compatible child of Y, we push Y to the next level (where it is
processed according to the flowchart), reset the level state to empty, and restart
processing at this level with X again. The idea is that with future accesses,
X might form a new PRSD Z that is compatible with Y. Specifically, Z will be
compared to Y when Z is pushed to the next level (if this new PRSD Z is still in-
compatible with Y, the flowchart illustrates that this will cause Y to be flushed).
With access points in a recursive function, the number of levels is potentially
unbounded. To guard against this, we specify a MAXLEVEL constant value
beyond which the element being pushed is simply flushed to the output buffer,
rather than being reprocessed at a higher level.

4.3 Example

Figure 6 shows the operation of the PRSD detection algorithm for the A[i][j]
reference shown in Figure 4. The figure shows the accesses generated at differ-
ent instances of the loop nest, the expected actions that the algorithm executes,
and the state of the data structures after these actions.

Let us step through some of the frames in the example. For each frame,
we show the value of the loop index variables i and j and the corre-
sponding memory address generated, which is input to the PRSD detection
algorithm.
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Fig. 6. PRSD detection example.
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Frame 1: This shows the initial state. All the levels are in state empty.
Frame 2: (i=0, j=0, &A[0][0]): This is the first iteration point in the loop

nest. The incoming element is stored in level zero and the state of the level is
changed to single.

Frame 3: (i=0, j=1, &A[0][1]): The incoming element and the resident ele-
ment are compared to verify that they can be combined into a composite PRSD
(is compatible sibling). The new composite PRSD has length two, and the
state of the level is updated to compound.

Frame 4: (i=0, j=2, &A[0][2]): The incoming element is checked to verify
that it can be considered to be a child of the currently resident composite PRSD
(is compatible child). The length of the composite PRSD is incremented by
one and processing ends.

Now we skip to the last iteration of the i loop in the same iteration of the i loop.
Frame 5: (i=0, j=M-1, &A[0][M-1]): The incoming element qualifies as a child

of the resident PRSD (is compatible child). The length of the resident PRSD
is incremented by one and processing ends.

Frame 6: (i=1, j=0, &A[1][0]): This is the very next iteration point of the
loop nest after Frame 5 and is the first access in iteration 1 of the i loop.
Assuming that M is smaller than 200 (the lower dimension of the array), the
currently resident PRSD will not correctly predict the incoming element (the
PRSD will predict address &A[0][M+1], the incoming address is &A[1][0]), that
is, is compatible child will fail. The currently resident PRSD is pushed to the
next level, and the incoming element is saved in the current level.

Frame 9: (i=2, j=0, &A[2][0]): This is the next iteration point after Frame
8. The incoming element will not be predicted by the current resident PRSD on
level zero (similar to Frame 6), which will cause the PRSD to be pushed to the
next level (level one). In level one, this PRSD is compared to the preresident
PRSD to verify that they are compatible siblings (is compatible sibling), after
which a new composite PRSD is formed with length two, as shown. The state
of level zero is reset to empty and processing is restarted with the incoming
address &A[2][0].

Frame 10: (i=3, j=0, &A[3][0]): Similar to Frame 9, the resident PRSD at
level zero will not be able to predict the incoming address &A[3][0]. This will
cause the resident PRSD to be pushed upwards to level one, where it will qualify
as a child of the preresident PRSD. This will cause the length of the preresident
PRSD at level one to be incremented by one, as shown.

Frame 11: (i=N-1, j=M-1, &A[N-1][M-1]): This is the last access of the loop
nests. The incoming element will be correctly predicted by the current resident
PRSD in level zero (similar to Frame 5). The state of the data structures at the
end of this access is as shown—there is an RSD at level zero and a PRSD at
level one. Future accesses at the current access point will cause the RSD to be
pushed to level one, where it will qualify as a child of the preresident PRSD.

4.4 Space Complexity

In the worst case, a completely random sequence of addresses can be passed to
the PRSD detection algorithm. In this case, no RSDs or PRSDs will be detected
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and the accesses will be recorded individually as irregular accesses. Thus, the
space complexity of the algorithm is O(M), where M is the total number of ac-
cesses (i.e., linear space complexity). The best-case input is a stream of regular
accesses. For such input the algorithm would, at best, generate exactly one
PRSD for each access point. The space required to represent a PRSD is pro-
portional to its height. The height of the PRSD in a particular level can be (at
most) one greater than the level number, which has an upper bound given by
the constant value MAXLEVELS. Thus, the space complexity to represent the
PRSDs for n access points is bounded as O((MAXLEVELS+1)*n). Here, n is
an attribute of the source code and is constant for the duration of monitoring.
Since both factors are constant, the best-case space complexity has a constant
upper bound.

4.5 Time Complexity

Since we must look at each incoming element so as to compress it, the lower
bound on the time complexity is given as �(M), where M is the total num-
ber of accesses in the trace. A particular incoming access may trigger move-
ment of PRSDs/RSDs to higher-numbered levels, where they need to be re-
processed. The number of reprocessing steps is bounded by the maximum
number of levels (MAXLEVELS) and the height of the PRSD, which can
be at most (MAXLEVELS+1). Thus, the upper bound on time complexity is
O(M*MAXLEVELS*MAXLEVELS). Since MAXLEVELS is constant, the up-
per bound on the time complexity is linear in the number of accesses in the
trace.

5. EVALUATION OF THE COMPRESSION SCHEME

In this section, we evaluate the performance of our compression scheme with re-
spect to compression efficiency and time required for compression. We compare
our results for 12 out of the 14 SPEC2000FP benchmarks.1 Results are com-
pared against VPC3, a state-of-the-art compression algorithm based on using
value predictors for data compression [Burtscher 2004a].

5.1 VPC3

VPC3 is targeted for compression of extended address traces. Such traces con-
tain the instruction address (PC) of the access instruction, followed by one or
more register values or effective addresses (EA). VPC3 first splits the access
stream into separate streams of PCs and EAs. The algorithm has a bank of
value predictors that attempt to predict the target element value (PC or EA).
All predictors are updated after each element has been processed. VPC3 by
itself does not compress the trace. Instead, it writes out the id of the value
predictor that successfully predicted the current element. This stream of ids
is compressed by a second-stage compressor based on BZIP2. Elements that
were not predicted by any predictor are compressed by a separate instance of

1191.fma3d failed to run because DynInst ran out of memory for instrumentation code. Further-

more, 301.apsi failed due to an internal error in DynInst.
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Table I. Comparison of Compression Rates

Benchmark Our Algorithm VPC3 Ratio: (Ours) / VPC3

171.swim 910608.59 154698.98 5.886
168.wupwise 144.74 221.48 0.653

172.mgrid 70847.45 4765.63 14.866
173.applu 337.52 133.94 2.519
177.mesa 1519.42 6183.17 0.245

178.galgel 1938.03 4466.73 0.433

179.art 283312.87 40380.65 7.016
183.equake 12.23 99.55 0.122

187.facerec 2382.55 618.93 3.849
188.ammp 1496.68 1152.85 1.298
189.lucas 607.34 437.52 1.388
200.sixtrack 181.24 488.11 0.371

Geometric Mean 2196.76 1636.89

Harmonic Mean 118.76 407.20

Average 106115.72 17803.97

the second-stage compressor. In our experiments, we use the VPC3 source code
obtained from the author’s website [Burtscher 2004b] and couple the output to
a second-stage compressor based on BZIP2 [Seward 2005].

We use VPC3 for comparison since it represents the state-of-the-art in com-
pressing access traces. VPC3 has been shown to compress faster and with a
more effective compression rate for most benchmarks, compared to several
contemporary compression algorithms (SEQUITUR, BZIP2, GZIP) [Burtscher
2004a]. VPC3 is targeted towards efficiently compressing the address traces
of general-purpose programs, while we focus specifically on programs found in
scientific computing. However, in addition to compressing access traces, our ap-
proach generates metrics that characterize the address stream (described later
in Section 9). These metrics, along with the results generated by the simulator,
provide insight into the application’s memory access behavior.

5.2 Experimental Setup

For our compression scheme we used the open source implementation of SE-
QUITUR [Manning 2005]. All benchmarks were compiled at -O2 optimization
level on an IBM POWER4 platform. All benchmarks used “training” datasets.
The static call graph of the target program was traversed with main as the root,
and all memory access points in the call graph were instrumented. Up to one
billion (109) accesses were traced and compressed online for each benchmark.
All benchmarks reached the one billion limit, except for 177.mesa (8 × 106 total
accesses) and 188.ammp (531×106 total accesses).

5.3 Comparison of Compression Rates

The compression rate was computed as follows. The uncompressed access trace
is composed of <point id, address> records. Each uncompressed record requires
six bytes: four bytes for the 32-bit address and two bytes for the point id. Notice
that all our programs had less than 65,536 memory access points. Thus the
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Fig. 7. Execution time breakup for our compression scheme, relative to VPC3 execution time.

total uncompressed trace size is (# total records) * 6. The compression rate is
calculated as size of un-compressed trace

size of compressed trace .

Table I shows the compression rates for our algorithm and for VPC3. The last
column shows the relative compression rate of our algorithm compared to VPC3.
The table shows that both VPC3 and our algorithm achieve substantial com-
pression rates on almost all the benchmarks. For 7 out of the 12 benchmarks,
our algorithm achieves a better compression rate than VPC3 (boldface ratio
in last column greater than one). For some programs with very regular loop
nest-oriented structures, our algorithm achieves spectacularly large compres-
sion rates (swim, mgrid, art) due to our use of hierarchical PRSD structures.
Overall, the geometric mean of the compression rate of our algorithm is about
25% greater than the value for VPC3.

5.4 Comparison of Compression Times

Figure 7 shows the time required for compression using our algorithm. The
time for three different components is shown. “Instrumentation” denotes the
overhead of the binary instrumentation framework (e.g., saving/restoring
register context). “PRSD Detector” denotes the overhead of the PRSD detection
algorithm introduced in the last section. “Sequitur” denotes the overhead
of the SEQUITUR-based compression of the trace ordering. The values are
relative to the time taken by the VPC3-based online compression framework
(including instrumentation overhead, which should be similar in both cases).
Our algorithm is on average three times slower than the VPC3 implementa-
tion. By far the most expensive component is the SEQUITUR-based module
for compressing the trace ordering. It may be possible to reduce this overhead
by using a more optimized version of SEQUITUR. Alternately, we could update
the stride predictor in VPC3 to use PRSDs. This modified VPC3 would be
much faster than our current approach, while allowing us to leverage VPC3’s
compression capabilities on programs where the accesses are less regular.
However, we would lose structural information inherent to PRSDs after
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BZIP compression. Nevertheless, the PRSD predictor would still generate the
regularity metrics (discussed later in Section 9) that complement the results
generated by the memory hierarchy simulator. Finally, we note that METRIC
is capable of and intended for gathering partial access traces, where the
overhead of trace compression is limited by the duration of monitoring. Thus,
in practice, a slightly more expensive scheme might still be acceptable, as long
as the trace collection period is short.

6. MEMORY HIERARCHY SIMULATION

The compressed trace obtained in the preceding sections is used offline for in-
cremental memory hierarchy simulation. After a partial trace of accesses has
been collected, the instrumentation is removed dynamically and the applica-
tion continues execution without overhead. For programs that exhibit distinct
phases of execution (e.g., time-stepped programs), this allows us to limit the
overhead of performance analysis by capturing and simulating only “snippets”
of the complete trace.

For memory hierarchy simulation, we use a modified version of MHSim
[Mellor-Crummey et al. 2001]. MHSim simulates the data TLB (translation
Lookaside Buffer) and multiple levels of cache. MHSim maintains information
per-reference, allowing “bulk metrics” regarding memory performance (e.g., hits,
misses) to be drilled down and mapped to individual access points. For each
access point, it generates a rich set of metrics that we shall discuss further to
follow. The original MHSim package used a source-to-source Fortran transla-
tor to annotate data accesses with calls to MHSim cache simulation routines.
This strategy has two significant disadvantages which we overcome with our
approach.

The most serious problem with source instrumentation is that it may sig-
nificantly distort the actual memory access behavior of the program without
instrumentation. Annotating the source-code accesses with function calls to
MHSim routines will potentially inhibit many important and well-established
loop reordering transformations (e.g., loop interchange, tiling) because of the
additional true dependences introduced by the function calls. It may also pre-
vent or modify other standard compiler optimizations, such as common subex-
pression elimination (due to presence of function calls accepting addresses of
array references). Thus, the resultant executable with instrumentation can be
totally different (in terms of memory access patterns) from the original unin-
strumented version—which can lead to potentially misleading diagnostic infor-
mation reported by MHSim. In contrast, by instrumenting the final optimized
binary generated by the compiler, we guarantee that we still capture the ex-
act original access pattern. Thus, we can generate diagnostic information that
correctly reflects the target program behavior. Consequently, we argue that
source-level instrumentation is the wrong abstraction level for capturing the
original application behavior and can lead to potentially misleading results for
programs in our target domain (loop-oriented scientific codes).

The second major problem with source-level instrumentation frameworks
is that they are limited to a particular language. Many scientific programs
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are mixed-language applications [Vetter and Mueller 2003]. In addition, many
programs make heavy use of libraries (e.g., Standard C library (libc), math and
numerical libraries, networking libraries) that a source-level instrumentation
framework will be unable to instrument. Thus the resultant trace of memory
accesses may be incomplete and can lead to potentially misleading diagnostic in-
formation. In contrast, our approach is independent of any language, compiler,
and linker. More importantly, we use dynamic binary rewriting that allows us
to instrument target applications as they are executing. Thus, we can turn the
instrumentation on and off, enabling the capture of partial access traces, as dis-
cussed before. The resulting overhead of trace collection and instrumentation
is flexible and only limited to the duration of monitoring.

7. ABSTRACTING TRACE DATA

The compressed trace contains “raw” instruction addresses (point ids) and data
addresses. We use the symbolic information embedded in the binary to map the
instruction addresses to source-code locations (filename::line number). We also
try to reverse map the raw data address to a symbolic variable name using infor-
mation extracted from the embedded symbol table. Global variable names and
sizes are easily obtained from the symbol table. We also support local variables
by keeping records of function entry and exit in the trace, and by recording
the value of the stack pointer on entry. The symbol table for local variables
only contains the address offsets in the current activation record of the func-
tion. Combined with the value of the stack pointer recorded in the trace, this
allows us to reverse map accesses to function-local variables. Finally, dynami-
cally allocated variables can be partially supported by instrumenting the entry
to allocation functions (malloc/calloc/free) and walking the call stack at allo-
cation to create a unique “allocation context” identifier. The data accesses to
elements in the dynamically allocated area will be reverse mapped and tagged
to this identifier in the MHSim report.

8. MHSIM-GENERATED METRICS

MHSim generates metrics for each level of cache and also for the data TLB. Met-
rics can be aggregated by reference, variable, and loop nest. We shall list and
describe each metric and later discuss its value as diagnostic input to under-
stand memory behavior. MHSim generates the following metrics per reference:

— Hits: Number of accesses by this reference point that hit in the cache.

— Misses: Number of accesses by this reference point that missed in the cache.

— Miss ratio: Ratio of hits to misses.

— Temporal hit fraction: The fraction of the hits that occurred due to temporal
reuse of data, calculated as temporal hits

total hits . MHSim uses bit vectors to maintain
information about which byte offsets in the cache line were addressed by
access instructions, allowing classification of hits into temporal and nontem-
poral hits. Temporal hits include hits caused by both self-reuse (the same
reference point accesses a memory location multiple times) and cross-reuse
(different reference points access the same memory location).
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— Spatial hit fraction: This is defined as a 1 - temporal hit fraction, namely,
nontemporal hits are classified as purely spatial hits.

— Spatial reuse: This value gives the average fraction of the memory line (in
bytes) that was used, that is, explicitly addressed by a memory access in-
struction, before the memory line was evicted from the cache. It is computed
as used bytes

cache line size∗number of evictions .

— Evictor references: For each reference, MHSim maintains a list of evictor
references that evicted this reference from the cache. Evictors provide insight
into cache conflicts. Cycles of evictors potentially indicate conflict misses
which could be removed by transformations like padding.

9. STREAM-ORIENTED METRICS

In addition to the metrics generated by MHSim, the PRSD detector in the
compression algorithm also generates complementary metrics characterizing
the regularity of the access stream. These metrics are calculated separately for
each access point. The following metrics are generated:

— Regularity ratio: This is computed as total predictable accesses
total accesses at this point . Predictable ac-

cesses are those detected as an instance of an RSD or PRSD. The regularity
ratio allows us to classify access points into irregular and regular categories.
Access points with high regularity ratios can be targeted for stream-based
optimizations, as described in our previous work [Mohan et al. 2003]. For ex-
ample, the predictable nature of the access point can be exploited by prefetch-
ing, which caches future data access early so as to lessen effective access
latencies.

— Mean stream length: The average of the length of all RSDs generated at this
point.

— Number of distinct lengths: Number of distinct RSD lengths seen at this
access point.

— Percentage of the distribution of distinct lengths: The distribution of RSDs
according to their lengths.

— Number of distinct strides: Number of address strides for all RSDs seen at
this point.

— Percentage of distribution of distinct strides: The distribution of RSDs ac-
cording to their address strides.

The definition of regularity ratio as defined here differs from the definition
in our previous work [Mohan et al. 2003]. In our previous work, the regularity
ratio was a single value calculated over the entire program or program section to
characterize the stream behavior. Access streams were not segregated by access
point, that is, a stream could contain accesses from different access points. In
contrast, in this work we segregate the access stream by access points and
calculate the regularity metrics for each point separately. Thus, we can now
obtain a much finer level of information tagged to individual access points,
instead of a single aggregate value for the whole program or program section.
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Fig. 8. Use of metrics for performance diagnosis.

10. DIAGNOSIS OF PERFORMANCE PROBLEMS

In previous paragraphs, we introduced several metrics to quantify different
facets of memory access performance. What diagnostic information do these
metrics provide? How can we use them to understand the symptoms and un-
derlying causes of memory access inefficiencies? Figure 8 gives a short overview
of how the generated metrics can be used for this task.
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METRIC gives insight on the memory access patterns of the target program.
The information provided by METRIC allows the program analyst to focus on
the bottleneck of the program, and also gives indications on how a bottleneck
can be removed by manually applying program or data transformations. Many
of these transformations can also be achieved by contemporary compiler tech-
nology. Such transformations were presented in our earlier work for some well-
known computation kernels [Marathe et al. 2003]. This article will not reiterate
them. Instead, we shall use METRIC to optimize several sample codes to illus-
trate its potential advantage over compile-time analysis, particularly when in-
terprocedural analysis is required. For clarity of presentation, the sample codes
are microbenchmarks that manifest a particular performance weakness. They
represent behavior that can arise in larger real-world programs.

10.1 Use Case: Cache Reuse Hinting

Consider the following snippet of C code:

1 double A[MATDIM], B[MATDIM];

2 double C[MAT2], D[MAT2];

3

4 void do_sum()

5 {

6 for(i=0;i < MATDIM;i++)

7 A[i] = A[i] + B[i];

8 }

9

10 void do_mult(void)

11 {

12 for(j=0;j < 1500;j++)

13 C[ind[j]] *= D[ind[j]];

14 }

15

16 void main()

17 {

18 for(i=0;i < timesteps;i++)

19 {

20 do_sum();

21 do_mult();

22 }

23 }

There are four distinct arrays A, B, C, and D in the first use case. The functions
do sum() and do mult() are called once per timestep. This program was compiled
and traced under our framework on a Power4 platform using the IBM xlc com-
piler. A cache with the following parameters was simulated: cache size=256KB,
associativity=8, line size=128, writeback cache, LRU replacement policy. This
configuration is similar to the L2 cache of the Itanium2 processor [Intel 2004].
The per-reference results generated by the simulator are shown in Figure 9.
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Fig. 9. Original per-reference memory usage statistics.

Figure 9(a) shows the cache metrics generated by the simulator, and Figure 9(b)
shows the stream metrics generated by the PRSD detector.

10.1.1 Analysis. The reference name shown in the results has the follow-
ing syntax: VariableName Accesstype id. Here, VariableName is the symbolic
identifier that corresponds to the memory address being accessed. Accesstype
can be either Read or Write. Finally, id denotes the unique numerical identifier
for this access instruction in the executable code of the target. This syntax is
used in all the use cases presented in this article.

The per-reference results show that different references have widely differ-
ent behaviors. D Read 12 and C Read 11 have very high miss rates (>87%) while
the remaining references have lower miss rates (<7%). The spatial reuse val-
ues are also much lower for D Read 12 and C Read 11, showing that on average,
only 6.3% of the memory line data that was brought into the cache by these two
references was accessed before eviction. The stream metrics show that accesses
by D Read 12 and C Read 11 were completely unpredictable, with a regularity
ratio value of 0.0. The remaining references had completely predictable access
streams (regularity ratio=1.0) and were seen to be linearly strided (a single
stride of eight for reference points of type double, a single stride of four for
reference points of type int). All the preceding indicators show that D Read 12
and C Read 11 generate irregular accesses with very low cache hit rates. The
evictors for each reference are shown in Figure 10. The figure shows that in
addition to poor locality, the D Read 12 and C Read 11 references are also the
top evictors for all the remaining references. Thus the references to D and C
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A_Read_7

D_Read_12: 58.25%

C_Read_11: 29.20%

B_Read_8: 8.85%

B_Read_8

A_Read_7: 8.73%

D_Read_12: 47.55%

C_Read_11: 42.38%

C_Read_11

13.34%A_Read_7:

B_Read_8: 19.79%

C_Read_11: 33.62%

D_Read_12: 32.33%

ind_Read_10

30.87%

D_Read_12: 36.44%

C_Read_11: 32.80%

A_Read_7:

D_Read_12

26.44%

B_Read_8: 20.63%

A_Read_7:

D_Read_12: 20.31%

C_Read_11: 31.25%

Fig. 10. Evictors for each reference.

bring data into the cache that is not reused (as indicated by their low spatial
reuse values) and evict a significant amount of preresident data from the cache
(as indicated by the perreference evictors).

A look at the source code shows the cause of this behavior. The D Read 12 and
C Read 11 references are potentially sparse indirect reads on an array, indexed
by the array ind[]. The remainder of the read references (A Read 7, B Read 8
and ind Read 10) are all direct array accesses, with regular single-strided access
patterns.

10.1.2 Optimization. From the analysis, we know that D Read 12 and
C Read 11 are the key references with a significant impact on cache perfor-
mance. We also know that these references inherently have poor cache reuse
due to their irregular data access patterns. Instead of trying to reorder their
access patterns, we can try to reduce their detrimental impact on the cache by
asking the memory syste not to allocate a normal cache line for these references.

This is achieved using the concept of reuse hints. Reuse hints are tagged
to each memory reference instruction (ld/st) and provide hints to the memory
subsystem on the potential reuse of the data fetched by this access instruction.
The Itanium2 ISA implements such a hinting mechanism [Intel 2004]. Hints
indicate whether the accessed data has no expected temporal locality at the
level of the L1 cache (hint=.nt1), at the level of the L2 cache (hint=.nt2), or
no temporal locality at any level (hint=.nta). Floating-point accesses bypass
the L1 cache. So, for these accesses, .nt1 refers to the L2 cache and there is
no .nt2 hint. For floating-point references with .nt1 or .nta hints that miss in
the L2 cache, the L2 cache will allocate a cache line in only one out of the eight
associative ways. The data in the remaining part of the cache is undisturbed.
In addition, the LRU bits in the cache are not updated, so the allocated line will
soon be selected for eviction.

We test our optimization on an actual Itanium2 system. We target the L2
cache, and tag the D Read 12 and C Read 11 references with ".nt1" hints. The
hints will minimize the impact of these two references on the data preresident
in the cache. In this way, we hope to retrieve any potential “locality” on the
other references that was lost due to these two interfering references. We note
that tagging C Read 11 but not C Write 13 will not provide the desired benefit,
since the line would be cached following the second access. This need to tag
what appears to be a well-performing access demonstrates the complexity of
the analysis that would be required by a compiler. The optimized code in the
do mult() function is shown next:
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Fig. 11. Optimized per-reference memory usage statistics.

10 void do_mult(void)

11 {

12 for(j=0;j < 1500;j++)

13 {

index=ind[j];

value = read_double_nt1(&C[index])

* read_double_nt1(&D[index]);

write_double_nt1(&C[index],value);

}

14 }

15

The read double nt1 and write double nt1 are special inlined functions that
load and store doubles using instructions with explicit “.nt1” hints.

First, let us the see the potential impact of the optimization using the sim-
ulator. Our simulator currently does not support hinting for the access points.
Instead, we run the same program again, but without the D[] and C[] array
accesses, and see the change in cache metrics for the remaining references, as
shown in Figure 11.

Notice the improvement in the hit rates for the A Read 7, B Read 8, and
ind Read 10 references as compared to the original behavior. The miss ratios
for these references have decreased by an order of magnitude (e.g., 6% to 0.6%
for A Read 7 reference). The temporal fraction of the hits has gone up to 90% for
these references, compared to less than 3% in the original results. This indi-
cates that we are now realizing intertimestep locality—the data is brought into
the cache during the first timestep and almost always remains in cache until it
is accessed again during the next timestep.

Let us now test our optimization on the real system. The original program
and the optimized version with cache hints were both compiled and run on an
Itanium2 system. In each case, we monitor the hardware counters and count
the number of L2 misses. Specifically, we measure the value of the L2 MISSES
event for the original and optimized programs. The values for the two runs
are shown in Figure 12. The number of L2 misses reduces from 42,214 in the
original program to 32,072 in the optimized version (a 24% reduction).

We demonstrated how METRIC can be used for setting reuse hints. It is
very hard or impossible for a static compiler to perform this analysis, since the
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Fig. 12. Comparison of L2 cache misses.

complete runtime memory access pattern of the program must be considered
(e.g., if the D Read and C Read hit in cache in the original program, reuse hint-
ing may actually be detrimental). The compilers evaluated (Intel icc 8.0, gcc
3.4) did not automatically set the nontemporal hints for the D Read and C Read
(for the optimized code, we inserted the hints manually using inline assembly
functions).

10.2 Use Case: Prefetching

Consider the following snippet of C code:

0 #define MATDIM 1000

1 double A[MATDIM][MATDIM], B[MATDIM][MATDIM];

2

3 void do_mult(void)

4 {

5 for(i=0;i < MATDIM;i++)

6 for(j=0;j < MATDIM;j++)

7 {

8 A[i][j] = A[i][j] * B[j][i];

9 }

10 }

There are two two-dimensional arrays A and B. The function calculates the prod-
uct of A[i][j] with B[j][i], and stores the value back into A[i][j]. This pro-
gram was compiled on a Power4 machine using xlc.2 A cache with the following
parameters was simulated: cache size=32KB, associativity=2, line size=128,
writeback cache, LRU replacement policy. This configuration is similar to the
L1 cache of a Power4 processor. The simulator reported the following cache

2-O3 optimization level with loop unrolling turned off. Unrolling the loop body gives rise to many

additional access instructions that show up as separate access points in the MHSim results. For

clarity of presentation, we turn off unrolling the loop body so that fewer access points are present in

the binary code. However, we could not prevent the compiler from unrolling the very last iteration

of the inner loop, as explained in the text.
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Fig. 13. Original per-reference memory usage statistics.

performance:

hits = 1937499 temporal hits = 1000000

misses = 1062504 spatial hits = 937499

temporal ratio = 0.51613 spatial ratio = 0.48387

miss ratio = 0.3541 spatial reuse = 0.17836

Notice the high miss ratio (35%) and relatively low spatial reuse value
(17.8%). The per-reference results are shown in Figure 13. Figure 13(a) shows
the metrics generated by the cache simulator, and 13(b) shows the stream met-
rics generated by the PRSD detector. Due to instruction scheduling, the compiler
unrolls the very last iteration of the innermost loop, hence there are several
additional access instructions present in the executable (more than the three
access instructions in the original C code). For clarity of presentation, we do not
show the metrics associated with these additional access points. This explains
why the number of accesses for the references shown in the per-reference re-
sult do not exactly match the number of accesses expected from the C source
version.

10.2.1 Analysis. B Read 3 has the worst possible cache performance, all of
its accesses are misses. This also causes the very low spatial reuse value, show-
ing that less than 7% of the data cached by the B Read 3 reference is actually
accessed by the processor before the memory line is evicted from cache. The
stream metrics show that B Read 3 generated extremely predictable accesses
(regularity ratio=1.0) with long stream lengths (average length=999) and only
a single stride. The stride value is very large (8,000), so no spatial locality is
realized (since successive accesses map to different cache lines).

In contrast, A Read 2 has very good cache performance with excellent
spatial reuse (100%). The stream metrics show that accesses generated by
A Read 2 were also completely predictable (regularity ratio=1.0) with a long
average stream length. In contrast to B Read 3, however, A Read 2 generated
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single-strided accesses (of stride eight, the size of the double data type). This
ensured that A Read 2 achieved excellent spatial locality (spatial reuse=100%).

Upon closer inspection of the source code, we observe that the innermost loop
(j loop) has a stride-1 traversal over the innermost dimension of the array A,
which results in the accesses generated by the A Read 2 reference. In contrast,
the accesses to array B are generated with the innermost j loop iterating over
the outermost dimension of array B, leading to the high stride value (8,000)
seen for B Read 3.

10.2.2 Optimization. The key idea is that both A Read 2 and B Read 3 gen-
erate completely predictable accesses. We exploit this fact to prefetch the array
elements long before they are used to reduce the effective access latency. The
average stream length for both access points is high, indicating that prefetch-
ing would be profitable, and the number of distinct strides is low, reducing the
number of potential prefetch target addresses.

We evaluate this optimization on a Power4-based platform. This platform
already has a hardware stream prefetcher that detects cache misses mapping
to consecutive memory lines such as frequently generated by stride-1 accesses.
Once such a pattern is recognized, the prefetcher automatically prefetches the
consecutive memory lines into cache [Tendler et al. 2002]. Hence on this plat-
form, there is no need to insert explicit prefetch instructions for the A Read 2
access point, as it generates only stride-1 accesses. In contrast, accesses gener-
ated by B Read 3 will not be prefetched by the hardware prefetcher, since they
do not map to consecutive memory lines (stride 8,000). Hence, we target these
accesses for prefetching.

We use the “Data cache block touch” (dcbt) prefetch instruction. The opti-
mized code is as follows:

0 #define MATDIM 1000

1 double A[MATDIM][MATDIM], B[MATDIM][MATDIM];

2

3 void do_mult(void)

4 {

5 for(i=0;i < MATDIM;i++)

6 for(j=0;j < MATDIM;j++)

7 {

prefetch(&(B[j+15][i]));

8 A[i][j] = A[i][j] * B[j][i];

9 }

10 }

The inserted instruction prefetches the B[][] element that will be accessed 15 it-
erations later (&B[j+15][i]). The number of iterations to “look-ahead” (15) is em-
pirically chosen to ensure that the prefetch will complete before the prefetched
data is accessed by the B[j][i] load instruction. Other values for the number of
look-ahead iterations will still have a positive impact, as long as the prefetch
is able to bring the memory line into the cache before the memory line is
accessed.
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Fig. 14. Performance of original and optimized programs.

We used hardware performance counters to measure the number of L1 cache
misses (event: PM LD MISS L1) and the number of processor cycles (event: PM CYC)
for the original and optimized programs. The results are shown in Figure 14.

The prefetch instruction is very effective; it reduces the number of L1 cache
misses by over 94%. This leads to a reduction in processor cycles of 27% over
the original program.

We have shown how to use METRIC to select potential access points that
can be targeted for prefetching. Even though the cache access pattern of B
is statically determinable, none of the compilers we evaluated (IBM xlc 7.0,
gcc 3.4) were able to generate prefetches targeting this access, even at very
high optimization settings (xlc: -O5 -qprefetch -qtune=pwr4, gcc: -O3 -mpower).
Thus, explicit prefetch insertion is still important in many cases to achieve good
performance.

10.3 Use Case: Detecting Conflict Misses

Consider the following snippet of C code:

23 double sumfunc(double S1[ ], double S2[], double S3[], int size)

24 {

25 int i;

26 double sum=0.0;

27

28 for(i=0;i < size;i++)

29 {

30 sum += S1[i] + S2[i] + S3[i];

31 }

32

33 return sum;

35 }

#define MATDIM (8192)

double A[MATDIM], B[MATDIM], C[MATDIM];

main(..)

{

....

result = sumfunc(A,B,C,MATDIM);

....

}

The function sumfunc calculates the sum of the elements of the three arrays A,
B, and C. All these arrays contain elements of type double and have size MATDIM.
This code was compiled into a program executable on the Power4 platform,
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Fig. 15. Original per-reference memory usage statistics.

using the IBM xlc compiler. The program executable was instrumented and the
trace of memory accesses was obtained using our framework. The trace was
used to simulate the operation of an L1 cache with the following parameters:
size=128KB, associativity=2, line size=128 bytes, writeback cache, LRU re-
placement policy. This configuration is similar to the L1 cache on the Power4
platform. For clarity, we ignore other components of the memory hierarchy (L2
cache, DTLB) during the analysis of this example.

The overall performance of the cache was reported as:

hits = 2 temporal hits = 0

misses = 24574 spatial hits = 2

temporal ratio = 0 spatial ratio = 1.0

miss ratio = 0.99992 spatial reuse = 0.06251

This miss ratio is very high; almost all accesses were misses. The low spatial
reuse value shows that on average, only 6% of the memory line is used before
it is evicted from the cache. These two indicators immediately point to the
presence of a serious cache access inefficiency. The per-reference metrics are
shown in Figure 15. Figure 15(a) shows the cache metrics generated by the
simulator, while 15(b) shows the per-reference stream metrics generated by
the PRSD detector during trace compression.

10.3.1 Analysis. The per-reference results for all references show very sim-
ilar symptoms. All references almost always miss in cache and have low spatial
reuse values. On the other hand, the stream metrics indicate that the references
generated highly predictable accesses, with a regularity ratio of 1.0 and long
average lengths (8,192). Most crucially, each reference generated single-strided
accesses (of stride eight, the size of the double data type), that normally would
have led to extremely high spatial reuse values (since all elements in a cache
line would be processed before the next memory line is fetched). Recall that
for each reference, the simulator keeps track of the evictor reference, which
removed data accessed by this reference from the cache. The list of evictors is
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Fig. 16. Evictor graph.

shown graphically in Figure 16 and is the final piece of the puzzle. The arrows
indicate the evictions: the head points to the reference that is evicted while
the tail is the evictor. The edges are tagged with the percentage distribution of
evictions, that is, the number of times this eviction occurred among all evictions
for a particular reference.

The evictor graph shows a clear cyclic pattern of evictors, with large eviction
counts. The three references A Read 0, B Read 1, and C Read 2 conflict in cache
and evict each other’s memory lines from the cache before the cache line can be
fully used, which explains the low spatial reuse values.

10.3.2 Optimization. We must update either the code or data layout to
ensure that the references do not cause such a large number of conflict misses
We choose to remap the data layout by padding each data array with extra
unused space. By padding, we hope to reduce the number of conflict misses
such that the spatial reuse inherent in the stride-1 accesses is exploited. In
other words, we want to prevent evictions of data brought into the cache before
all elements in the cache line have been accessed. The optimized code is shown
next:

23 double sumfunc(double S1[ ], double S2[], double S3[], int size)

24 {

25 int i;

26 double sum=0.0;

27

28 for(i=0;i < size;i++)

29 {

30 sum += S1[i] + S2[i] + S3[i];

31 }

32

34 return sum;

35 }

#define MATDIM (8192)

double A[MATDIM+128], B[MATDIM+128], C[MATDIM+128];

main(..)

{

....
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Fig. 17. Optimized per-reference memory usage statistics.

result = sumfunc(A,B,C,MATDIM);

....

}

Note the padding of the A, B, and C arrays by 128 elements. This ensures
that each iteration of the i loop maps to different cache sets for the A[i],
B[i], and C[i] accesses for the given cache configuration. In general, the
padding could be parameterized so as not to be a multiple of the number
of lines in an associativity set. The updated code was compiled and run un-
der our analysis framework, as before. The following results were obtained:

hits = 23037 temporal hits = 0

misses = 1539 spatial hits = 23037

temporal ratio = 0 spatial ratio = 1.0

miss ratio = 0.0626 spatial reuse = 0.99951

Notice the significant decrease in the miss ratio and the dramatic increase
in the spatial hits and spatial reuse value compared to the original program.
The per-reference cache statistics are shown in Figure 17. The hits for all ref-
erences have increased significantly and their spatial reuse approaches 1.0,
the maximum possible value. Thus, we have successfully eliminated the large
number of conflict misses in the original program. It is very hard for static com-
piler techniques to find such conflict misses, if not impossible in certain cases
(e.g., if arrays were passed as arguments at runtime). Thus, we need tools like
METRIC to analyze such scenarios.

11. RELATED WORK

Regular section descriptors represent a particular instance of a common concept
in memory optimizations, either in software or hardware. For instance, RSDs
[Havlak and Kennedy 1991] are virtually identical to the stream descriptors
used at about the same time in the compiler and memory systems work inspired
by WM architecture [Wulf 1992].

Atom has been widely used as a binary rewriting tool to statically insert
instrumentation code into application binaries [Srivastava and Eustace 1994].
Dynamic binary rewriting enhances this approach through its ability to select
place and time for instrumentation dynamically. This allows the generation of
partial address traces, for example, for frequently executed regions of code and
a limited number of iterations with a code section. In addition, DynInst makes
dynamic binary rewriting a portable approach.
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Weikle et al. [2000] describe an analytic framework for evaluating caching
systems. Their approach views caches as filters, and one component of the
framework is a trace specification notation called TSpec. TSpec is similar to
the RSDs described here in that it provides a more formal mechanism by which
researchers may communicate with clarity about the memory references gen-
erated by a processor. The TSpec notation is more complex than RSDs, since it
is also the object on which the cache filter operates.

Buck and Hollingsworth performed a simulation study to pinpoint the hot
spots of cache misses based on hardware support for data trace generation
[2000b]. Hardware counter support, in conjunction with interrupt support on
overflow for a cache miss counter, was compared to miss counting in selected
memory regions. The former approach is based on probing to capture data
misses at a certain frequency (e.g., one out of 50,000 misses). The latter ap-
proach performs a binary (or n-way) search over the data space to identify the
location of the most frequently occurring misses. Sampling was reported to
yield less accurate results than searching. The approach based on searching
provided accurate results (mostly less than 2% error) for these simulations.
Unfortunately, hardware support for these two approaches is not yet readily
available (with the exception of the IA64) or there is a lack of documenta-
tion for this support (as confirmed by one vendor). In addition, interrupts on
overflow are imprecise due to instruction-level parallelism. The data reference
causing an interrupt is only known to be located in “close vicinity” to the inter-
rupted instruction, which complicates the analysis. In contrast, our approach
to generating traces is applicable to present-day architectures, is portable and
precise in locating data references, and does not require the overhead of inter-
rupt handling. Other approaches to determining the causes of cache misses,
such as informing memory operations, are also based on hardware support and
presently not supported in contemporary architectures [Horowitz et al. 1996;
Mowry and Luk 1997].

Several tools provide aggregate metrics obtained at low cost from hardware
performance counters. HPCToolkit uses statistical sampling of performance
counter data and allows information to be correlated to the program source
[Mellor-Crummey et al. 2001]. A number of commercial tools (e.g., Intel’s VTune,
SGI’s Speedshop, Sun’s Workshop) also use statistical sampling with source cor-
relation, albeit at a coarser level than HPCToolkit or our approach. Hardware
counters are usually limited in number and typically have restrictions on the
type of events that can be counted simultaneously. Hardware counters comple-
ment our methodology. The aggregate metrics provided by these counters can
be used to determine whether a cache bottleneck exists, and then our tool can
be used to generate detailed source-tagged statistics to isolate and understand
the bottleneck.

Recent work by Mellor-Crummey et al. uses source-to-source translation on
HPF to insert instrumentation code that extracts a data trace of array ref-
erences. The trace is later exposed to a cache simulator before miss correla-
tions are reported [2001]. This approach shares its goal of cache correlation
with our work. CProf [Lebeck and Wood 1994] is a similar tool that relies on
postlink-time binary editing through EEL [Larus and Ball 1994; Larus and
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Schnarr 1995] but cannot handle shared library instrumentation or partial
traces. Lebeck and Wood also applied binary editing to substitute instructions
that reference data in memory with function calls to simulate caches on-the-fly
[1997]. Our work differs in the fundamental approach of rewriting binaries,
which neither is restricted to a special compiler or programming language nor
precludes the analysis of library routines. Another major difference addresses
the overhead of the large data traces inherent to all these approaches. We re-
strict ourselves to partial traces, employ trace compression to provide compact
representations, and derive stream metrics indicating cache bottlenecks during
compression.

Recent work by Chilimbi et al. concentrates on language support and data
layout to better exploit caches [1999a; 1999b] as well as quantitative met-
rics to assess memory bottlenecks within the data reference stream [Chilimbi
2001]. This work introduces the term whole program stream (WPS) to refer
to the data reference stream, and presents methods to represent the WPS
compactly in a grammatical form. However, their work focuses on prefetch-
ing for dynamically allocated data, while we focus on reference reordering
through code transformations to improve data locality. Furthermore, our com-
pression algorithm for reference streams caters to regular array accesses with
lower complexity than a WPS with its need for states and transitions. Ding
and Zhong et al. [2003] predict program locality from profiles using the ap-
proximate reuse distance of referenced data to identify regular and irregu-
lar reference patterns. Their work is continued by Zhong et al. in analyzing
the hierarchical relation between program data and modeling it very effec-
tively with k-distance analysis, which provides the means to identify benefi-
cial data layout transformations [Zhong et al. 2004]. Our method, in contrast,
provides per-reference cache information that indicates benefits for code trans-
formations by pinpointing references participating in cache evictions. Other
efforts concentrate on access modeling based on whole program traces using
cache miss equations [Ghosh et al. 1999] or symbolic reference analysis at the
source level based on Presburger formulas [Chatterjee et al. 2001]. These ap-
proaches involve linear solvers with response times on the order of several
minutes up to over an hour. The feasibility of using these approaches has not
been demonstrated on large programs, but only with small kernels, like matrix
multiply.

A number of approaches address dynamic optimizations through binary
translation and just-in-time compilation techniques for native code [Sites et al.
1993; Bala et al. 2000; Cifuentes and Emmerik 2000; Ung and Cifuentes 2000;
Grant et al. 1999]. The main thrust of these techniques is program transforma-
tion based on knowledge about taken execution paths, such as trace scheduling.
Transformations include the reallocation of registers and loop transformations
(such as code motion and unrolling), to name a few. These efforts are constrained
by the tradeoff between the overhead of just-in-time compilation and the po-
tential payoff in execution time savings. Our approach differs considerably. We
allow offline optimizations to occur, which do not affect the application’s perfor-
mance during compilation, and we rely on injection of dynamically optimized
code thereafter.
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SIGMA is a tool using binary rewriting through Augmint6k to analyze
memory effects [DeRose et al. 2002]. This is the closest related work. SIGMA
captures full address traces through binary rewriting. Experimental results
show a good correlation to hardware counters for cache metrics of entire pro-
gram executions. Performance prediction and tuning results are also reported
(subject to manual padding of data structures in a second compilation pass
in response to cache analysis). Our approach differs in several respects. First,
our cache analysis is more powerful. In addition to generating per-reference
cache metrics, we also generate per-reference evictor information. We supple-
ment these results with stream characteristics observed by the compression
algorithm at each access point. This allows us to infer potential for more so-
phisticated transformations, as demonstrated by the examples in the preceding
sections. Second, their work lacks an evaluation of the efficiency and overhead
of the compression algorithm used. In contrast, we demonstrate that our trace
compression algorithm compresses better than the state-of-the-art in trace com-
pression for 7 out of the 12 benchmarks we evaluated, and has comparable
performance on the rest. Finally, our framework is designed for collecting and
processing partial access traces. In contrast, their work neither captures partial
traces nor presents a concept for such an approach.

In our previous work, we used binary rewriting to extract the memory access
stream and characterize its spatial regularity [Mohan et al. 2003]. In that work,
we used regularity values to classify applications as regular or irregular and
showed how particular regularity metrics suggested specific applicable opti-
mizations (e.g., long-length regular streams are amenable to prefetching). Our
current work differs in many respects. In this work, we segregate the memory
access stream by access point and calculate regularity metrics for each point
separately. In contrast, our previous work calculated a single regularity value
for the entire program or program segment. Here, we provide more fine-grained
information on memory access behavior. More importantly, our current work
supplements stream metrics with cache usage metrics (per-reference statistics,
evictor information). The richer information about potential memory access
inefficiencies enables the use of more sophisticated optimizations.

Our recent work beyond uniprocessor METRIC describes a binary rewriting-
based framework to characterize shared memory coherence metrics for
OpenMP programs [Marathe et al. 2004]. In that work, we use software instru-
mentation to extract synchronization information and memory access traces
for each OpenMP thread, and use these for incremental coherence simula-
tion. Even more recently, we extended this approach to investigate the ben-
efits from hardware support to gather “lossy traces” that are then utilized to
analyze coherence traffic [Marathe et al. 2005]. This article, in contrast, concen-
trates on application-level characterization of uniprocessor memory hierarchy
metrics.

12. CONCLUSION

In this article, we demonstrate that dynamic binary rewriting offers novel
opportunities for detecting inefficiencies in memory reference patterns. Our
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contributions are a framework to instrument selective load and store instruc-
tions on-the-fly for generating partial access traces, a novel trace compression
algorithm for compressing these traces, and a cache simulation framework that
generates detailed source reference tagged metrics. We evaluated our compres-
sion algorithm with respect to compression rate and overhead. We demon-
strated that the compression rate is better than the state-of-the-art for the
majority of benchmarks (7 out of 12), and comparable for the rest.

Our framework generates a rich set of performance metrics describing the
memory access behavior of the program, including per-reference cache metrics,
evictor information, and stream metrics generated by the compression algo-
rithm. We demonstrated how these metrics enable the detection and under-
standing of memory access inefficiencies with several use cases. METRIC has
a potential advantage over compile-time analysis when analyzing these perfor-
mance inefficiencies for sample codes, particularly if interprocedural analysis
is required.

REFERENCES

BALA, V., DUESTERWALD, E., AND BANERJIA, S. 2000. Dynamo: A transparent dynamic optimization

system. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 1–12.

BUCK, B. AND HOLLINGSWORTH, J. 2000a. An API for runtime code patching. Int. J. High Perform.
Comput. Appl. 14, 4, 317–329.

BUCK, B. AND HOLLINGSWORTH, J. 2000b. Using hardware performance monitors to isolate memory

bottlenecks. In Supercomput., 64–65.

BURROWS, M. AND WHEELER, D. J. 1994. A block-sorting lossless data compression algorithm. Tech.

Rep. 124.

BURTSCHER, M. 2004a. Vpc3: A fast and effective trace-compression algorithm. In Proceedings of
the SIGMETRICS Conference on Measurement and Modeling of Computer Systems (New York).

167–176.

BURTSCHER, M. 2004b. Vpc3 source code. http://www.csl.cornell.edu/ burtscher/research/tracecom

pression/.

CHATTERJEE, S., PARKER, E., HANLON, P., AND LEBECK, A. 2001. Exact analysis of the cache behavior

of nested loops. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 286–297.

CHILIMBI, T. 2001. Efficient representations and abstractions for quantifying and exploiting data

reference locality. In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 191–202.

CHILIMBI, T., DAVIDSON, B., AND LARUS, J. 1999. Cache-Conscious structure definition. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation,

13–24.

CHILIMBI, T., HILL, M., AND LARUS, J. 1999b. Cache-Conscious structure layout. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implementation, 1–12.

CIFUENTES, C. AND EMMERIK, M. 2000. UQBT: Adaptable binary translation at low cost. Comput.
33, 3 (Mar.), 60–66.

DEROSE, L., EKANADHAM, K., HOLLINGSWORTH, J. K., AND SBARAGLIA, S. 2002. SIGMA: A simulator

infrastructure to guide memory analysis. In Proceedings of the ACM/IEEE SC Conference.

DING, C. AND ZHONG, Y. 2003. Predicting whole-program locality through reuse distance analy-

sis. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation.

GHOSH, S., MARTONOSI, M., AND MALIK, S. 1999. Cache miss equations: A compiler framework for

analyzing and tuning memory behavior. ACM Trans. Program. Lang. Syst. 21, 4, 703–746.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 12, Publication date: April 2007.



METRIC: Memory Tracing via Dynamic Binary Rewriting • 35

GRANT, B., PHILIPOSE, M., MOCK, M., CHAMBERS, C., AND EGGERS, S. 1999. An evaluation of staged

run-time optimizations in dyc. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 293–304.

HAVLAK, P. AND KENNEDY, K. 1991. An implementation of interprocedural bounded regular section

analysis. IEEE Trans. Parallel Distrib. Syst. 2, 3 (Jul.), 350–360.

HOROWITZ, M., MARTONOSI, M., MOWRY, T., AND SMITH, M. 1996. Informing memory operations: Pro-

viding memory performance feedback in modern processors. In Proceedings of the International
Symposium on Computer Architecure, 260–270.

INTEL. 2004. Intel Itanium2 Processor Reference Manual for Software Development and Opti-
mization Vol.1, Intel, Santa Clara, CA.

LARUS, J. AND BALL, T. 1994. Rewriting executable files to measure program behavior. Softw. Pract.
Experi. 24, 2 (Feb.), 197–218.

LARUS, J. AND SCHNARR, E. 1995. EEL: Machine-Independent executable editing. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation, 291–

300.

LEBECK, A. AND WOOD, D. 1994. Cache profiling and the SPEC benchmarks: A case study. Com-
put. 27, 10 (Oct.), 15–26.

LEBECK, A. AND WOOD, D. 1997. Active memory: A new abstraction for memory system simulation.

ACM Trans. Model. Comput. Simul. 7, 1 (Jan.), 42–77.

MANNING, N. 2005. Sequitur source code. http://sequence.rutgers.edu/sequitur/sequitur.cc.

MARATHE, J. AND MUELLER, F. 2002. Detecting memory performance bottlenecks via binary rewrit-

ing. In Proceedings of the Workshop on Binary Translation.

MARATHE, J., MUELLER, F., AND DE SUPINSKI, B. R. 2005. A hybrid hardware/software approach to ef-

ficiently determine cache coherence bottlenecks. In International Conference on Supercomputing.

accepted.

MARATHE, J., MUELLER, F., MOHAN, T., DE SUPINSKI, B. R., MCKEE, S. A., AND YOO, A. 2003. METRIC:

Tracking down inefficiencies in the memory hierarchy via binary rewriting. In Proceedings of the
International Symposium on Code Generation and Optimization, 289–300.

MARATHE, J., NAGARAJAN, A., AND MUELLER, F. 2004. Detailed cache coherence characterization

for OpenMP benchmarks. In Proceedings of the International Conference on Supercomputing,

287–297.

MELLOR-CRUMMEY, J., FOWLER, R., AND WHALLEY, D. 2001. Tools for application-oriented per-

formance tuning. In Proceedings of the International Conference on Supercomputing, 154–

165.

MOHAN, T., DE SUPINSKI, B. R., MCKEE, S. A., MUELLER, F., YOO, A., AND SCHULZ, M. 2003. Identifying

and exploiting spatial regularity in data memory references. Supercomput.
MOWRY, T. AND LUK, C.-K. 1997. Predicting data cache misses in non-numeric applications through

correlation profiling. In MICRO-30, 314–320.

MUELLER, F., MOHAN, T., DE SUPINSKI, B. R., MCKEE, S. A., AND YOO, A. 2001. Partial data traces:

Efficient generation and representation. In Workshop on Binary Translation. IEEE Technical

Committee on Computer Architecture Newsletter.

NEVILL-MANNING, C. G. AND WITTEN, I. H. 1997a. Compression and explanation using hierarchical

grammars. Comput. J. 40, 2–3.

NEVILL-MANNING, C. G. AND WITTEN, I. H. 1997b. Linear-Time, incremental hierarchy inference

for compression. In Proceedings of the Data Compression Conference, 3–11.

SEWARD, J. 2005. Libbzip2 source code. http://www.bzip.org/index.html.

SITES, R., CHERNOFF, A., KIRK, M., MARKS, M., AND ROBINSON, S. 1993. Binary translation. Commun.
ACM 36, 2 (Feb.), 69–81.

SRIVASTAVA, A. AND EUSTACE, A. 1994. ATOM: A system for building customized program analysis

tools. In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 196–205.

TENDLER, J. M., DODSON, J. S., FIELDS, JR., J. S., LE, H., AND SINHAROY, B. 2002. POWER4 system

microarchitecture. IBM J. Res. Develop. 46, 1 (Jan.), 5–25.

UNG, D. AND CIFUENTES, C. 2000. Optimising hot paths in a dynamic binary translator. In Pro-
ceedings of the Workshop on Binary Translation.

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 12, Publication date: April 2007.



36 • J. Marathe et al.

VETTER, J. AND MUELLER, F. 2003. Communication characteristics of large-scale scientific appli-

cations for contemporary cluster architectures. J. Parallel Distrib. Comput. 63, 9 (Sept.), 853–

865.

WEIKLE, D., MCKEE, S. A., SKADRON, K., AND WULF, W. 2000. Caches as filters: A framework for the

analysis of caching systems. In Proceedings of the Grace Murray Hopper Conference.

WULF, W. 1992. Evaluation of the WM architecture. In Proceedings of the International Sympo-
sium on Computer Architecture, 382–390.

ZHONG, Y., ORLOVICH, M., SHEN, X., AND DING, C. 2004. Array regrouping and structure splitting

using whole-program reference affinity. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation.

Received May 2005; revised August 2006; accepted September 2006

ACM Transactions on Programming Languages and Systems, Vol. 29, No. 2, Article 12, Publication date: April 2007.


