
Characterization of Self-Similarity in Memory
Workload: Analysis and Synthesis

Qiang Zou
School of Computer Science

Southwest University
Chongqing 400715 China

qzou@swu.edu.cn

Jianhui Yue
Dept. of Elec. & Computer

University of Maine
Orono, ME 04469 USA

jyue@eece.maine.edu

Bruce Segee
Dept. of Elec. & Computer

University of Maine
Orono, ME 04469 USA
segee@eece.maine.edu

Yifeng Zhu
Dept. of Elec. & Computer

University of Maine
Orono, ME 04469 USA

zhu@eece.maine.edu

Abstract—This paper studies self-similarity of memory I/O
accesses in high-performance computer systems. We analyze the
auto-correlation functions of memory access arrival intervals
with small time scales and present both pictorial and statistical
evidence that memory accesses have self-similar like behavior.
For memory I/O traces studied in our experiments, all estimated
Hurst parameters are larger than 0.5, which indicate that self-
similarity seems to be a general property of memory access
behaviors. In addition, we implement a memory access series
generator in which the inputs are the measured properties of the
available trace data. Experimental results show that this model
can accurately emulate the complex access arrival behaviors of
real memory systems, particularly the heavy-tail characteristics
under both Gaussian and non-Gaussian workloads.

I. INTRODUCTION

Accurately characterizing memory access behavior in
computation-intensive workloads is essential to understand-
ing the performance of the memory system. Researchers in
both academia and industry have developed various bench-
mark suites, such as commercial workloads [15], desktop
applications [16], multimedia applications [8], and XQuery
applications [19] to test and evaluate the memory systems.
However, for many benchmarks, it takes weeks or even months
to complete a single run on cycle accurate execution-driven
simulators such as M5 [2] and SimpleScalar [47]. In addition,
a memory system has a large design space to be explored,
such as close/open bank model, address mapping schemes,
and transition control between different power states, and
accordingly it becomes increasingly more challenging to run
benchmarks multiple times in order to obtain comprehensive
and fair evaluation. Synthetic benchmarks provide an improved
methodology to speed up the evaluation process. The most crit-
ical issue in designing a synthetic benchmark is to accurately
characterize the memory access behavior. In this paper, we
focus our study on analyzing and modeling of memory I/O
access arrivals.

Analysis of memory system access characteristics and pat-
terns has received considerable attention in the past few years.
Several studies have investigated the basic characteristics of
memory accesses, such as cache miss rates, I/O intensity,
and impacts of page size, in SPEC CPU benchmark [4], [6],
[7], [12]. Eeckhout et al [44] model the access sequence as
a Statistical Flow Graph (SFG), in which basic blocks and

their mutual transition probability are statistically identified.
Joshi et al [45] and Bell et al [46] model memory accesses
as a mixed sequence of constant and variable strides. Ganesan
et al [43] propose to extract the memory level parallelism
(MLP) from the real benchmark to estimate memory access
burstiness and they consider the variations of the time intervals
between consecutive burstiness of on-chip cache misses when
modeling the burstiness of memory accesse. Li [25] studies
the scaling properties of SPEC2000 integer benchmarks and
proposes an method to estimate the short-term and long-term
execution characteristics of large programs. However, none
of these studies statistically examine in detail the burstiness
of memory access requests, particularly the widely popular
phenomena of random fluctuations in request arrival rates at
different time scales.

In this paper, we study several sets of memory I/O traces
collected in the SPEC CPU 2000 and SPEC CPU 2006
benchmark suites. We demonstrate the existence of self-similar
like phenomenon in memory I/O workloads over small time
scales. We refer to this property as “self-similar like behavior”
because memory traces studied in this paper are only in small
time scales. A truly self-similar process should exhibit the
self-similarity at all time scales. We analyze the correlations
of inter-access times and study the self-similarity in memory
workloads. To the best of our knowledge, little research work
on this topic has been reported in the literature.

This paper makes the following three contributions:
• Our study shows that there are evident correlations be-

tween inter-access time intervals in traces collected in
almost all benchmarks in SPEC2000 and SPEC2006, and
exceptionally strong correlations in some of them. This
suggests that further study of the self-similarity is needed
to understand the statistical phenomena of memory I/O
accesses.

• We examine both integer and floating-point type of
memory accesses, and present visual and mathematical
evidence to show that memory accesses exhibit self-
similar like behavior over small time scales.

• We propose a mathematical model based on the α-
stable process to accurately synthesize the memory access
series, particularly the heavy-tail characteristics under
Gaussian and non-Gaussian workloads.

The rest of this paper is organized as follows. Section II
summarizes related research works. Section III studies the
correlation of inter-access times and discusses the necessity
of studying self-similarity in memory I/O workloads. Section
IV presents the visual evidence of self-similarity in memory
workload. Section V shows the estimates of Hurst parameters.
Section VI proposes an α-stable model to synthesize the
memory access series and compares the workloads synthesized
by the proposed model with real traces. Section VII concludes
this paper.

II. RELATED WORK

The characteristics of self-similarity and long-range depen-
dence in data traffic was initially found in computer network
traffic [26]. Since then extensively research work have been
done to investigate this important nature in computer and
network systems. For example, many studies have concluded
that network behavior exhibits the long-range dependence,
scaling phenomenon, and heavy-tailed distribution [24], [27],
[28], [33]. Willinger et al [28] show that the self-similarity
can be attributed to the ON/OFF behavior of traffic sources
within their system. Crovella et al [33] verify the existence of
self-similarity in web traces.

Self-similarity has also been studied in the context of file
and disk I/O workloads [29], [30], [31], [37], [38], [40].
For example, Gribble et al [29] give visual and statistical
evidences to demonstrate that high-level file system events
exhibit self-similar behavior for a short-term time scale of
approximately a day. Gomez et al [30], [31] show that disk-
level I/O requests are self-similar in nature, and propose a
structural modeling to synthesize disk-level I/O arrival pat-
terns. Recently, Kavalanekar et al [40] capture twelve sets
of storage traces from Exchange, software build and release,
Live Maps, MSN storage, security authentication, and display
advertisement platform servers in Microsoft Corporation. They
analyze and confirm the self-similarity of block-level I/O in
both time and space. Additionally, Riska et al [37], [38]
demonstrate that disk drives in a wide range of computing
environments exhibit high variability, strong burstiness, and
long-range dependence.

Intensive research work has been done to study the char-
acteristics of memory workloads [6], [7], [12], [18], [22],
[43], [48], [49]. For example, based on microarchitecture-
independent metrics such as the memory level parallelism
(MLP), Ganesan et al [43] build a model of the burstiness
of memory accesses under the workloads of SPEC CPU 2006
and ImplantBench by considering the frequency of on-chip
cache misses. However, no research has been done to study or
confirm the self-similarity nature of memory access workloads,
to the best of our knowledge. In this paper, we deploy Leland’s
theory and analysis techniques [26] to analyze and examine
the existence of self-similarity in memory system workloads.
This research work is important since it can provide guidance
to researchers how to correctly model and evaluate the I/O
arrivals and burstiness in memory systems.

TABLE I
PROCESSOR PARAMETERS

Parameter Value
Frequency 2 GHz
L1 I-cache 32 KB
L1 D-cache 32 KB
L2 Cache 2 MB
L2 Cache Line Size 64 Bytes

TABLE II
DRAM PARAMETERS

Parameter Value
Frequency 667 MHz
tRP: Row Precharge time 12 ns
tRCD: Row active to row active delay 12 ns
tRAS : Row Activation time 27 ns
tCAS: Delay to access a certain column 8 ns
IDD0: Active precharge current 85 mA
IDD2P: Precharge powerdown current 7 mA
IDD2N: Precharge standby current 40 mA
IDD3N: Active standby current 55 mA
IDD3P: Active powerdown current 30 mA
IDD4R: Burst read current 135 mA
IDD4W: Burst write current 135 mA
IDD5: Burst refesh current 210 mA
Vdd: Supply voltage 1.8v
#Ranks per DIMM 2
Rank capacity 256 MB
#Banks per Rank 8
#Rows per Bank 16,384
#Columns per Row 1,024
Channel Width 8 Bytes
Memory Scheduling Algorithm FCFS

III. MEMORY WORKLOAD MEASUREMENT

In this section, we briefly introduce memory I/O workloads
to be analyzed in this paper and then study the correlation of
arrival intervals or inter-access times (IAT) to characterize the
memory access behavior.

A. Collection of memory access traces

In this paper, we choose SPEC CPU 2000 and 2006 as
our target workloads. Both SPEC 2000 and 2006 are the
standardized computation-intensive benchmark suite widely
used in both academia and industry to comprehensively and
fairly evaluate the performance of CPUs, memory systems,
and compiler techniques. These benchmarks are developed by
using platform-neutral C/C++ or Fortran languages and thus
they can run on a wide variety of computer architectures. Both
benchmark suites include integer applications and float-point
applications, and the detailed description of each application is
given in Ref. [5] and [7], respectively. SPEC 2006 benchmark
suite was released to further exercise the tested platforms.
However, in both academia and industry, SPEC 2000 is still
widely used.

We have collected the memory access trace of the SPEC
2000 and 2006 benchmark suites using an execution-driven
processor simulator called M5 [2]. We have integrated a cycle-
level DRAM simulator named DRAMsim [3] into M5 in order
to accurately simulate the memory system. Table I and II show

2

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

Co
rre

lat
ion

 C
oe

ffic
ien

t

gcc
vpr
twolf
perlbmk
vortex

(a) SPECint2000 applications

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

Co
rre

lat
ion

 C
oe

ffic
ien

t

ammp
applu
apsi
galgel

(b) SPECfp2000 applications

0 500 1000 1500 2000 2500
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lag

Co
rre

lat
ion

 C
oe

ffic
ien

t

sjeng
perlbench
hmmer
h264ref
gobmk
bzip2

(c) SPECint2006 applications

0 500 1000 1500 2000 2500
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Lag

Co
rre

lat
ion

 C
oe

ffic
ien

t

cactusADM
gromacs
namd
povray

(d) SPECfp2006 applications

Fig. 1. Auto-correlation functions (ACFs) of memory accesses for the SPECint2000 applications (gcc, vpr, twolf, perlbmk, and vortex), the SPECfp2000
applications (ammp, applu, apsi, and galgel), the SPECint2006 applications (sjeng, perlbench, hmmer, h264ref, gobmk, and bzip2), and the SPECfp2006
applications (cactusADM, gromacs, namd, and povray).

the parameters of the processor and Micron DDR2 memory [1]
used in our simulation experiments.

TABLE III
SUMMARY OF MEMORY ACCESS TRACES.

SPEC Trace duration SPEC Trace duration
2000 (nanosec.) 2006 (nanosec.)
gcc 646,034,651 perlbench 100,293,948
vpr 126,198,640 bzip2 113,789,777

twolf 121,289,348 astar 275,606,430
perlbmk 165,041,932 mcf 1.7406e+009

Integer vortex 122,437,501 gobmk 99,584,340
gzip 153,188,589 hmmer 49,996,087
mcf 168,405,856 sjeng 85,787,863

parser 131,240,186 xalancbmk 205,785,089
gap 91,373,966 h264ref 61,018,687
bzip 359,328,264 omnetpp 624,006,166

ammp 224,507,172 cactusADM 89,682,223
Floating applu 485,690,806 gromacs 81,601,154

point apsi 538,127,920 namd 47,286,401
galgel 373,450,978 povray 59,257,422

This paper randomly selects 14 applications from SPEC
2000 and 14 applications from SPEC 2006. We run these
applications in M5 and save the memory accesses into trace
files. Selected applications of SPEC 2000 include ten integer
benchmarks (gcc, vpr, twolf, perlbmk, vortex, gzip, mcf, parser,
gap and bzip), and four floating-point benchmarks (ammp,
applu, apsi and galgel). From the SPEC 2006, we select

ten integer benchmarks, including perlbench, bzip2, astar,
mcf, gobmk, hmmer, sjeng, xalancbmk, h264ref and omnetpp,
and four floating-point benchmarks, including cactusADM,
gromacs, namd and povray. All memory access timestamps
were recorded in nanoseconds. The basic information of these
memory traces are summarized in Table III.

B. Correlation study

In order to identify the statistical characteristics and gain a
deep understanding of memory access behaviors, in this paper,
we first study the similarity of inter-access times in memory
I/O streams over different time spans by using autocorrelation
functions (ACF). The detailed introduction of this mathemat-
ical tool can be found in Ref. [39].

Given a set of observations X = (Xt : t = 1, 2, . . . , N),
the correlation coefficient at lag k is defined as

ck =
1

N − k

N−k�

i=1

(Xi − X̄)(Xi+k − X̄) (1)

where X̄ is the expectation of the time series X . Then the
auto-correlation function ACF (k), with a lag of k, is defined
as

ACF (k) =
ck

c0
. (2)

3

In the following, we use auto-correlation functions (ACF) to
study the characteristics in inter-access times for both the inte-
ger and floating-point memory traces summarized in Table III
from a time dependence perspective. Due to space limitation,
we only present the analytical results of gcc, vpr, twolf,
perlbmk, vortex, ammp, applu, apsi, galgel for SPEC2000, and
perlbench, bzip2, gobmk, hmmer, sjeng, h264ref, cactusADM,
gromacs, namd, povray for SPEC2006, as shown in Figure 1.

If the correlation coefficient of inter-access times quickly
decreases to zero, it can be concluded that the memory
access traffic is expected to be smooth instead of bursty and
little or no correlations exist between the inter-access times.
In this case it is reasonable to model the inter-access time
as a sequence of random variables with independently and
identically distribution (IID). On the contrary, if the correlation
coefficient does not approach to zero quickly, then there exists
some degree of correlations between inter-access times and
such memory traffic is expected to be bursty instead of smooth.
As a result, the inter-access time cannot be modeled as a
simple IID random process and further study of auto-similarity
is then necessary in order to correctly model the memory
traffic.

Figure 1(a)-(d) respectively plot the auto-correlation co-
efficient of memory accesses of studied integer benchmarks
and floating-point benchmarks as the lag parameter increases
gradually from 0 to 2000. The results show that there are
evident correlations in all studied traces for all auto-correlation
functions of the inter-access times, exceptionally strong cor-
relations in some traces such as applu, apsi and gromacs.
This indicates that independently and identically distributed
(IID) processes might not be appropriate in characterizing
the memory accesses. Therefore, it is necessary to study
and investigate the self-similarity of the memory traffic. This
important observation motivates the research work of this
paper.

IV. SELF-SIMILARITY IN MEMORY WORKLOADS

In this section, we present the visual and intuitive evidence
to demonstrate the existence of self-similarity in studied mem-
ory traces.

A. Visual Examination of Self-similarity

Informally, self-similarity means scale invariance because
there exists the same or similar statistical properties such
as mean, variance and marginal distribution across all time
scales. Existing works focused on network traffic [24], [26],
[27], [28], disk I/O workload [30], [34], [35], [40], usually
examine the self-similarity of traces for long-term time scales,
such as days, months or even years. Due to the fact that the
SPEC benchmarks are memory I/O intensive and the memory
activities are bursty and need to be collected at the accuracy of
nanoseconds, most memory I/O traces studied in this paper last
less than one second. It is far shorter than the time scale used
in disk or network I/O studies. However, the time-stamp to
record the memory traces accurate to nanoseconds which are
also far shorter than the time-stamp accuracy of milliseconds

0 10 20 30 40 50 60 70 80 90
0

500

1000

1500

2000

2500

3000

3500

4000

time

acc
ess

es
per

 un
it ti

me

(a) time unit=0.1 millisecond

0 10 20 30 40 50
0

200

400

600

800

1000

1200

1400

time

acc
ess

es
per

 un
it ti

me

(b) time unit=50 microseconds

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180

time

acc
ess

es
per

 tim
e u

nit

(c) time unit=10 microseconds

0 20 40 60 80 100
0

20

40

60

80

100

120

acc
ess

es
per

 un
it ti

me

time

(d) time unit=5 microseconds

Fig. 2. Pictorial demonstration of self-similarity: memory workload (memory
accesses per time unit for the gcc trace) on four different time scales.

or even seconds in network packet or disk I/O traces. Thus, in
this paper, we consider the scale of memory traces as a notion
of “long-term” time scale corresponds to the nanosecond-level
time-stamp.

For each set of memory access traces summarized in Ta-
ble III, we compute the memory access arrival rates (i.e., the
number of memory accesses per time unit) at four different
choices of time units. Figure 2 depicts a sequence of simple
plots of the memory access arrival rates for the gcc trace.
Figure 2(a) is plotted with a time unit of 0.1 milliseconds. We

4

concentrate on a randomly chosen small region, as indicated
by the circle and arrow, then increase the time resolution, and
obtain Figure 2(b). From Figure 2 (a) to (d), each successive
plot is a small portion of the previous one by increasing
the time resolution. Obviously there are many sharp activity
“spikes” in each plot. The presence of “spikes” in each plot
indicate that the burstiness of memory access, i.e., each spike
corresponds to a “burst” in memory access workload. From
Figure 2 (a) to (d), we observe the scale-invariant feature
of memory workload: each burst interval consists of bursty
subintervals. So it is not easy to distinguish among the four
plots in a distributional sense because all plots look intuitively
very “similar” to one another. This is a strong intuitive
evidence of the self-similarity of memory accesses.

B. Theory of self-similarity

The theory behind self-similar processes is briefly summa-
rized as follows. A more thorough description can be found
in [26], [27], [28]. This section only outlines the basics that
will be used in Section V. The description of self-similarity
given below closely follows Beran et al [24].

Let X = (Xt : t = 1, 2, . . .) be a covariance stationary
stochastic process with constant mean µ = E[Xt], and
finite variance σ

2 = E[(Xt − µ)2]. For the process Xt, the
autocorrelation function ACF (k) depends only on k and is
defined as follows.

ACF (k) =
E[(Xt − µ)(Xt+k − µ)]

E[(Xt − µ)2]
, for k ≥ 0. (3)

The process Xt is said to exhibit self-similarity if

lim
k→∞

ACF (k)
k−β

= c <∞, for 0 < β < 1. (4)

Note that, in the equation above, ACF (k) is non-sumable,
i.e.,

�
k
ACF (k) = ∞. We say that such an autocorrelation

function decays hyperbolically and the corresponding process
Xt is long-range dependent. In contrast, the autocorrelation
function of a Poisson process decays exponentially and is
sumable; that is

�
k
ACF (k) = 0. Such a process is said

to be short-range dependent.
The process Xt is said to be exactly second-order self-

similar with the Hurst parameter H (0.5 < H < 1), if Xt

has an autocorrelation function of the form

ACF (k) =
1
2
[(k + 1)2−β − 2k

2−β + (k − 1)2−β]. (5)

For the process Xt, its aggregated process X
(m) is given as

X
(m)
k

= 1
m

m−1�
j=0

Xkm−j , for k ≥ 1. And

V ar(X(m)) = σ
2
m
−β

, for 0 < β < 1. (6)

The process Xt is said to be asymptotically second-order
self-similar with the Hurst parameter H (0.5 < H < 1), if

lim
m→∞

ACF
(m)(k) = ACF (k) (7)

V. ESTIMATING THE HURST PARAMETER

In this section, we use rigorous statistical techniques to
estimate the Hurst parameter of memory access workloads,
and mathematically demonstrate the presence of self-similar
behavior in all studied memory workloads. The Hurst param-
eter noted H measures the self-similar degree of a time-series,
and a value in the range (0.5, 1) indicates self-similarity [31].
The larger the Hurst estimate is, the higher the degree of auto-
similar property is. Two techniques that we employ are well-
known graphical tools, namely variance-time plots [26], [29]
and R/S analysis (Pox plot) [26], [29], as discussed below.

A. Variance-time plots

As introduced in the prior section, for an asymptotically
second-order self-similar process Xt, the relation between the
variance of the aggregated process X

(m) and the block size
m is defined by Equation (6). Taking the logarithm of both
sides of the equation results in the relation

log(V ar(X(m))) ≈ a− βlog(m), (8)

where a is a constant, and m→∞ [29]. Thus, we can plot the
curve of log(V ar(X(m))) versus log(m), for various values of
m. The curve will be a linear series of points with slope −β,
and using a linear regression method we can obtain an estimate
of β. Slopes between -1 and 0 correspond to Hurst parameters
H between 0.5 and 1. This plot is called a variance-time

plot, and we can calculate the Hurst parameter H using the
following equation

H = 1− β

2
. (9)

Figure 3 illustrates the variance-time plots for the integer
benchmarks (e.g., vortex for SPEC2000 and h264ref for
SEPC2006), and the floating point benchmarks (e.g., apsi for
SPEC2000 and cactusADM for SPEC2006). The results show
that all four plots are linear and they have the Hurst parameter
of 0.987, 0.651, 0.892 and 0.723, respectively. This verifies
the self-similar nature of these memory access workloads.
Especially, the curve in plot (a) is more linear than those in
plot (b), (c) and (d). This observation implies that there is a
higher degree of self-similarity for memory trace vortex.

We generate the variance-time plots for all traces listed
in Table III and then estimate their Hurst parameter from
the plots, as shown in Table IV. The results show that all
Hurst parameters are significantly larger than 0.5, indicating
that all studied memory workloads exhibit self-similarity. It is
surprising to find that the estimated Hurst parameters for all
SPEC2000 integer memory traces are approximately the same,
such as 0.987 for vortex, 0.937 for twolf, 0.995 for gcc and
0.993 for mcf, and 0.996 for both perlbmk and parser. This
indicates that these SPEC2000 integer benchmarks have the
similar level of self-similarity.

B. R/S-Analysis and Pox plots

Another commonly used method to estimate the Hurst
parameter is R/S (rescaled adjusted range) analysis, also called

5

log10(m)

lo
g1

0(
va

ria
n
ce

s)

0 1 2 3 4 5

-0
.1

5
-0

.1
0

-0
.0

5
0
.0

log10(m)

lo
g1

0(
va

ria
nc

es
)

0 1 2 3 4 5

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

log10(m)

lo
g1

0(
va

ria
nc

es
)

0 1 2 3 4 5

-5
-4

-3
-2

-1
0

log10(m)

lo
g1

0(
va

ria
nc

es
)

0.0 0.5 1.0 1.5 2.0 2.5

-0
.5

-0
.4

-0
.3

-0
.2

-0
.1

0.
0

 Hurst Parameter Estimate: 0.987

 log10(m)

 l
og

10
(v

ar
ia

nc
es

)

 Hurst Parameter Estimate: 0.892

(a) SPECint2000_vortex (b) SPECfp2000_apsi

 log10(m)

 l
og

10
(v

ar
ia

nc
es

)

(c) SPECint2006_h264ref (d) SPECfp2006_cactusADM

 l
og

10
(v

ar
ia

nc
es

)

 l
og

10
(v

ar
ia

nc
es

)

 Hurst Parameter Estimate: 0.723 Hurst Parameter Estimate: 0.651

 log10(m) log10(m)

Fig. 3. Variance time plots for the integer benchmarks (e.g., vortex for SPEC2000, and h264ref for SPEC2006), and the floating point benchmarks (e.g.,
apsi for SPEC2000, and cactusADM for SPEC2006). The variable m represents the aggregation level in microsecond.

TABLE IV
ESTIMATE OF H USING VARIANCE-TIME PLOT AND POX PLOT (R/S) FOR

THE SPEC2000 AND SPEC2006 BENCHMARKS.

Type Benchmarks Variance-time plot Pox plot (R/S)
gcc 0.995 0.859
vpr 0.872 0.699

twolf 0.937 0.609
perlbmk 0.996 0.507

SPECint vortex 0.987 0.790
2000 gzip 0.906 0.795

mcf 0.993 0.586
parser 0.996 0.814

gap 0.819 0.618
bzip 0.994 0.786

ammp 0.861 0.653
SPECfp applu 0.629 0.696

2000 apsi 0.892 0.652
galgel 0.934 0.716

perlbench 0.805 0.675
bzip2 0.757 0.639
astar 0.694 0.518
mcf 0.615 0.572

SPECint gobmk 0.923 0.608
2006 hmmer 0.787 0.641

sjeng 0.679 0.586
xalancbmk 0.729 0.611

h264ref 0.651 0.701
omnetpp 0.850 0.583

cactusADM 0.723 0.593
SPECfp gromacs 0.692 0.738

2006 namd 0.918 0.587
povray 0.863 0.569

Pox plot. For a given set of observations (Xt : t = 1, 2, . . . , n)
with a mean X̄(n), a variance S

2(n), all observations are
placed into K disjoint subsets, with each subset containing

an average of n/K observations. Then the rescaled adjusted
range statistic is given by [26]

R(n)
S(n)

=
1

S(n)
[max(0,W1,W2, . . . , Wn)

−min(0,W1,W2, . . . , Wn)]. (10)

where Wk = X1 + X2 + . . . + Xn − k · X̄(n), for k ≥ 1.
If Xt is self-similar (long-range dependent), then the fol-

lowing equation holds

E[
R(n)
S(n)

] ≈ b · nH
, (11)

where n → ∞, H is the Hurst parameter of Xt, and b is a
constant. This empirical law is known as the Hurst effect.

Taking the logarithm of both sides of the equation results
in the following relation

log(E[
R(n)
S(n)

]) ≈ H · log(n) + c, (12)

where c is a constant, and n → ∞. Thus we can plot
log(E[R(n)

S(n)]) versus log(n) for varying values of n, and obtain
the estimate of the Hurst parameter H . This plot should result
in a roughly linear graph with a slope equal to the Hurst
parameter H . Such a plot is known as a Pox plot. So a least-
squares linear fit can be used to estimate the Hurst parameter.

Figure 4 shows the Pox plots of the same integer and
floating-point benchmarks studied in Figure 3. Following a
least-square linear fit, the Hurst parameter is estimated as
0.790, 0.701, 0.652 and 0.593 for vortex, h264ref, apsi, and
cactusADM, respectively. All estimated Hurst parameters are
larger than 0.5, indicating that the inter-access time in these

6

log10(d)

lo
g

1
0

(r
/s

)

0 1 2 3 4 5 6

0
1

2
3

4
5

log10(d)

lo
g
1
0
(r

/s
)

0 1 2 3 4 5

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

log10(d)

lo
g
1
0
(r

/s
)

0 1 2 3 4 5

0
1

2
3

4
5

 Hurst Parameter Estimate: 0.790 Hurst Parameter Estimate: 0.652

(a) SPECint2000_vortex (b) SPECfp2000_apsi

(c) SPECint2006_h264ref (d) SPECfp2006_cactusADM

 Hurst Parameter Estimate: 0.593

 Hurst Parameter Estimate: 0.701

log10(d)

lo
g
1
0
(r

/s
)

0 1 2 3

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

 l
o
g

1
0
(r

/s
)

 l
o

g
1

0
(r

/s
)

 l
o

g
1

0
(r

/s
)

 l
o

g
1

0
(r

/s
)

 log10(d) log10(d)

 log10(d) log10(d)

Fig. 4. Pox Plots for the integer benchmarks (e.g., vortex for SPEC2000, and h264ref for SPEC2006), and the floating point benchmarks (e.g., apsi for
SPEC2000, and cactusADM for SPEC2006). The variable n represents the size of non-overlapping block at which R/S statistic is computed.

workloads are self-similar, which validates the results of Pox
plot analysis and increases the confidence of the estimation
accuracy.

We use the described R/S analysis technique to estimate the
Hurst parameters of all memory traces that are collected in the
SPEC 2000 and 2006 benchmark suites. The estimated Hurst
parameters, listed in Table IV, are significantly larger than 0.5,
confirming again the presence of self-similarity in the studied
memory workloads.

The difference between the two measured H estimates for
some integer memory traces (e.g., twolf, mcf and perlbmk) is
large, especially for perlbmk. On one hand, this observation
cannot be easily explained. Taking the R/S-Analysis estimate
of perlbmk as an example, the low value of the R/S-Analysis
estimate (0.507) perhaps is a result of the existence of
some regular memory accesses in perlbmk, which causes the
correlation coefficients of inter-access times fluctuate regularly
in Figure 1(a). On the other hand, the difference verifies the
common wisdom that there is no single estimator that can
provide a definitive answer [41], although both R/S-Analysis
and variance-time plots can qualitatively demonstrate the
existence of self-similarity.

In summary, both the R/S-Analysis and variance-time plots
consistently confirm that the inter-access times of all studied
workloads exhibit self-similarity. This indicates that the mem-

ory I/O accesses in the SPEC2000 and SPEC2006 benchmarks
tend to be very bursty, instead of smooth. If a model is required
to characterize memory I/O arrivals, certainly a sequence of
independently and identically distributed random processes is
inappropriate.

VI. SYNTHESIZING MEMORY WORKLOAD BASED ON
ALPHA-STABLE PROCESS

Previous sections have shown both visual and statistical
evidence to verify the existence of self-similar nature of
memory accesses. In this section we presents a mathematical
model that can be used to generate synthetically memory
access workloads while preserving the self-similar property.

A. Why use the alpha-stable?

Many techniques have been proposed to synthesize self-
similar traffics [10], [11], [23], [29], [30], [31], [35], [36].
For example, two successful methods include Fractional Auto-
Regressive Integrated Moving Average (FARIMA) and Frac-
tional Brownian Motion (FBM). FARIMA [23] was first used
to generate synthetic Variable Bit Rate (VBR) video traces.
However, FARIMA is not intrinsically bursty. The FBM model
used by several researchers [10], [11], [36] is easy to construct
and can model the self-similarity under the Gaussian condition,
but not the non-Gaussian condition.

7

−4 −3 −2 −1 0 1 2 3 4
−20

0

20

40

60

80

100

120

140

Standard Normal Quantiles

Qu
an

tile
s o

f S
am

ple
 Tr

ac
e

(a) SPECint2000 (vortex)

−5 0 5
−40

−20

0

20

40

60

80

100

Standard Normal Quantiles

Qu
an

tile
s o

f S
am

ple
 Tr

ac
e

(b) SPECfp2000 (apsi)

−5 0 5
−10

0

10

20

30

40

50

60

70

80

Standard Normal Quantiles

Qu
an

tile
s o

f S
am

ple
 Tr

ac
e

(c) SPECint2006 (h264ref)

−5 0 5
−100

−50

0

50

100

150

Standard Normal Quantiles
Qu

an
tile

s o
f S

am
ple

 Tr
ac

e

(d) SPECfp2006 (cactusADM)

Fig. 5. Examine the Gaussian property of SPECint (e.g., vortex for SPEC2000, h264ref for SPEC2006) and SPECfp (e.g., apsi for SPEC2000, cactusADM

for SPEC2006) workloads through QQ plots of sample data versus standard normal.

To emulate the burstiness in storage systems, Ref. [32]
shows that I/O burstiness can exhibit either Gaussian or non-
Gaussian. Thus it is important to identify the Gaussian or non-
Gaussian property for a given workload. Otherwise, the real
degree of access burstiness cannot be truthfully represented.
In particular, when we synthesize the self-similarity memory
workloads, we also need to take the Gaussian property into
considerations to avoid miss-presenting the burstiness.

For both integer and floating-point benchmarks, we use the
normal quantile plots (QQ plots) to measure the Gaussian
property [36]. The QQ plots of the vortex, h264ref, apsi and
cactusADM traces, given in Figure 5, show that apsi are
Gaussian, but others are non-Gaussian. In Figure 5 (b), all
of the scatter points corresponding to an access event given
in the traces evidently follow a straight line, indicating that
apsi is Gaussian. In Figure 5 (a), (c) and (d), all of the scatter
points evidently don’t fall into a straight line but an increasing
curve, indicating that vortex, h264ref, and cactusADM are non-
Gaussian. The results above show interestingly that some self-
similar memory workloads have the Gaussian property while
other memory workloads do not. Therefore, the model used to
capture the access burstiness in memory traces should be able
to represent both the Gaussian and non-Gaussian properties.
The α-stable process can meet this requirement well [32].

For a set of observations X = (Xt : t = 1, 2, . . . , n) with
a mean µ, a variance 2σ

2, the process Xt is said to be an
alpha-stable process if its stable distribution is defined by its

characteristic function [42]:

E[eiθX] =
�

e
−σ

α|θ|α(1−iβsignθ tan πα
2)+iµθ

, α �= 1
e
−σ|θ|(1+iβsignθ ln |θ|)+iµθ

, α = 1 (13)

where signθ is an indicative function, 0 < α ≤ 2, σ > 0,
−1 ≤ β ≤ 1, and µ ∈ R. The characteristic exponent α

measures the degree of burstiness in the memory workload,
and β represents the degree of heavy tail in the memory
workload.

If α = 2, then β tanπ = 0 and β is then meaningless. In this
case, it is the characteristic function of a Gaussian stochastic
process, i.e., E[eiθX] = exp{−σ

2
θ
2 + iµθ}. Otherwise, it is

one class of non-Gaussian functions. Therefore, as the value of
parameter α changes, the α-stable process is able to flexibly
represent a stochastic process under both the Gaussian and
non-Gaussian conditions.

Ref. [32] has developed a model based on the α-stable
process to accurately build a synthetic disk I/O workload
in storage systems. In this paper, we extend this α-stable
model to synthesize memory access workloads. Specifically,
the inputs in the α-stable model are the measured properties
of the available trace data, including the degree of self-
similarity in the memory I/O workload, the degree of memory
I/O burstiness, the degree of heavy tail in the memory I/O
workload. This model allows us to conveniently turn the
memory workload model for different environments.

8

0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n o

f m
em

ory
 ac

ce
ss

es

Real trace
Proposed
Poisson

(a) SPECint2000 (bzip)

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n o

f m
em

ory
 ac

ce
ss

es

Real trace
Proposed
Poisson

(b) SPECfp2000 (applu)

−10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.

Fr
ac

tio
n o

f m
em

ory
 ac

ce
ss

es

Real trace
Proposed
Poisson

(c) SPECint2006 (perlbench)

−15 −10 −5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Memory accesses per microsec.
Fr

ac
tio

n o
f m

em
ory

 ac
ce

ss
es

Real trace
Proposed
Poisson

(d) SPECfp2006 (gromacs)

Fig. 6. Comparison of CDFs between synthetic memory trace and real trace for SPECint2000 (e.g., bzip), SPECfp2000 (e.g., applu), SPECint2006 (e.g.,
perlbench) and SPECfp2006 (e.g., gromacs).

B. Experiment results

For each benchmark, we compute the access arrival rate, i.e.,
the number of accesses per time unit. We place all access ar-
rival rates into a group of stochastic numbers. The maximum-
likelihood method is used to estimate the parameters of the
α-stable process corresponding to the memory traces needed
to be measured. Table V summarizes the estimates of α-stable
parameters. In Table V, each row includes the memory trace
name and the estimates of four α-stable parameters. Due to
the fact that the α-stable distribution degenerates to a Gaussian
stochastic process if α = 2, with mean value µ and variance
2σ

2, β will be meaningless [32]. Accordingly in Table V, a
slash will fill in the place of β if α = 2. This measurement
results prove the validity of Figure 5(b) again, i.e., the apsi

workload is Gaussian.
Our model can faithfully emulate the burstiness of memory

I/O activities in all studied benchmarks. The cumulative dis-

tribution functions (CDFs) are used to intuitively compare the
synthetic workloads through both our proposed and Poisson
methods and trace results. The cumulative distribution func-
tions (CDFs) of the synthetic and real traces for bzip, applu,
perlbench and gromacs, are illustrated in Figure 6, the X-axis
shows the memory access numbers per microsecond (thereinto,
the X-axis in Fig. 6(c) and (d) show the logscale), and the Y-
axis denotes the percentage of the arrival rates. A point (x; y)
in the cumulative distribution curve indicates that y% of access

TABLE V
ESTIMATES OF THE PARAMETER OF α-STABLE DISTRIBUTION BASED ON

MAXIMUM-LIKELIHOOD ESTIMATE.

Trace Memory α-stable parameter
type benchmarks α β σ µ

gcc 2.00 � 3.67 277
vpr 0.51 0.32 2.18 1.50

twolf 2.00 � 0.52 1.22
perlbmk 0.86 0.23 33.1 300

SPECint vortex 1.38 1.00 32.1 41.2
2000 gzip 0.70 1.00 0.51 0.36

mcf 0.76 0.26 1.29 26.1
parser 2.00 � 14.2 26.0

gap 0.67 0.38 18.2 156
bzip 2.00 � 11.5 17.0

ammp 1.66 0.52 5.13 25.5
SPECfp applu 2.00 � 9.96 32.0

2000 apsi 2.00 � 8.91 18.0
galgel 1.26 0.53 7.14 16.6

perlbench 0.725 1.00 33.3 28.33
bzip2 1.195 1.00 26.41 36.70
astar 1.402 0.395 50.27 19.8
mcf 0.725 0.56 3.81 102.6

SPECint gobmk 0.6756 0.6967 18.42 49.34
2006 hmmer 2.00 � 31.97 51

sjeng 1.07 1.00 138.9 -110.6
xalancbmk 2.00 � 10.58 73.2

h264ref 0.7775 0.617 15.49 55.55
omnetpp 0.62 0.49 10.84 20.17

cactusADM 0.898 1.00 15.35 0.648
SPECfp gromacs 0.89 1.00 42.35 22.1

2006 namd 0.49 0.56 20.6 39.6
povray 2.00 � 15804.6 9925

9

rates are less than or equal to an arrival rate of x.
The memory workload synthesized by the α-stable model

very closely matches the real trace data, especially for perl-

bench and gromacs, as shown in Figure 6. It is evident that
it is difficult for the Poisson method to accurately capture the
memory I/O burstiness which can be precisely characterized
by the α-stable method.

A quantitative approach to evaluate the improvement is to
analyze the error. A trimmed mean [9] is widely used to mea-
sure the central tendency and it is less sensitive to outliers that
are far away from the mean. A trimmed mean is calculated by
discarding a certain number of highest and lowest outliers and
then computing the average of the remaining measurements.
Since statistically a trimmed mean is usually more resilient and
robust than a simple average mean, we use the trimmed mean
to evaluate the matching degrees between each real workload
and its corresponding synthetic workload. The trimmed means
of errors and comparison results are summarized in Table VI.

As can be seen from Table VI, for almost all of traces
studied in this paper, the trimmed mean of error between
the real workload and the α-stable synthetic workload is
minimum, with the exception in which the trimmed mean
of error between the hmmer trace and the α-stable synthetic
workload is 41.9, with the increase of 15 percent of 36.4,
the trimmed mean of error between the hmmer trace and
the Poisson synthetic workload. Nevertheless, comparing with
the matching degree of the Poisson synthetic workload, the
matching degree of the α-stable synthetic workload for the
hmmer workload is still reasonably good.

TABLE VI
THE TRIMMED MEANS OF ERRORS FOR THE SPEC2000 AND SPEC2006

BENCHMARKS.

Type Benchmarks Poisson Proposed Improvement (%)
gcc 61.22 57.28 6
vpr 6.79 6.43 5

twolf 3.04 0.65 79
perlbmk 8.20 5.04 38

SPECint vortex 98.51 95.86 3
2000 gzip 4.81 2.18 54

mcf 4.74 4.63 3
parser 21.67 17.26 20

gap 51.84 46.94 9
bzip 16.35 14.10 14

ammp 14.64 7.67 48
SPECfp applu 19.38 12.75 34

2000 apsi 18.06 15.32 15
galgel 17.65 11.93 32

perlbench 365.28 158.99 56.5
bzip2 55.26 32.57 41
astar 30.2 19.7 34.8
mcf 87.13 72.59 16.7

SPECint gobmk 160.81 64.75 59.7
2006 hmmer 36.4 41.9 −15

sjeng 501.1 276.7 44.8
xalancbmk 61.23 29.52 51.8

h264ref 115.5 44.2 61.7
omnetpp 57.26 40.81 28.7

cactusADM 64.11 35.72 44.3
SPECfp gromacs 183.01 115.01 37.2

2006 namd 392.42 158.02 60
povray 149.47 143.64 4

As shown in Table VI, for bzip, applu, perlbench and
gromacs, the trimmed means of errors between the real trace
and the synthesized workload through the Poisson method
are 16.35, 19.38, 365.28, and 183.01, respectively, and the
trimmed means of errors between the real trace and the
synthesized workload through the α-stable model with these
parameter values in Table V are 14.10, 12.75, 158.99, and
115.01, respectively. Accordingly, our proposed model can
reduce the trimmed mean of error of the Poisson models by
14%, 34%, 56.5% and 37.2%, respectively. So, the synthetic
workloads generated by the α-stable method are more accu-
rate than the synthetic workloads synthesized by the Poisson
method.

VII. CONCLUSIONS AND FUTURE WORK

In this work, we studied the self-similarity phenomena of
the memory access in the widely used SPEC 2000 and 2006
benchmark suites. We examine the auto-correlation functions
of inter-access times (arrival intervals) for all of memory
access traces collected in SPEC2000 and SPEC2006. Results
show that there are evident correlations between memory
accesses in both the integer and floating-point benchmarks.
Therefore, a sequence of independent and identically dis-
tributed random variables is inappropriate to characterize and
model memory I/O accesses. This motivates us to further study
the self-similarity in memory workloads, which can provide
useful insight into analysis of memory workloads, and design
of memory benchmarks and synthetic workloads.

We have shown visual evidence that the memory accesses
are consistent with self-similar like behavior in small time
scales. We have used rigorous statistical techniques, including
variance-time plot and R/S analysis (Pox plot), to estimate the
Hurst parameter of memory access traces. In our experiments,
all estimated Hurst parameters are significantly larger than 0.5,
indicating that self-similarity seems to be a general property
of memory access behaviors. As a result, when characterizing
the memory I/O workloads or designing synthetic benchmark
to evaluate a memory system, the self-similarity, an intrinsic
nature in memory I/Os, should be taken into consideration to
correctly preserve or emulate the I/O burstiness.

In addition, based on the α-stable process, we implement
a memory access series generator in which the inputs are the
measured properties of the available trace data. Experimental
results show that this model can faithfully capture the complex
I/O arrival characteristics of memory workloads, particularly
the heavy-tail characteristics under both Gaussian and non-
Gaussian workloads.

REFERENCES

[1] M. Inc.. Micron 512mb: Ddr2 sdram data sheet. http://www.micron.com.
[2] N. L. Binkert, R. G. Dreslinski, L. R. Hsu and et al. The m5 simulator:

Modeling networked systems. IEEE Micro, 26(4):52-60, 2006.
[3] D. Wang, B. Ganesh, N. Tuaycharoen and et al. Dramsim: a memory

system simulator. SIGARCH Computer Architecture News, 33(4):100-
107, 2005.

[4] J. Henning. SPEC CPU2000: Measuring CPU Performance in the New
Millennium. IEEE Computer, 33(7), July 2000.

10

[5] J. Henning. SPEC CPU2006 Benchmark Descriptions. ACM SIGARCH
Computer Architecture News, 34(4):1-17, September 2006.

[6] A. Jaleel. Memory Characterization of Workloads Using Instrumentation-
Driven Simulation–A Pin-based Memory Characterization of the SPEC
CPU2000 and SPEC CPU2006 Benchmark Suites. VSSAD Technical
Report 2007.

[7] S. Sair and M. Charney. Memory Behavior of the SPEC CPU2000
Benchmark Suite. IBM Thomas J. Watson Research Center Technical
Report RC-21852, October 2000.

[8] Z. Xu, S. Sohoni, R. Min and Y. Hu. An Analysis of the Cache Per-
formance of Multimedia Applications. IEEE Transactions on Computers,
53(1):20-38, January 2004.

[9] Z. J. Liu. Computational Science Technique and Matlab. Science Press.
Beijing, China, 2001.

[10] Norros. On the use of Fractional Brownian Motion in the theory of con-
nectionless networks. IEEE Journal on Selected Areas in Communications
(JSAC), 15: 200-208, 1997.

[11] Z. Kurmas, K. Keeton and K. Mackenzie. Synthesizing Representative
I/O Workloads Using Iterative Distillation. In Proceedings of the 11th
International Symposium on Modeling, Analysis and Simulation of Com-
puter and Telecommunication Systems (MASCOTS). Orlando, Florida,
2003.

[12] D. Ye, J. Ray and D. Kaeli. Characterization of File I/O Activity
for SPEC CPU2006. ACM SIGARCH Computer Architecture News,
35(1):112-117, March 2007.

[13] SPEC CPU2000 published results. http://www.spec.org/cpu2000/results.
[14] SPEC CPU2006 published results. http://www.spec.org/cpu2006/results.
[15] L. A. Barroso, K. Gharachorloo and E. Bugnion. Memory system

characterization of commercial workloads. In Proceedings of the 25th
International Symposium on Computer Architecture (ISCA). Barcelona,
Spain, June 1998.

[16] D. Lee, P. Crowley, J. Baer, T. Anderson, and et al. Execution Charac-
teristics of Desktop Applications on Windows NT. In Proceedings of the
25th International Symposium Computer Architecture (ISCA). Barcelona,
Spain, June 1998.

[17] Y. Chen, W. Li, J. Lin and et al. Memory Characterization of Emerging
Recognition-Mining-Synthesis Workloads for Multi-Core Processors. In
Proceedings of the Workshop for Computer Architecture Evaluation of
Commerical Workloads (CAECW’08).

[18] J. Lin, Y. Chen, W. Li and et al. Memory Characterization of SPEC
CPU2006 Benchmark Suite. In Proceedings of the Workshop for Com-
puter Architecture Evaluation of Commerical Workloads (CAECW’08).

[19] H. Liu, R. Li, Q. Gao and et al. Characterizing Memory Behavior of
XML Data Querying on CMP. In Proceedings of the Workshop for Com-
puter Architecture Evaluation of Commerical Workloads (CAECW’08).

[20] M. Charney and T. Puzak. Prefetching and Memory System Behavior
of the SPEC95 Benchmark Suite. IBM J. Research and Development,
41(3):265-286, May 1997.

[21] J. Gee, M. Hill, A. J. Smith. Cache Performance of the SPEC Benchmark
Suite. UC Berkeley, Technical Report: CSD-91-648, 1991.

[22] W. Korn, M. S. Chang. SPEC CPU2006 sensitivity to memory page
sizes. In ACM SIGARCH newsletter, Computer Architecture News,
Volume 35, No. 1, March 2007.

[23] M. W. Garrett and W. Willinger. Analysis, modeling and generation of
self-similar VBR video traffic. In Proceedings of the ACM SIGCOMM’94
Conference on Communications Architectures, Protocols and Applica-
tions. London, UK, September 1994.

[24] J. Beran, R. Sherman, M. S. Taqqu, and W. Willinger. Long-range
dependence in variable-bit-rate video traffic. IEEE Transactions on Com-
munications, 43:1566-1579, Mar. 1995.

[25] Tao Li. Using A Multiscale Approach to Characterize Workload Dy-
namics. In Proceedings of the Workshop on Modeling, Benchmarking
and Simulation (MoBS). Madison, Wisconsin, June 2005.

[26] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the self-similar
nature of ethernet traffic (extended version). IEEE/ACM Transactions on
Networking, 2(2):1-15, Feb. 1994.

[27] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson
modeling. IEEE/ACM Transactions on Networking, 3(3):226-244, 1995.

[28] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity
through high-variability: Statistical analysis of ethernet lan traffic at the
source level. IEEE/ACM Transactions on Networking, 5(1):71-86, 1997.

[29] S. Gribble, G. Manku, and E. Brewer. Self-similarity in high-level file
systems: Measurement and applications. In Proceedings of the ACM
SIGMETRICS’98. Madison, WI. June 1998.

[30] M. Gomez and V. Santonja. Self-Similarity in I/O Workload: Analysis
and Modeling. In Proceedings of the 1st IEEE International Workshop on
Workload Characterization (WWC’98). Dallas, Texas, November 1998.

[31] M. Gomez and V. Santonja. Analysis of Self-similarity in I/O Workload
Using Structural Modeling. In Proceedings of the 8th International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS). College Park, Maryland, Oc-
tober 1999.

[32] Q. Zou, D. Feng, Y. Zhu and et al. A Novel and Generic Model for Syn-
thesizing Disk I/O Traffic Based on The Alpha-stable Process. In Proceed-
ings of the 16th Annual Meeting of the IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and Telecommunication
Systems (MASCOTS). Baltimore, Maryland, September 2008.

[33] M. E. Crovella and A. Bestavros. Self-similarity in World Wide Web
traffic: evidence and possible causes. IEEE/ACM Transaction on Net-
working, 5(6):835-846, 1997.

[34] B. Hong and T. Madhyastha. The Relevance of Long-Range Dependence
in Disk Traffic and Implications for Trace Synthesis. In Proceedings of the
IEEE Conference on Mass Storage Systems and Technologies (MSST).
Monterey, CA, April 2005.

[35] M. Wang and T. Madhyastha and et al. Data mining meets performance
evaluation: Fast algorithms for modeling bursty traffic. In Proceedings of
the 18th International Conference on Data Engineering (ICDE). San Jose,
CA, February 2002.

[36] C. Stathis and B. Maglaris. Modelling the self-similar behaviour of
network traffic. Computer Networks, 34:37-47, 2000.

[37] A. Riska and E. Riedel. Long-Range Dependence at the Disk Drive
Level. In Proceedings of the Third International Conference on the
Quantitative Evaluation of Systems (QEST). University of California,
Riverside, CA, September 2006.

[38] A. Riska and E. Riedel. Disk Drive Level Workload Characterization. In
Proceedings of the 2006 USENIX Annual Technical Conference. Boston,
MA, June 2006.

[39] J. Zhang, A. Sivasubramaniam, H. Franke and et al. Synthesizing
Representative I/O Workloads for TPC-H. In Proceedings of the Tenth
International Symposium on High Performance Computer Architecture
(HPCA-10). Madrid, Spain, February 2004.

[40] S. Kavalanekar, B. Worthington, Q. Zhang and V. Sharda. Characteri-
zation of Storage Workload Traces from Production Windows Servers.
In Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC). Seattle, WA, September 2008.

[41] T. Karagiannis, M. Faloutsos and R. Riedi. Long-Range Dependence:
Now you see it, now you don’t! In Proceedings of the GLOBECOM.
Taipei, Taiwan, November 2002.

[42] G. Samorodnitsky and M. Taqqu. Stable Non-Gaussian Random Pro-
cesses: Stochastic Models with Infinite Variance. New York, 1994.

[43] K. Ganesan, J. Jo, and L. K. John. Synthesizing Memory-Level Paral-
lelism Aware Miniature Clones for SPEC CPU2006 and ImplantBench
Workloads. In Proceedings of the 2010 International Symposium on
Performance Analysis of Systems and Software (ISPASS). White Plains,
NY, March 2010.

[44] L. Eeckhout, R. H. Bell Jr., B. Stougie and et al. Control Flow Modeling
in Statistical Simulation for Accurate and Efficient Processor Design
Studies. In Proceedings of the 31st International Symposium on Computer
Architecture (ISCA), 2004.

[45] A. Joshi, L. Eeckhout, R. H. Bell Jr., and Lizy K. John. Performance
Cloning: A Technique for Disseminating Proprietary Applications as
Benchmarks. In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC’06). San Jose, California, October
2006.

[46] R. H. Bell Jr., R. R. Bhatia, L. K. John and et al. Automatic Testcase
Synthesis and Performance Model Validation for High Performance Pow-
erPC Processors. In Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS). Austin, Texas,
March 2006.

[47] D. C. Burger and T. M. Austin. The simplescalar tool set, version 2.0.
Technical Report CS-TR-97-1342. University of Wisconsin, Madison,
June 1997.

[48] Y. Kim, M. Papamichael, O. Mutlu and et al. Thread Cluster Memory
Scheduling: Exploiting Differences in Memory Access Behavior. In
Proceedings of the MICRO-43, Atlanta, GA, Dec. 2010.

[49] Y. Kim, D. Han, O. Mutlu, and et al. ATLAS: A Scalable and High-
Performance Scheduling Algorithm for Multiple Memory Controllers. In
Proceedings of the HPCA-16, Bangalore, India, Jan. 2010.

11

