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Abstract 
Memory trace analysis is an important technology for architecture 
research, system software (i.e., OS, compiler) optimization, and 
application performance improvements. Many approaches have 
been used to track memory trace, such as simulation, binary 
instrumentation and hardware snooping. However, they usually 
have limitations of time, accuracy and capacity.  

In this paper we propose a platform independent memory trace 
monitoring system, which is able to track virtual memory 
reference trace of full systems (including OS, VMMs, libraries, 
and applications). The system adopts a DIMM-snooping 
mechanism that uses hardware boards plugged in DIMM slots to 
snoop. There are several advantages in this approach, such as fast, 
complete, undistorted, and portable. Three key techniques are 
proposed to address the system design challenges with this 
mechanism: (1) To keep up with memory speeds, the DDR 
protocol state machine is simplified, and large FIFOs are added 
between the state machine and the trace transmitting logic to 
handle burst memory accesses; (2) To reconstruct physical-to-
virtual mapping and distinguish one process' address space from 
others, an OS kernel module, which collects page table 
information, and a synchronization mechanism, which 
synchronizes the page table information with the memory trace, 
are developed; (3) To dump massive trace data, we employ a 
straightforward method to compress the trace and use Gigabit 
Ethernet and RAID to send and receive the compressed trace.  

We present our implementation of an initial monitoring system, 
named HMTT (Hyper Memory Trace Tracker). Using HMTT, we 
have observed that burst bandwidth utilization is much larger than 
average bandwidth utilization, by up to 5X in desktop 
applications. We have also confirmed that the stream memory 
accesses of many applications contribute even more than 40% of 
L2 Cache misses and OS virtual memory management may 
decrease stream accesses in view of memory controller (or L2 
Cache), by up to 30.2%. Moreover, we have evaluated OS impact 
on memory performance in real systems. The evaluations and case 
studies show the feasibility and effectiveness of our proposed 
monitoring mechanism and techniques.   

Categories and Subject Descriptors 
B.8 [Performance and Reliability]: Performance Analysis and 
Design Aids; C.4 [Performance of Systems]: Measurement 
techniques; D.4 [Operating Systems]: Miscellaneous 

General Terms 
Measurement Performance 
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1. Introduction 
Although the “Memory Wall [50]” problem has been raised for a 
decade, this trend remains in multicore era. Both memory latency 
and bandwidth become critical. On the other hand, for high-
performance DRAM memories, thermal control has already 
become a realistic issue [27]. To evaluate thermal models, an 
interval of at least thousands of seconds is needed [31]. Memory 
trace analysis is an important technology for architecture research, 
system software (i.e., OS, compiler) optimization, and application 
performance improvements.  

Uhlig and Mudge [52] suggest that an ideal memory trace 
collector should be:  

 Complete: Trace should include all memory references 
made by OS, libraries and applications; 

 Detail: Trace should contain detail information to 
distinguish one process’ address space from others;  

 Undistorted: Trace should not include any additional 
memory references. Trace should have no time dilation. 

 Portable: Trace can still be tracked when moving to 
other machines with different configurations.  

 Other characteristics: An ideal trace collector should be 
fast, inexpensive and easy to operate. 

Memory trace can be collected in several ways, such as by 
software simulators, binary instrumentation, hardware counters, 
hardware monitors, and hardware emulators. Table 1 summarizes 
these approaches. Nevertheless, all of these approaches have their 
shortcomings. (Detailed in Section 2) 

Table 1.  Summary of Memory Trace Trackers 
 Simul-

ation 
Instru- 
ment 

HW 
counter 

HW 
Monitor

HW 
Emulate

Complete * * х √ √ 
Detail √ * х х √ 
Undistorted √ х √ √ х 
Portable √ * * х * 
Fast х х √ √ √ 
Inexpensive √ √ √ * х 

Note:               √ – Yes               * – Maybe            х– No  
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In this paper we propose a platform independent full system 
memory trace monitoring system. The system adopts a DIMM- 
snooping mechanism, which uses hardware boards plugged in 
DIMM slots to track virtual memory reference trace of full 
systems (including OS, VMMs, libraries, and applications). 
Several new techniques are proposed to overcome the system 
design challenges with this mechanism: (1) To keep up with 
memory speeds, the DDR state machine [3] is simplified to match 
high speed, and large FIFOs are added between the state machine 
and the trace transmitting logic to handle occasional bursts; (2) To 
reconstruct physical-to-virtual mapping and to distinguish one 
process’ address space from others, an OS kernel module which 
collects page table information and a synchronization mechanism 
which synchronizes page table information with memory trace are 
introduced; (3) To dump full mass trace, we use a straightforward 
method to compress memory trace and adopt a combination of 
Gigabit Ethernet and RAID to transfer and save the compressed 
trace. 

The monitoring system with the DIMM-snooping mechanism 
and techniques has the following advantages: 

Complete: It is able to track complete memory reference trace 
of real systems, including OS, VMMs, libraries, and applications.  

Detail: The memory trace includes timestamp, r/w, process’ 
pid, page table information, and kernel entry/exit tags etc. It is 
easy to differentiate processes’ address spaces. 

Undistorted: There are almost no additional references except 
synchronization operations between memory trace and page table 
information. The operations incur only less than 1% additional 
references and about 1% additional execution time. 

Portability: The hardware boards are plugged in DIMM slots 
which are widely used. It is easy to port the monitoring system to 
machines with different configurations (CPU, bus, memory etc.).  

Fast: There is no slowdown when we collect memory trace for 
analysis of L2/L3 cache, memory controller, DRAM performance 
and power etc. The slowdown factor is about 10X~100X when 
cache is disabled to collect whole trace. 

Inexpensive: We have built an initial monitoring system, from 
schematic, PCB design, FPGA logic to kernel modules, and 
analysis programs. The implementation of hardware boards is 
simple and low cost (< $500). 

Easy to operate: It is easy to operate the system, with several 
toolkits for trace generation and analysis. 

We present the implementation of an initial monitoring system, 
named HMTT (Hyper Memory Trace Tracker). HMTT consists of 
three parts: a Memory Trace Board (MTB, an FPGA board) 
plugged in a DIMM slot, a Kernel Synchronization Module 
(KSMod) synchronizing page table information with memory 
trace, and a trace capture and analysis toolkit. In addition to 
tracking trace, it can also be reconfigured to support online 
analyses, such as memory bandwidth statistical analysis, page 
reuse distance calculation, and hot pages collection. HMTT can 
only monitor DDR-200 DIMMs currently. Using HMTT in 
X86/Linux platforms, we have observed that various applications 
(SPEC CPU 2000/2006, desktop applications, and SPECJbb 2005) 
have burst memory access behaviors, and the burst bandwidths 
may be much more than average bandwidth, by up to 5X. We 
have also confirmed that stream-based memory accesses of many 
applications account for more than 40% of L2 Cache miss 
accesses. But OS virtual memory management may decrease 
stream accesses in view of memory controller (or L2 Cache), by 
up to 30.2% (301.apsi). Moreover, we have evaluated OS impact 

on memory performance in a real system. The evaluations and 
case studies show the feasibility and effectiveness of the 
monitoring mechanism and techniques. 

In summary, we have made the following contributions in this 
paper: 

 We propose a platform independent full system memory 
trace monitoring system, which adopts a DIMM-snooping 
mechanism and several new techniques. We have 
implemented an initial monitoring system — HMTT 
(Hyper Memory Trace Tracker). HMTT confirms that the 
monitoring mechanism and techniques are feasible and 
effective. 

 We propose three new techniques to overcome the system 
design challenges with this mechanism: a simplified DDR 
state machine to keep up with memory speeds, a Kernel 
Synchronization Mechanism (KSM) to differentiate 
processes’ address spaces, and a combined approach of 
GE and RAID to dump full mass trace. 

 With HMTT, we have evaluated memory burst bandwidth, 
stream-based memory accesses among L2 Cache misses 
and the impact of OS on memory system of three 
categories applications (SPEC CPU, Desktop and Java) in 
Intel Celeron and AMD Opteron platforms. The case 
studies and evaluations indicate several advantages of 
HMTT, such as complete, detail, undistorted, portability 
and fast. 

The rest of the paper is organized as follows. Section 2 presents 
an overview of related work, while Section 3 describes the design 
goals and challenges of the monitoring system. Section 4 presents 
the detail design, and section 5 discusses the implementation and 
validation of the initial system -- HMTT. Section 6 presents 
several case studies of HMTT to show its feasibility and 
effectiveness. Section 7 discusses the evaluations and limitations. 
Finally, Section 8 summarizes the system and discusses the future 
work of the monitoring system. 

2. Related Work 
There are several areas of effort related to memory trace 
monitoring: software simulators, binary instrumentation, 
hardware counters, hardware monitors, and hardware emulators 
etc. 

Software simulators: Most memory performance and power 
researches are based on simulators. They utilize cycle-accurate 
simulators to generate memory trace and then feed trace to trace-
driven memory simulators (e.g. DRAMSim [47], MEMsim [39]). 
SimpleScalar [9] is a popular user-level simulator, but it can not 
run operating system for analysis of full system behaviors. 
Several full system simulators (such as SimOS [41], Simics [34], 
M5 [5] and QEMU [16]), which can boot commercial operating 
systems, are commonly used in research when deal with OS-
intensive applications. However, software simulators usually have 
speed and scalability limitations. As the computer architectures 
become more and more sophisticated, more detail simulation 
models are need, which may lead to a slowdown of 
1000X~10000X [15]. Moreover, simulation with complex 
multicore and multi-threaded applications may incur inaccuracies 
and could lead to misleading conclusions [36]. 

Binary instrumentation: Many binary instrument tools (e.g. 
O-Profile [6], ATOM [46], DyninstAPI [1], Pin [7], Valgrind [10], 
Nirvana [17] etc.) are popularly utilized to profile applications. 
They are able to obtain applications’ virtual access trace even 



without source codes. Nevertheless, few of them can provide full 
system memory trace because instrumenting kernels is very tricky. 
PinOS [18] is an extension of the Pin [7] dynamic instrumentation 
framework for full-system instrumentation. It is built on top of the 
Xen [12] virtual machine monitor with Intel VT [37] technology 
and, is able to instrument both kernel and user-level code. 
However, PinOS can only run on IA-32 in uni-processor mode. 
Moreover, binary instrumentation method usually only slows 
down target programs’ execution, incurring time distortion and 
memory access interference. 

Hardware counters: Hardware counters are able to provide 
accurate events statistic (e.g. Cache Miss, TLB Miss, etc.). 
Itanium2 [2] is even able to collect trace via sampling. The 
approach of hardware counters is fast, low overhead, but they can 
not track complete and detailed memory reference trace. 

Hardware monitors: Various Hardware monitors, divided into 
two classes, are able to monitor memory trace online. One class is 
pure trace collectors, and another is online cache emulators. 
BACH [22, 23] is a trace collector. It utilizes a logic analyzer to 
interface with host system and to buffer the collected traces. 
When the buffer is full, the host system is halted by an interrupt 
and the trace is moved out. Then, the host system continues to 
execute programs. BACH is able to collect traces from long 
workload runs. However, this halting mechanism may alter 
original behavior of programs. The hardware-based online cache 
emulation tools (such as MemorIES [36], PHA$E [19], RACFCS 
[51], ACE [25], and HACS [49]) are very fast and have low 
distortion and no slowdown. Logic analyzer is also a powerful 
tool for capturing signals (including DRAM signals) and can be 
very useful for hardware testing and debugging.  

However, these hardware monitors have several disadvantages: 
(1) they (except BACH) are not able to dump full mass trace but 
only produce short traces due to small local memories; (2) they 
can not distinguish one process’ address space from others but 
only track physical address due to the lack of physical-to-virtual 
mapping information; (3) they depend on proprietary interfaces, 
for example, MemorIES relies on the IBM’s 6xx bus, BACH, 
PHA$E, ACE, HACS etc. adopt logic analyzer which is quite 
expensive. RACFCS use a latch board that directly connects to 
output pins of specified CPUs. So they have poor portability. 

Hardware emulators: Several hardware emulators are 
thorough FPGA-based systems which utilize a number of FPGAs 
to construct uni-processor/multi-processor research platforms to 
accelerate research. For example, RPM [14] emulates the entire 
target system within its emulator hardware. Intel proposed an 
FPGA-based Pentium system [33] which is an original Socket-7 
based desktop processor system with typical hardware peripherals 
running modern operating systems. RAMP [8] is also a new 
scheme for architecture research. Although they do not produce 
any memory traces currently, they are capable of tracking full 
system trace. But they can only emulate a simplified and slow 
system with relative fast I/O, which fulfills the “CPU-memory / 
memory-disk” gaps that may be bottlenecks in real systems. 

3. The Platform Independent Full-System 
Memory Trace Monitoring System  
We propose a platform independent full-system memory trace 
monitoring system. In this section, we discuss the design goals 
and challenges of such a system. 

The system is designed to be able to track complete, detail, 
and undistorted trace. Moreover, the system should be portable, 

fast, inexpensive, and easy to operate. To achieve these goals, 
we adopt a DIMM-snooping mechanism that uses hardware 
boards plugged in the DIMMs to snoop. Although the idea is 
straightforward, it is able to track full-system memory reference 
trace from OS kernel, VMMs, libraries, and applications. 
Moreover, DIMMs are independent of hardware platforms (such 
as CPUs, buses, and memory controllers), and they are widely 
used in modern machines. The trace monitoring system can be 
used in various hardware platforms. 

Several obstacles must be overcome to design and implement 
such a monitoring system: 

How to keep up with memory speeds?  
Although memory frequency is lower than CPU, usually it is 

still more than 200MHz. For example, the frequency of DDR 
memory is about 200 ~ 400MHz, and currently dominant DDR2 
memory has increased to a 533 ~ 800MHz clock rate. Moreover, 
DDR3 memory may reach to a 1600MHz rate in the forthcoming 
future. 

On the other hand, DDR commands to multi-bank memories 
are interleaved, which requires sophisticated logic to interpret. 
DDR read/write operations are performed in two phases. First, an 
ACTIVE command is used to open a row in a particular bank for 
a subsequent access. Then, the READ/WRITE commands are 
issued to the row of that bank [3]. Multiple access requests can be 
issued because of the multi-bank architecture, which provides 
high effective bandwidth. Figure 1 depicts a scenario where a 
command pattern is issued to a multi-bank memory. 

Thus the snooping logic should handle the high frequency and 
the interleaved commands to keep up with memory speeds. 

How to reconstruct physical-to-virtual mapping? 
   Although physical traces are useful for memory system research, 
they can not provide deep insights into specified processes and 
OS kernels. As known to all, virtual memory mechanism isolates 
address spaces of processes running on one machine 
simultaneously. It is impossible to differentiate processes’ address 
spaces without physical-to-virtual mapping information, 
especially in multi-processes environments.  
   Moreover, a new challenge is posed when given the mapping 
information. That is how to synchronize the mapping information 
with memory trace for replaying virtual memory trace correctly 
and effectively. 
   It should be noted that none of previous hardware monitors 
provides the physical-to-virtual mapping information, although 
they are able to track complete, undistorted and full-system 
physical trace fast. 

How to dump mass trace? 
   Usually, memory reference traces are generated at very high 
speed. Our experiments show that most applications generate 
memory trace at bandwidths of more than 30MB/s even when 
utilize the DDR-200MHz memory (Detailed in Section 7.1). An 
execution of a 10-minutes interval would generate more than 

Figure 1. DDR Interleaved Commands to Multi-Bank [3]



18GB memory reference trace. Moreover, the high frequency of 
the DDR2/DDR3 memory and the prevalent multi-channel 
memory technology increase trace data generation bandwidth 
further, up to 100X MB/s.  
   Most previous hardware monitors utilize local memory to store 
trace. BACH has made an improvement, adopting a technique 
which is able to dump trace from long workload runs by halting 
host system when local memory is full. However, the local 
memory will be exhausted in a very short interval due to the trace 
generation bandwidth of more than 100MB/s. Thus, a new 
technique is demanded to sustain dumping mass trace. 

4. The Trace Monitoring System Design 
To overcome the above three challenges, we propose several new 
techniques in the trace monitoring system design. We also 
develop some toolkits to facilitate system operations. In this 
section, we will detail the top-down design of the trace 
monitoring system. 

4.1 Top-Level Design 
At the top-level, the monitoring system mainly consists of six 
procedures for memory trace tracking and replaying. Figure 2 
shows the system framework and the six procedures. 

From Figure 2, the monitoring system utilizes several hardware 
monitor boards plugged into DIMM slots of a traced system. The 
main memories of the traced system are plugged into the DIMM 
slots integrated on the hardware monitoring boards. The boards 
snoop on all memory commands via DIMM slots (see ①) . An 
on-board FPGA converts the commands into memory traces in 
this format <address, r/w, timestamp>. Each hardware monitor 
board generates trace separately and sends the trace to its 
corresponding receiver via Gigabit Ethernet (see ②). With the 
synchronized timestamps, the separated traces can be merged in 
the trace replay phase (see ③). Meanwhile, a module injected into 
OS kernel collects page table information and synchronizes the 
information with memory trace dynamically (see ④). Then the 
page table information is used to reconstruct physical-to-virtual 
mapping information (see ⑤ ). Based on the information, i.e. 
memory trace, virtual-physical mapping and synchronization tags, 
we are able to perform trace replaying procedure correctly and 
effectively for offline analysis (see ⑥). 

The three challenges mentioned previously are hidden in the six 
procedures. Procedure ① faces the challenge that how to keep up 
with memory speeds; procedures ④&⑤ encounter the challenge 
of physical-to-virtual mapping reconstruction; procedures ②&③ 

demand to solve the problem of dumping mass trace. We will 
elaborate on our solutions in the following sections. 

4.2 Keeping up with Memory Speeds 
As mentioned previously, fast and efficient control logic is 
demanded to keep up with memory speeds because of high 
memory frequency and multi-bank technologies. Since only 
memory address is indispensable for tracking trace, we could only 
snoop on DDR commands at half memory data frequency. For 
example, if use DDR2-533MHz memory, the control logic can 
operate at a frequency of only 266MHz, at which most advanced 
FPGAs are competent to work.  

To interpret the two-phase read/write operations, the DDR 
SDRAM specification [3] defines seven commands and a state 
machine which has more than twelve states. Commercial memory 
controllers may integrate even more complex state machines 
which cost both time and money to implement and validate. 
Nevertheless, we find that only three commands, i.e. ACTIVE, 
READ and WRITE, are necessary for memory reference address 
extraction. Thus, we design a simplified state machine to interpret 
the two-phase operations for one memory bank. Figure 3 shows 
the simplified state machine. It has only four states and performs 
state transition based on the three commands. The state machine 
is so simplified that its implementation in a common FPGA is 
able to work at a high frequency. Our experiments show that the 
state machine implemented in a Xilinx Virtex II Pro FPGA is able 
to work at a frequency of more than 300MHz. 

On the other hand, applications may generate occasional bursts 
which may induce dropping trace. A large FIFO between the state 
machine and the trace transmitting logic is provided to solve this 
problem. In our initial system HMTT, we have verified that a 16K 
entries FIFO is sufficient to match the state machine for DDR 
200MHz memory and a transmission bandwidth of 1000 Mbps. 
Moreover, few applications exhaust more than 8K entries except 
181.mcf (SPEC CPU2000). Of course, to adopt a higher 
bandwidth (e.g. use two Gigabit Ethernets) for trace transmission 
is an alternative to reduce the FIFO size. 

4.3 Physical-to-Virtual Mapping Reconstruction 
There are two problems to reconstruct physical-to-virtual 
mapping: 1) how to collect page table information; 2) how to 

Figure 2. The Trace Monitoring System Framework 

Figure 3. Simplified State Machine.  
* addr is used to filter special address for configuration.

Figure 4. Virtual-Physical Mapping Times Distribution



synchronize the information with physical memory trace. We 
introduce a Kernel Synchronization Mechanism (KSM) to handle 
these problems.  

The KSM is able to track each update of page table, in the form 
of <pid, phy_page, virt_page, page_table_entry_addr>. The form 
indicates that a mapping between physical page phy_page and 
virtual page virt_page is created for process pid, and the mapping 
information is stored in the memory location of 
page_table_entry_addr. When a page fault occurs, the KSM 
captures and stores each update of page table in the above form. 
Thus, given one physical address, the corresponding process and 
virtual address can be retrieved from the page table information.  
   On Linux platform, the KSM provides an hmtt_printk routine 
which can be called at any place from the kernel. Unlike Linux 
kernel’s printk, the hmtt_printk routine supports large buffers and 
user-defined data format, like some popular kernel log tools, such 
as LTTng[4]. The KSM requires a kernel buffer to store the page 
table information. Figure 4 shows that most physical pages are 
mapped to virtual pages only once during application’s entire 
execution (applications are list in Table 3). Under this observation, 
we find that it is enough to allocate a kernel buffer by only 0.5% 
of total memory size for storing page table information. 

Every N page faults, the hmtt_printk routine will send a 
synchronization tag to the hardware monitor boards. The choice 
of the number N is sensitive. An ideal N should satisfy two 
requirements that 1) one physical page will not be remapped in N 
consecutive page faults and 2) the N should be large to increase 
synchronization interval, consequently reduce the synchronization 
overhead. It is a tradeoff that a smaller N indicates more accuracy 
and a larger N means less overhead. Based on experimental 
results, we find that one physical page is almost never remapped 
in 50 consecutive page faults. Moreover, when N=50, the 
synchronization overhead is very small, about one thousand 
additional synchronization trace per billion. So, we choose N=50 
in our system implementation. We will detail the KSM 
implementation on Linux platform in Section 5.5.  

4.4 Dumping Mass Trace 
The memory trace size is dependent on two factors, trace 
generation bandwidth and application’s execution time. Our 
efforts mainly focus on reducing trace generation bandwidth. 
   First, we adopt several straightforward methods to reduce the 
memory trace generation and transmission bandwidth. When 
memory works in burst mode [3], we only need to track the first 
memory address of an addresses pattern. For example, when the 
burst length is equal to four, the latter three addresses of a 4-
length addresses pattern are ignored. Trace format is usually 
defined as <address, r/w, timestamp> which needs at least 6~8 
bytes to store and transmit. We find that the high bits of the 
difference of timestamps in two consecutive traces are always 0s 
at most time. We use duration (=timestampn–timestampn-1) to 
replace timestamp in the trace format. This differencing method 
reduces the duration bits to ensure one trace to be stored and 
transmitted in 4 bytes. However, the duration may overflow. We 
define a special format <special_identifier, duration_high_bits> 
to handle the overflows. Then, the timestamps can be calculated 
in the trace replay phase. The straightforward compression 
methods reduce trace generation and transmission bandwidth 
significantly. 
   Second, the experimental results show that trace generation 
bandwidth is still high with the above compressions. As depicted 

in Figure 2 procedure ②, we utilize multiple Gigabit Ethernets 
(GE) and RAIDs to send and receive memory traces respectively. 
In this method, all traces are received and stored in RAID storages 
(the details about trace generation and transmission bandwidth 
will be discussed in Section 7.2). Each GE sends trace 
respectively, so the separated traces need to be merged when 
replay. As shown in Figure 2 procedure ③, each trace has its own 
timestamp. The timestamps are synchronized by a toolkit when 
the monitoring system starts working. Once the base timestamps 
of all monitor boards are synchronized, they increase at the same 
memory clock rate respectively. Then the trace merge operation is 
simplified to be a merge sort problem.  
   The combination of the straightforward compressions, the GE-
RAID approach, and the trace merge procedure makes the 
monitoring system be able to dump mass trace. Moreover, these 
techniques are scalable for higher trace generation bandwidth. 

4.5 Other Design Issues 
The hardware monitor system requires a configuration mechanism. 
We define some special addresses as configuration registers. To 
differentiate normal accesses, only a continuous access pattern to 
one specified address will be translated into an inner-command to 
control the hardware monitor boards. For example, the inner-
command RESET operation is defined as a pattern of 16 
continuous references on the 0x80 address. The cache influence is 
also a problem. Fortunately, pages have a cache attribution which 
can be altered by OS. When system powers on and OS boots, we 
can reserve several pages which will be set to be uncacheable 
later. These pages are defined as a configuration space of 
hardware monitor boards. More details of implementation will be 
present in Section 5.4.  

As the on-board FPGAs are reconfigurable, we also design 
some online analysis functionalities, such as memory bandwidth 
statistic, page-level statistic (hot pages and reuse distance), and 
reference address bit change statistic. 

5. The Implementation of HMTT 
At the first stage, we have implemented an initial monitoring 
system according to the above design, named HMTT (Hyper 
Memory Trace Tracker). HMTT, which is able to monitor DDR-
200 DIMMs currently, consists of a Memory Trace Board (MTB, 
an FPGA board) plugged in a DIMM slot, a Kernel 
Synchronization Module (KSMod) synchronizing page table 
information with memory trace, and a trace capture and analysis 
toolkit. Besides tracking trace, HMTT is reconfigurable to support 
online analysisses, such as memory bandwidth statistic, page 
reuse distance calculation, and hot pages collections.  

5.1 Detail Framework of HMTT  
As Figure 5(a) shows, HMTT comprises a Memory Trace Board 
(MTB) plugged in DIMM slot, a Kernel Synchronization Module 
(KSMod) and a trace packets capture and analysis Toolkit. 

MTB, which is a hardware monitor board without on-board 
DIMM currently at the first stage, is plugged in an idle DIMM 
slot (see Figure 5(b)). It snoops on memory command signals 
which are sent to DDR SDRAM from memory controller. MTB 
captures the DDR commands, and forwards them to the simplified 
DDR state machine (described in Section 4.2). The output of state 
machine is a tuple <address, r/w, duration>. These raw traces are 
sent out via GE directly or inputted for online analysis. 

KSMod is an instance of the Kernel Synchronization 
Mechanism (KSM) on Linux platforms. KSMod comprises two 



modules and one kernel patch. The two modules collect page 
table information and synchronize the information with memory 
trace, and the kernel patch contains a few kernel modifications. 

The Toolkit provides several programs for storing trace and 
offline analysis. Additionally, it can also analyze process’ page 
table information collected by KSMod (as shown in Figure 4). 

5.2 HMTT parameters 
Table 2 summarizes the parameters of HMTT. MTB utilize a 
Xilinx Virtex II Pro FPGA which works at 100MHz to support 
DDR 200MHz. HMTT is able to monitor more than one DIMM 
simultaneously, so its supported memory size can be up to 8GB. 
There is only one GE PHY on MTB (see Figure 5(b)), so the max 
trace transmission bandwidth is 1Gb/s. The full functionalities 
KSMod has been developed at Linux 2.6.14, and then has been 
ported to other versions with few efforts, such as 2.6.18. A simple 
KSMod for Windows has also been developed, but it can not 
collect page table information currently. 

5.3 FPGA Functionalities 
Figure 6 shows the physical block diagram of the FPGA. It 
contains eight logic units. The DDR Command Buffer Unit 
(DCBU) captures and buffers DDR commands. Then the buffered 
commands are forwarded to the Config Unit and the DDR State 
Machine Unit. The Config Unit (CU) translates a specified access 

pattern into inner-commands, and then controls MTB to perform 
corresponding operations, such as switching work mode, inserting 
synchronization tags to trace. The DDR State Machine Unit 
(DSMU) interprets two-phase interleaved multi-bank DDR 
commands to a format of <address, r/w, duration>. Then the trace 
will be inputted into the TX FIFO Unit (TFU) and be sent out via 
GE. The FPGA is reconfigurable to support two optional units – 
the Statistic Unit (SU) and Reuse Distance & Hot Pages Unit 
(RDHPU). 

The Statistic Unit is able to do statistic of various memory 
events in different intervals (1us ~ 1s), such as memory 
bandwidth, bank behavior, and address bits change. The RDHPU 
is able to calculate page’s reuse distance and collect hot pages. 
The RDHPU’s kernel is a 128-length LRU stack which is 
implemented in an enhanced systolic array proposed by J.P. 
Grossman [24]. 

To keep up with memory speeds, the DDR State Machine Unit 
adopts the simplified state machine described in Section 4.2. The 
TX FIFO Unit contains a 16K entries FIFO between the state 
machine and the trace transmitting logic. 

5.4 Memory Trace Board (MTB) Configuration 
As mentioned in Section 4.5, the hardware monitor board (MTB) 
requires a configuration mechanism. Our implementation of MTB 
configuration supports both Linux and Windows platforms. 
Figure 7 shows the configuration mechanism. The configuration 
space of MTB is the first physical page of 0x0~0x1000 (see ①). 
This physical page is reserved when Linux or Windows boot. The 
user programs (see ② ) then map “/dev/mem” (Linux) or 
“\\Device\\PhysicalMemory” (Windows) into their virtual address 
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spaces and accesses the page directly. The Config Unit of MTB 
will filter the well-defined address patterns and translate them into 
inner-commands in order to control MTB’s work mode. We have 
solved the following problems to make MTB work well. First, we 
have defined the MTB configuration registers elaborately (see ③). 
Only several continuous accesses to one specified address will be 
translated into an inner-command. For example, the RESET 
inner-command is defined as 16 continuous references on the 
physical address of 0x80. Second, we have eliminated cache 
influence. The first physical page is set as uncacheable after OS 
startup, which will not influence system performance because the 
page is already reserved and only OS may access it un-frequently. 

5.5 Kernel Synchronization Module (KSMod) 
The KSMod is an instance of the Kernel Synchronization 
Mechanism (KSM) on Linux platform. It comprises two modules 
and one kernel patch. 

One module is added to alter the first page’s cache attribution. 
Another is a more important module which provides the 
hmtt_printk routine to collect page table information and to store 
the information in a kernel-user shared buffer. It is not convenient 
for users to find out the exact points in kernel where they should 
call hmtt_printk, although hmtt_printk is so flexible that it can 
collect any kernel information and can be called at any place from 
kernel. The patch has done this work. 

The kernel patch is less than 30 code lines which modifies two 
files -- entry.S and pgtable.h (pgtable.h may be different on 
different CPU platforms). It modifies set_pte_at macro in the 
pgtable.h file (pgtable-2level.h in i386 platform and pgtable-
3level.h in x86-64 platform) to record each update of page table. 
When a page fault occurs, the Linux kernel ultimately calls 
set_pte_at to update application’s page table. At that time, the 
hmtt_printk will be called to collect page table trace in the format 
of <pid, phy_page, virt_page, page_table_entry_addr>.  

Another patch for entry.S is optional. This patch inserts a few 
codes at two macros (SAVE_ALL and RESTORE_REGS) and 
two other points to send identifiers to MTB when kernel-enter and 
kernel-exit occur. The identifiers are useful for analyzing full 
system memory behaviors, including OS (see case study in 
Section 6.3). Of course, they can also be removed when only 
analyze user application’s behavior. 

The KSMod will send a synchronization tag to MTB via the 
configuration mechanism every 50 page faults, where the choice 
of number 50 has been discussed in Section 4.3. 

5.6 Trace Dumping and Replay 
HMTT adopts the combination of straightforward compressions, 
GE-RAID approaches to dump mass trace, which has been 
described in Section 4.4. (The trace merge procedure is not 
required, because HMTT has only one GE PHY currently.)  

In the initial system, we used a PC with an Intel E1000 GE NIC 
to receive memory trace. The Toolkit of HMTT includes a zero-
copy driver for the NIC. MTB sends trace data to the PC via a GE 
PHY. Then, the zero-copy driver receives trace data from the NIC 
and stores them in a shared buffer. Another program reads trace 
data from the shared buffer and then writes them to a RAID 
(Contemporary PCs can be setup in BIOS to support RAID). 

The Toolkit provides several programs for trace relay and 
analysis. The programs can read memory trace and page table 
information simultaneously. They read the page table information 
to reconstruct physical-virtual mapping table, and extract the 
physical memory address to be queried in the mapping table to 

retrieve the process’ pid and virtual address. When meet a 
synchronization tag in the memory trace, the mapping table is 
updated to ensure their consistency. The replayed virtual trace can 
be used for many analyses, such stream-based access analysis, 
cache/TLB performance analysis, kernel impact on memory 
system, application page table statistic. 

5.7 Verifications 
HMTT is validated in five steps:  

1) As a basic verification, we have checked the physical 
address trace tracked by the monitoring board (MTB) with micro 
benchmarks which generate sequential reads, sequential writes, 
sequential read-after-writes and random reads in various level 
from cache line to page size. As shown in Figure 6, the FPGA is 
driven by a clock. There are two choices for clock: one is using 
DDR clock driven by memory controller, and another is using 
external clock generated by oscillators. HMTT is using an 
external clock currently. The test results show that there are few 
incorrect physical addresses, less than 1‰ (one per thousand) 
owing to the tiny phase shift between DDR clock and external 
clock. So, in the next version, we have chosen DDR clock. 

2) We have used the micro benchmarks to check if virtual 
pages and physical pages collected by the KSMod are both linear 
and if they are one-to-one corresponded. This check results are 
perfect, and all page table information has no errors. 

3) We have replayed virtual memory trace to verify the 
synchronization between physical memory trace and page table 
information. Figure 8 shows an example of quicksort’s virtual 
memory reference trace with an input of 100,000,000 integers. 
Figure 8(b) shows the virtual address space and its corresponding 
physical address space of quicksort’s data segment. The virtual 
address space is linear but the physical address space is discrete. 
Figure 8(a) shows a piece of virtual memory trace, which presents 
the exact reference pattern of quicksort. Moreover, the address 
space (0xA2800~0xA5800) also belongs to the virtual address 
space of data segment (0xA0000~0xC0000) (Figure 8(b)). 

4) We say a Miss occurs, if retrieve result is null when query a 
physical address in the virtual-physical mapping table. There are 
two reasons why “Misses” occur. One is the incorrect physical 
addresses introduced by jitters and another is some special I/O 
operations which are performed without page mapping. The 
“Miss” column in the Appendix Table shows the Miss proportion 
of various applications on an i386/Linux platform. The Miss 
proportions of most applications are less than 0.5%, except 
desktop applications whose vary from 1% to 2.4%. However, the 
Miss proportions are reasonable and acceptable.  

5) A comparison with performance counter (use O-Profile [6] 
with DRAM_ACCESS event) is listed in the Appendix Table. 
Through the table, most differences of memory access numbers 
acquired by HMTT and performance counter respectively are less 
than 1%, mainly incurred in initialization and finalization phases. 

The above verification works indicate that HMTT is a feasible 
and convincing memory trace monitoring system. 

Figure 8. QuickSort_100M: (a) Virtual Memory Reference 
Pattern; (b) Page Table – Virtual-to-Physical mapping 

(a) (b) 



6. Case Studies 
In this section, we will present several case studies of HMTT on 
two different platforms, an i386/Linux platform and a x86-
64/Linux platform respectively. The case studies include: (1) 
memory bandwidth; (2) stream-based access analysis; (3) OS 
impact on memory hierarchy in real systems. 

We have done experiments on two different machines as listed 
in Table 3. Because HMTT mainly depends on DIMM, it can be 
ported to various platforms, including multicore platforms. We 
have studied memory behaviors of three classes of benchmarks 
including (See Table 3): computing intensive applications (SEPC 
CPU2006, SPEC CPU2000, both using ref input sets), OS 
intensive applications (OpenOffice, Realplayer), and Java Virtual 
Machine applications (SPECjbb 2005). 

6.1 Memory Bandwidth Analysis 
Limited memory bandwidth can degrade scalability of a multicore 
system as the number of cores increases [32]. In this study, we 
focus on the memory bandwidth utilization of various applications.  

Usually, average memory bandwidth is adopted to evaluate an 
application’s memory requirements. However, CPU may not 
generate memory reference at a stable frequency. Burst accesses 
can be issued in a short interval. In this study, memory 
bandwidths are sampled every 1ms, and burst bandwidth is 
defined as the 90th percentile of the bandwidth samples. Figure 9 
shows all of the benchmarks’ average bandwidth and burst 
bandwidth. Throughout Figure 9, the burst bandwidths are more 
than the average bandwidths, varying from 2% (171.swim) to 5X 
(OpenOffice) in Intel Celetron platform, as well as in AMD 
Opteron platform. Moreover, the highest burst bandwidths on 

both platforms already exceed 90% of peak bandwidths. 
Moreover, the average bandwidths of SPECjbb2005 from one 
thread to seven threads increase modestly by 1.9%, but the burst 
bandwidths increase by 26.3%. The burst bandwidths on AMD 
platform are much higher than Intel platform because AMD 
platform uses dual-channels. 

We have replayed all samples to do a deep investigation of 
memory bandwidth. Figure 10 shows the memory access 
frequency (same meaning as bandwidth) of 255.vortex and 
OppenOffice in Celetron platform. Figure 10(b) shows that those 
high burst bandwidths of OpenOffice occur when move on to next 
slide. The 51 aiguilles indicate 51 slide movements. The 
255.vortex in Figure 10(a) represents a typical burst characteristic 
of most applications. The obvious different memory bandwidth 
phases indicate different program behaviors. The run-time phases, 
observed by Sherwood et. al. [44] with SimpleScaler, are 
interesting and useful. Shen et. al. [43] used ATOM to generate 
data reference trace for locality phase prediction. HMTT is also 
able to analyze run-time phases. 

Back to the bandwidth issue, since applications generate 
various behavior phases during long-time running, burst 
bandwidth should be regarded the same important as average 
bandwidth, especially in multicore systems. 

6.2 Stream-Based Access Analysis 
Stream-based memory accesses, also called fixed-stride access, 
can be used in many optimization approaches, such as prefetching 
and vector loads. We define “Stream Coverage Rate (SCR)” as the 
proportion of stream-based memory accesses in application’s total 
accesses: 

SCR = stream_accesses / total_access * 100%  
Previous works have proposed several stream prefetchers in 

cache or memory controller [11, 26, 29, 38, 45]. These proposed 
techniques are usually based on one or two stream characteristics, 
such as stream stride, stream length. However, we find that at 
least four factors, e.g. stride, length, interval, and active stream 
number, should be considered when a new prefetcher is to be 
proposed, because the four factors can influence prefetch effect. 
In this study, we have used HMTT to reveal the four factors as 
well as the SCRs of various applications in a real system (Intel 
Celetron Platform). 

Table 3. Experimental Machines and Applications

Applications on Intel Celetron Platform

(a) 255.vortex 

(b) OpenOffice

Figure 10. Memory 
Reference Phase 

SPEC CPU2006 on AMD Opteron Platform

Figure 9. Mean Bandwidth V.S. Burst Bandwidth 



We adopte an algorithm proposed by Tushar Mohan et. al. [35] 
to detect stream in cache line level. The algorithm is simple and 
efficient. We add a stream_age attribute, which is calculated as 
current_time – stream_last_update_time. If one stream’s 
stream_age is greater than a threshold, it is considered as inactive 
and can be removed from stream table. The overhead of prefetch 
hardware mainly depends on stream table capacity which only 
stores active streams. The choice of the threshold is a tradeoff. 
Our studies shows that the stream characteristics are almost same 
when use a static threshold of one second and a dynamic thread of 
5 * stream_ mean_interval respectively. Thus, we choose the 
latter threshold for detecting active streams. Figure 11(a) shows 
the physical and virtual SCRs detected with different scan-
window sizes. As shown in Figure 11(a), most applications can 
achieve SCRs of more than 40% under a 32-size window (The 
following studies are under the 32-size window). The numbers on 
top of bars indicate the SCRs proportion reduced by OS page 
mapping, from 0.04% (wupwise) to 30.2% (apsi). As shown in 
Figure 8(b), although the linear virtual page may become un-
linear physical pages after page mapping in OS kernel.  

We investigated into the four factors of all streams. Figures 
11(b) ~ (e) present the stream statistical characteristics of some 
benchmarks. Figure 11(b) shows the stream length distribution. It 
is observed that the lengths of most streams are less than 10. 
Moreover, more than 85% streams are only 4-length. Thus, the 
stream lengths are so short that traditional prefetching techniques 
may increase prefetch bandwidth significantly. 

Figure 11(c) shows that most streams’ strides are also less than 
10, within one page. The short strides indicate that most streams 
have good spatial locality which can be explored with the efforts 
of cache and memory controller. The results also indicate that OS 
page mapping may influence the SCRs slightly when streams are 
within one physical page. Nevertheless, the 301.apsi represents 
another typical class of applications whose SCRs reduce more 
than 10% from virtual to physical stream detection. We find that 
most strides are quite large. For example, the stride of 301.apsi is 
mainly more than 64B*1000 ≈ 64KB, covering several pages. 

Figure 11(d) shows that about 90% of average intervals fall 
between 100ns ~ 10us which are multiple times of one memory 
access latency. Therefore, hardware has enough time to perform 

prefetching even in distributed systems. Moreover, Figure 11(e) 
shows that the number of active streams is less than 10 at most 
time, so hardware stream table capacity can be small. 

Overall, the results show that the SCRs of most applications are 
more than 40%, streams have good spatial locality, the stream 
interval is appropriate for prefetch, and active streams at a time is 
few. Thus, prefetching in cache and memory controller is 
reasonable. Nevertheless, the stream length is so short that 
prefetchers should be more intelligent to avoid high additional 
bandwidth. 

6.3 OS Impact on memory hierarchy in real systems 
Cache and TLB are two of the most important topics in micro 
architecture fields. Using the full system simulator SimOS [41], 
Barroso [13], Redstone [40], Rosenblum [42] et. al. have studied 
the OS impact on cache/TLB performance. The OS impact to 
buffer cache in main memory has also studied (e.g. [21] and [28]). 
With the cache/TLB miss reference trace provided by HMTT, we 
have evaluated the impact of OS in a real i386/Linux system. 

We believe that the kernel impact should be divided into two 
parts: (1) the Cache/TLB misses in the kernel mode; (2) user 
programs’ refilling cache line and TLB entries evicted by kernel 
data after kernel exiting. We use “In Kernel (IK)” and “Kernel 
Exit (KE)” to identify them. With the kernel-enter/kernel-exit 
identifiers and page table information, we can figure out the OS 
impact on Cache/TLB performance. 

The Appendix Table lists the Cache/TLB performance of all 
benchmarks. Throughout the table, we can see that the IK cache 
misses in most SPEC CPU2000 benchmarks are less than 10%, 
with values of around 1~6%. However, IK cache misses in 
SPECjbb 2005 and Realplayer are about 11%, and it is near 30% 
in OpenOffice. KE cache misses are distributed undeterminedly, 
from 1% to 75% of IK misses. The sum of IK and KE cache 
misses accounts for quite a proportion of total cache misses. 

In X86 CPUs, MMU will perform page table walk on a TLB 
miss, then incur cache miss. The Appendix Table shows that the 
cache misses caused by TLB misses are distributed from 0.2% to 
13%. Compared to other benchmarks, 255.vortex and 301.apsi are 
more than 10%. Thirteen benchmark’s IK TLB misses account for 
more than 10%, and Realplayer is more than 45%. All 
benchmarks’ KE TLB misses are more than 20% of the IK, and 

(a)  The Virtual and Physical SCR in different window sizes. The numbers on top of bars indicate the 
decreased proportions between virtual SCRs and physical SCRs due to OS virtual-to-physical mapping.

Figure 11. Stream Statistic: (a) SCR; (b) Length Accumulative Distribution; (c) Stride Accumulative Distribution; 
(d) Interval Accumulative Distribution; (e) Active Stream Distribution;  
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most fall within 40% ~ 60%. From these statistics, we can 
summarize that TLB is more kernel-sensitive than cache.  

We find that the distributions of cache miss number in cache 
indexes are absolutely different in programs’ user address space 
(crafty.user and gap.user, the upper two curves in Figure 12(a)). 
But it is so interesting that their kernel distributions are very 
similar (crafty.kern and gap.kern in Figure 12(a)). The TLB 
misses have the same phenomenon. In Figure 12(b), the TLB miss 
in kernel space distributions are fall within the same regions, but 
they are different in the user space. Thus, user programs and OS 
kernel will disturb each other at each kernel-user mode switch.  

Li et. al. [30] also addressed the user/OS branch history 
interference problem. Multicore has already become popular, and 
the trend of manycore is coming. Since computing resources are 
no longer inadequate, asymmetric kernels and dedicated OS cores 
may alleviate kernel impact and improve an application’s 
performance in the forthcoming manycore era [20]. 

7. Evaluations and Discussions 
7.1 Trace Generation Bandwidth 
The two “NBW” columns in the Appendix Table list trace 
generation bandwidth on Intel and AMD platforms, respectively. 
When utilize DDR-200MHz memory. The bandwidth varies from 
5.7MB/s (45.6Mbps) to 72.9MB/s (583.2Mbps) on Intel platform, 
and from 0.1MB/s (0.8Mbps) to 106.8MB/s (854.4Mbps) on 
AMD platform. This indicates that a bandwidth of 1000Mbps is 
sufficient for HMTT to capture all applications’ traces on Intel 
platform and most applications’ traces on AMD platform. 

However, the high frequency of DDR2/DDR3 memory and the 
prevalent multi-channel memory technology increase trace data 
generation bandwidth. The next version of monitoring system will 
support trace generation bandwidth of at least 2Gbps. 

7.2 Overhead 
The overheads of HMTT include trace size, kernel buffer for 
collection of page table information, synchronization latency, 
additional execution time and additional memory accesses. 

The traces are generated on two experimental machines whose 
parameters are list in Table 3. The “NUM” columns and the 
“Size” columns in the Appendix Table list the total number and 
size of reference trace of all applications. There are billions of 
traces and most trace sizes are more than 10GB. The trace size is 
quite large, and large capacity disks are demanded. Fortunately, 
the disks are becoming cheaper and cheaper. 

The capacity of kernel buffer for page table information 
collection is less than 0.5% of total memory size of traced system; 
because most physical pages are mapped to virtual pages only 
once during application’s entire execution lifetime (see Figure 4). 

Figure 7 describes the configuration mechanism of HMTT and 
shows a small piece of control codes to configure and synchronize 
HMTT. The codes are run many times on the experimental 

machines (see Table 3), and the average execution time of control 
codes is only 5.9us. Moreover, the application’s execution time is 
increased by about 1% when HMTT enables all optional 
synchronization tags, such as kernel_enter/kernel_exit identifiers. 
The additional memory access (about 1%) arisen by control codes 
will not influence the memory reference trace because HMTT 
filters these accesses as configurations. 

7.3 Limitations 
It is important to note that the monitoring mechanism can not 
distinguish the prefetch commands.  

Regarding the impact of prefetch on memory trace, it has both 
up side and down side. The up side is that we can get real memory 
accesses trace to main memory, which can benefit research on 
main memory side (such as memory thermal model research [31]). 
The down side is that it is hard to differentiate the prefetch 
memory accesses and on-demand memory accesses. Regarding 
prefetch, caches could generate speculative operations. However, 
they do not influence memory behaviors significantly. Most 
memory controllers do not have prefetch unit, although several 
related efforts have been made, such as Impluse project [53], 
proposed region prefetcher [48], and the stream prefetcher in 
memory controller [26]. Thus, it is not a critical weakness of our 
monitoring system. It is to be noted that all hardware monitors 
also have the same limitation, prefetching from various levels of 
the memory hierarchy. In fact, caches can be disabled to eliminate 
caches’ influence. However, the execution time dilation would be 
10X~100X, and the trace size would be magnified.  

7.4 Discussions 
As a new tool, HMTT is a complementary tool to binary 
instrumentation and full system simulation with software, rather 
than a thorough substitution. Since it is running in real-time and in 
a real system, the combination with different techniques would be 
more efficient for architecture and application research. 

Combination with simulators: to combine with simulators, 
HMTT is used to collect trace from real system, include multicore 
systems. Then, the trace is analyzed for finding new insights. 
Some new optimization mechanisms proposed basing on new 
insights can be evaluated by simulators. 

Combination with binary instrumentation: HMTT provides 
control codes to send synchronization tags into memory trace. So, 
instrumentation tools can instrument these control codes into 
application binary as annotations to indicate memory references 
designated functions/loops/blocks. Moreover, with compiler-
provided symbol table, the virtual-address trace can be utilized for 
semantic analysis. As shown in Figure 10, besides tracking trace, 
HMTT is also able to analyze run-time phases. Binary instrument 
tools can be adopted to insert function/loop/block indicators into 
phase’s graphs as well. 

8. Conclusion and Future Work 
In this paper, we have proposed a platform independent full-
system memory trace monitoring system, which is able to track 
virtual memory reference trace of the full systems. It adopts the 
DIMM monitoring mechanism, a simplified state machine to keep 
up with memory speeds, a Kernel Synchronization Mechanism to 
reconstruct virtual-physical mapping, and a GE-RAID approach 
to dump full mass trace. We present our implementation and 
several case studies of an initial monitoring system, named 
HMTT, to show the feasibility of our proposed monitoring 
mechanism and techniques. 

Figure 12. (a) Cache Miss Number Distribution;  
(b) TLB Miss Number Accumulative Distribution 
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The current HMTT version 1.0 is the first stage of the 
monitoring system. At the next stage, we have been building an 
enhanced monitoring system to monitor multiple DDR2 DIMMs 
in support of mainstream servers with more than 8GB memory. 
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Appendix Tables. Memory Reference Trace and Cache/TLB Statistics 

  

Notes: NUM  =  Total Memory Reference Trace Number (in Billion);     Size   =   Total Trace Size;                     NBW   =   GE Bandwidth;                  PerfCnt   =   Performance Counter;      
Miss   =   Physical address missed in virtual-physical mapping;    APP  =   Applications Proportion;          IK       =    “In Kernel” Proportion;     KE           =    “Kernel Exit” Proportion; 
Diff    =   Difference between HMTT and PerfCnt, calculated as (HMTT.NUM-PerfCnt)/HMTT*100%;    TLB/NUM  =   The ratio of Cache Miss caused by TLB Miss to total trace  
number;    KE/IK  =  The ratio of “Kernel Exit” proportion to “In Kernel” proportion;                               IK+KE        =    The sum of “In Kernel” proportion and “Kernel Exit” 
 proportion, equal to IK*(1+KE/IK). 

HMTT Trace Perf.Cnt 
Benchmarks NUM 

(B) 
NBW 

(MB/s) 
DRAM 

Access(B) 

HMTT 
Perf.Cnt 
Diff (%) 

400.perlbench 2.57 8.27 2.56 0.07 
401.bzip2 14.70 33.60 14.61 0.67 
403.gcc 35.13 85.48 34.61 1.51 
429.mcf 28.38 46.71 28.25 0.46 
445.gobmk 3.27 11.00 3.23 1.26 
456.hmmer 7.82 19.29 7.83 -0.23 
458.sjeng 1.91 4.84 1.91 0.02 
462.libquantum 77.46 102.04 76.83 0.82 
464.h264ref 5.30 9.02 5.32 -0.25 
461.omnetpp 19.57 60.14 19.50 0.38 
473.astar 11.98 31.16 11.81 1.40 

SPEC 
CPU 
2006 
INT 

483.xalancbmk 14.54 29.16 14.51 0.21 
410.bwaves 41.83 42.98 41.52 0.74 
416.gamess 0.30 0.50 0.31 -0.95 
433.milc 38.97 96.54 38.68 0.75 
434.zeusmp 14.72 34.14 14.64 0.54 
435.gromacs 1.78 4.92 1.78 -0.23 
436.cactusADM 18.16 24.36 18.00 0.89 
437.leslie3d 43.39 84.84 42.97 0.97 
444.namd 0.35 1.19 0.36 -0.49 
447.dealII 12.94 32.80 12.94 0.03 
450.soplex 29.63 69.39 29.42 0.74 
453.povray 0.02 0.10 0.02 0.75 
454.calculix 3.95 3.67 3.95 -0.01 
459.GemsFDTD 49.94 87.94 49.51 0.87 
465.tonto 11.98 26.06 11.92 0.52 
470.lbm 68.64 106.82 67.66 1.44 
481.wrf 26.68 44.80 26.58 0.35 

SPE
C 

CPU 
2006 
FP 

482.sphinx3 49.64 71.78 49.63 0.03 

Reference Trace Info Cache Miss 
Statistics(%) TLB Miss Statistics(%) 

Benchmarks NUM
(B)

Size
(GB)

NBW
(MB/s)

Miss
(%) APP IK KE 

/IK 
IK 

+KE 
TLB

/NUM APP IK KE
/IK

IK
+KE

164.gzip 2.8 13.7 33.9 0.13 97.2 2.1 37.8 2.9 0.4 57.9 34.8 51.0 52.5
165.vpr 5.9 25.7 44.9 0.18 96.0 3.7 19.0 4.4 2.6 96.0 3.3 50.1 5.0
176.gcc 3.0 15 44.5 0.29 96.3 3.0 38.4 4.1 1.2 78.6 12.0 43.6 17.3
181.mcf 9.4 40 63.4 0.11 92.9 7.0 28.4 9.0 6.3 99.0 0.9 47.0 1.3
186.crafty 2.1 8.1 27.3 0.13 96.6 2.9 57.4 4.6 1.5 90.4 7.7 55.5 12.0
197.parser 4.1 18.9 36.1 0.23 95.5 4.2 34.4 5.6 2.7 94.5 4.5 49.4 6.8
252.eon 3.0 13.3 8.7 0.20 96.5 2.9 57.0 4.5 0.6 74.2 23.4 56.4 36.6
253.perlbmk 1.9 8 24 0.33 84.9 11.0 35.3 14.9 7.9 94.9 4.5 44.2 6.4
254.gap 1.0 5.4 29.3 0.39 94.8 4.1 21.7 5.0 1.8 84.3 12.7 36.3 17.3
255.vortex 3.4 12.7 32.8 0.51 86.1 11.9 38.0 16.4 10.4 98.3 1.5 43.8 2.2
256.bzip2 3.8 16.1 36.7 0.08 97.3 2.3 14.6 2.7 1.2 90.7 7.9 48.5 11.7

SPEC 
CPU 
2000 
INT 

300.twolf 10.9 50.3 48.7 0.13 98.1 1.5 21.6 1.8 0.5 78.8 18.3 63.9 30.0
168.wupwise 1.6 7.4 24.6 0.15 97.0 2.3 6.3 2.5 0.5 62.4 31.5 44.8 45.6
171.swim 14.5 63.2 65.8 0.1 94.1 5.8 75.2 10.1 5.1 98.8 1.0 48.6 1.5
172.mgrid 5.6 26.4 48 0.06 98.3 1.4 1.8 1.4 0.4 78.4 18.3 56.0 28.6
173.applu 4.5 24.2 47.9 0.08 97.4 2.4 30.6 3.1 1.3 91.7 7.1 53.2 10.8
177.mesa 0.5 3.4 11.2 0.77 88.4 8.1 35.5 10.9 2.0 72.9 24.7 51.3 37.4
179.art 28.6 128.9 72.9 0.04 99.1 0.8 19.3 1.0 0.3 83.9 13.1 54.0 20.1
183.equake 3.1 13.2 58.3 0.05 98.2 1.5 2.7 1.5 0.7 89.3 8.8 54.9 13.7
187.facerec 5.0 24.3 34.4 0.19 95.9 3.6 7.7 3.9 1.1 66.3 30.0 26.3 38.0
188.ammp 8.9 39.2 46.4 0.11 95.4 4.4 35.5 5.9 3.5 87.2 2.1 42.2 3.1
189.lucas 3.6 19.2 41.7 0.12 93.3 6.4 1.1 6.5 5.2 97.7 2.0 44.3 2.9
191.fma3d 3.3 17.7 33.8 0.13 97.5 2.1 15.2 2.4 0.5 72.4 26.1 58.6 41.4
200.sixtrack 0.4 1.8 5.7 0.19 83.6 12.8 11.5 14.3 2.2 54.4 39.0 48.6 58.0

SPEC 
CPU 
2000 
FP 

301.apsi 9.4 40.7 44.4 0.12 85.8 14.0 33.1 18.6 13.2 99.4 0.5 41.1 0.7
OpenOffice 0.7 3.3 10.5 2.40 66.7 29.3 14.5 33.6 7.2 60.7 34.9 24.8 43.1Desktop ReadPlayer 2.5 13 22.2 1.2 83.9 12.3 8.2 13.3 3.0 50.0 45.2 30.3 59.0

Java SPECjbb2005 17.2 77.5 41.3 1.01 87.3 11.5 28.1 14.7 7.1 94.0 5.2 49.1 7.7


