
HMTT: A Platform Independent Full-System
Memory Trace Monitoring System

Yungang Bao†‡, Mingyu Chen†, Yuan Ruan†‡,Li Liu†‡
Jianping Fan†, Qingbo Yuan†‡, Bo Song†‡, Jianwei Xu†‡

† Key Laboratory of Computer System and Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, Beijing, China

‡ Graduate School of Chinese Academy of Sciences, Beijing, China

{baoyg,ry,liuli,yuanbor,songbo,xjw }@ncic.ac.cn {cmy,fan}@ict.ac.cn

Abstract
Memory trace analysis is an important technology for architecture
research, system software (i.e., OS, compiler) optimization, and
application performance improvements. Many approaches have
been used to track memory trace, such as simulation, binary
instrumentation and hardware snooping. However, they usually
have limitations of time, accuracy and capacity.

In this paper we propose a platform independent memory trace
monitoring system, which is able to track virtual memory
reference trace of full systems (including OS, VMMs, libraries,
and applications). The system adopts a DIMM-snooping
mechanism that uses hardware boards plugged in DIMM slots to
snoop. There are several advantages in this approach, such as fast,
complete, undistorted, and portable. Three key techniques are
proposed to address the system design challenges with this
mechanism: (1) To keep up with memory speeds, the DDR
protocol state machine is simplified, and large FIFOs are added
between the state machine and the trace transmitting logic to
handle burst memory accesses; (2) To reconstruct physical-to-
virtual mapping and distinguish one process' address space from
others, an OS kernel module, which collects page table
information, and a synchronization mechanism, which
synchronizes the page table information with the memory trace,
are developed; (3) To dump massive trace data, we employ a
straightforward method to compress the trace and use Gigabit
Ethernet and RAID to send and receive the compressed trace.

We present our implementation of an initial monitoring system,
named HMTT (Hyper Memory Trace Tracker). Using HMTT, we
have observed that burst bandwidth utilization is much larger than
average bandwidth utilization, by up to 5X in desktop
applications. We have also confirmed that the stream memory
accesses of many applications contribute even more than 40% of
L2 Cache misses and OS virtual memory management may
decrease stream accesses in view of memory controller (or L2
Cache), by up to 30.2%. Moreover, we have evaluated OS impact
on memory performance in real systems. The evaluations and case
studies show the feasibility and effectiveness of our proposed
monitoring mechanism and techniques.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Performance Analysis and
Design Aids; C.4 [Performance of Systems]: Measurement
techniques; D.4 [Operating Systems]: Miscellaneous

General Terms
Measurement Performance

Keywords
Real System, Memory Trace, DIMM, HMTT

1. Introduction
Although the “Memory Wall [50]” problem has been raised for a
decade, this trend remains in multicore era. Both memory latency
and bandwidth become critical. On the other hand, for high-
performance DRAM memories, thermal control has already
become a realistic issue [27]. To evaluate thermal models, an
interval of at least thousands of seconds is needed [31]. Memory
trace analysis is an important technology for architecture research,
system software (i.e., OS, compiler) optimization, and application
performance improvements.

Uhlig and Mudge [52] suggest that an ideal memory trace
collector should be:

 Complete: Trace should include all memory references
made by OS, libraries and applications;

 Detail: Trace should contain detail information to
distinguish one process’ address space from others;

 Undistorted: Trace should not include any additional
memory references. Trace should have no time dilation.

 Portable: Trace can still be tracked when moving to
other machines with different configurations.

 Other characteristics: An ideal trace collector should be
fast, inexpensive and easy to operate.

Memory trace can be collected in several ways, such as by
software simulators, binary instrumentation, hardware counters,
hardware monitors, and hardware emulators. Table 1 summarizes
these approaches. Nevertheless, all of these approaches have their
shortcomings. (Detailed in Section 2)

Table 1. Summary of Memory Trace Trackers
 Simul-

ation
Instru-
ment

HW
counter

HW
Monitor

HW
Emulate

Complete * * х √ √
Detail √ * х х √
Undistorted √ х √ √ х
Portable √ * * х *
Fast х х √ √ √
Inexpensive √ √ √ * х

Note: √ – Yes * – Maybe х– No

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGMETRICS’08, June 2–6, 2008, Annapolis, Maryland, USA.
Copyright 2008 ACM 978-1-60558-005-0/08/06...$5.00.

In this paper we propose a platform independent full system
memory trace monitoring system. The system adopts a DIMM-
snooping mechanism, which uses hardware boards plugged in
DIMM slots to track virtual memory reference trace of full
systems (including OS, VMMs, libraries, and applications).
Several new techniques are proposed to overcome the system
design challenges with this mechanism: (1) To keep up with
memory speeds, the DDR state machine [3] is simplified to match
high speed, and large FIFOs are added between the state machine
and the trace transmitting logic to handle occasional bursts; (2) To
reconstruct physical-to-virtual mapping and to distinguish one
process’ address space from others, an OS kernel module which
collects page table information and a synchronization mechanism
which synchronizes page table information with memory trace are
introduced; (3) To dump full mass trace, we use a straightforward
method to compress memory trace and adopt a combination of
Gigabit Ethernet and RAID to transfer and save the compressed
trace.

The monitoring system with the DIMM-snooping mechanism
and techniques has the following advantages:

Complete: It is able to track complete memory reference trace
of real systems, including OS, VMMs, libraries, and applications.

Detail: The memory trace includes timestamp, r/w, process’
pid, page table information, and kernel entry/exit tags etc. It is
easy to differentiate processes’ address spaces.

Undistorted: There are almost no additional references except
synchronization operations between memory trace and page table
information. The operations incur only less than 1% additional
references and about 1% additional execution time.

Portability: The hardware boards are plugged in DIMM slots
which are widely used. It is easy to port the monitoring system to
machines with different configurations (CPU, bus, memory etc.).

Fast: There is no slowdown when we collect memory trace for
analysis of L2/L3 cache, memory controller, DRAM performance
and power etc. The slowdown factor is about 10X~100X when
cache is disabled to collect whole trace.

Inexpensive: We have built an initial monitoring system, from
schematic, PCB design, FPGA logic to kernel modules, and
analysis programs. The implementation of hardware boards is
simple and low cost (< $500).

Easy to operate: It is easy to operate the system, with several
toolkits for trace generation and analysis.

We present the implementation of an initial monitoring system,
named HMTT (Hyper Memory Trace Tracker). HMTT consists of
three parts: a Memory Trace Board (MTB, an FPGA board)
plugged in a DIMM slot, a Kernel Synchronization Module
(KSMod) synchronizing page table information with memory
trace, and a trace capture and analysis toolkit. In addition to
tracking trace, it can also be reconfigured to support online
analyses, such as memory bandwidth statistical analysis, page
reuse distance calculation, and hot pages collection. HMTT can
only monitor DDR-200 DIMMs currently. Using HMTT in
X86/Linux platforms, we have observed that various applications
(SPEC CPU 2000/2006, desktop applications, and SPECJbb 2005)
have burst memory access behaviors, and the burst bandwidths
may be much more than average bandwidth, by up to 5X. We
have also confirmed that stream-based memory accesses of many
applications account for more than 40% of L2 Cache miss
accesses. But OS virtual memory management may decrease
stream accesses in view of memory controller (or L2 Cache), by
up to 30.2% (301.apsi). Moreover, we have evaluated OS impact

on memory performance in a real system. The evaluations and
case studies show the feasibility and effectiveness of the
monitoring mechanism and techniques.

In summary, we have made the following contributions in this
paper:

 We propose a platform independent full system memory
trace monitoring system, which adopts a DIMM-snooping
mechanism and several new techniques. We have
implemented an initial monitoring system — HMTT
(Hyper Memory Trace Tracker). HMTT confirms that the
monitoring mechanism and techniques are feasible and
effective.

 We propose three new techniques to overcome the system
design challenges with this mechanism: a simplified DDR
state machine to keep up with memory speeds, a Kernel
Synchronization Mechanism (KSM) to differentiate
processes’ address spaces, and a combined approach of
GE and RAID to dump full mass trace.

 With HMTT, we have evaluated memory burst bandwidth,
stream-based memory accesses among L2 Cache misses
and the impact of OS on memory system of three
categories applications (SPEC CPU, Desktop and Java) in
Intel Celeron and AMD Opteron platforms. The case
studies and evaluations indicate several advantages of
HMTT, such as complete, detail, undistorted, portability
and fast.

The rest of the paper is organized as follows. Section 2 presents
an overview of related work, while Section 3 describes the design
goals and challenges of the monitoring system. Section 4 presents
the detail design, and section 5 discusses the implementation and
validation of the initial system -- HMTT. Section 6 presents
several case studies of HMTT to show its feasibility and
effectiveness. Section 7 discusses the evaluations and limitations.
Finally, Section 8 summarizes the system and discusses the future
work of the monitoring system.

2. Related Work
There are several areas of effort related to memory trace
monitoring: software simulators, binary instrumentation,
hardware counters, hardware monitors, and hardware emulators
etc.

Software simulators: Most memory performance and power
researches are based on simulators. They utilize cycle-accurate
simulators to generate memory trace and then feed trace to trace-
driven memory simulators (e.g. DRAMSim [47], MEMsim [39]).
SimpleScalar [9] is a popular user-level simulator, but it can not
run operating system for analysis of full system behaviors.
Several full system simulators (such as SimOS [41], Simics [34],
M5 [5] and QEMU [16]), which can boot commercial operating
systems, are commonly used in research when deal with OS-
intensive applications. However, software simulators usually have
speed and scalability limitations. As the computer architectures
become more and more sophisticated, more detail simulation
models are need, which may lead to a slowdown of
1000X~10000X [15]. Moreover, simulation with complex
multicore and multi-threaded applications may incur inaccuracies
and could lead to misleading conclusions [36].

Binary instrumentation: Many binary instrument tools (e.g.
O-Profile [6], ATOM [46], DyninstAPI [1], Pin [7], Valgrind [10],
Nirvana [17] etc.) are popularly utilized to profile applications.
They are able to obtain applications’ virtual access trace even

without source codes. Nevertheless, few of them can provide full
system memory trace because instrumenting kernels is very tricky.
PinOS [18] is an extension of the Pin [7] dynamic instrumentation
framework for full-system instrumentation. It is built on top of the
Xen [12] virtual machine monitor with Intel VT [37] technology
and, is able to instrument both kernel and user-level code.
However, PinOS can only run on IA-32 in uni-processor mode.
Moreover, binary instrumentation method usually only slows
down target programs’ execution, incurring time distortion and
memory access interference.

Hardware counters: Hardware counters are able to provide
accurate events statistic (e.g. Cache Miss, TLB Miss, etc.).
Itanium2 [2] is even able to collect trace via sampling. The
approach of hardware counters is fast, low overhead, but they can
not track complete and detailed memory reference trace.

Hardware monitors: Various Hardware monitors, divided into
two classes, are able to monitor memory trace online. One class is
pure trace collectors, and another is online cache emulators.
BACH [22, 23] is a trace collector. It utilizes a logic analyzer to
interface with host system and to buffer the collected traces.
When the buffer is full, the host system is halted by an interrupt
and the trace is moved out. Then, the host system continues to
execute programs. BACH is able to collect traces from long
workload runs. However, this halting mechanism may alter
original behavior of programs. The hardware-based online cache
emulation tools (such as MemorIES [36], PHA$E [19], RACFCS
[51], ACE [25], and HACS [49]) are very fast and have low
distortion and no slowdown. Logic analyzer is also a powerful
tool for capturing signals (including DRAM signals) and can be
very useful for hardware testing and debugging.

However, these hardware monitors have several disadvantages:
(1) they (except BACH) are not able to dump full mass trace but
only produce short traces due to small local memories; (2) they
can not distinguish one process’ address space from others but
only track physical address due to the lack of physical-to-virtual
mapping information; (3) they depend on proprietary interfaces,
for example, MemorIES relies on the IBM’s 6xx bus, BACH,
PHA$E, ACE, HACS etc. adopt logic analyzer which is quite
expensive. RACFCS use a latch board that directly connects to
output pins of specified CPUs. So they have poor portability.

Hardware emulators: Several hardware emulators are
thorough FPGA-based systems which utilize a number of FPGAs
to construct uni-processor/multi-processor research platforms to
accelerate research. For example, RPM [14] emulates the entire
target system within its emulator hardware. Intel proposed an
FPGA-based Pentium system [33] which is an original Socket-7
based desktop processor system with typical hardware peripherals
running modern operating systems. RAMP [8] is also a new
scheme for architecture research. Although they do not produce
any memory traces currently, they are capable of tracking full
system trace. But they can only emulate a simplified and slow
system with relative fast I/O, which fulfills the “CPU-memory /
memory-disk” gaps that may be bottlenecks in real systems.

3. The Platform Independent Full-System
Memory Trace Monitoring System
We propose a platform independent full-system memory trace
monitoring system. In this section, we discuss the design goals
and challenges of such a system.

The system is designed to be able to track complete, detail,
and undistorted trace. Moreover, the system should be portable,

fast, inexpensive, and easy to operate. To achieve these goals,
we adopt a DIMM-snooping mechanism that uses hardware
boards plugged in the DIMMs to snoop. Although the idea is
straightforward, it is able to track full-system memory reference
trace from OS kernel, VMMs, libraries, and applications.
Moreover, DIMMs are independent of hardware platforms (such
as CPUs, buses, and memory controllers), and they are widely
used in modern machines. The trace monitoring system can be
used in various hardware platforms.

Several obstacles must be overcome to design and implement
such a monitoring system:

How to keep up with memory speeds?
Although memory frequency is lower than CPU, usually it is

still more than 200MHz. For example, the frequency of DDR
memory is about 200 ~ 400MHz, and currently dominant DDR2
memory has increased to a 533 ~ 800MHz clock rate. Moreover,
DDR3 memory may reach to a 1600MHz rate in the forthcoming
future.

On the other hand, DDR commands to multi-bank memories
are interleaved, which requires sophisticated logic to interpret.
DDR read/write operations are performed in two phases. First, an
ACTIVE command is used to open a row in a particular bank for
a subsequent access. Then, the READ/WRITE commands are
issued to the row of that bank [3]. Multiple access requests can be
issued because of the multi-bank architecture, which provides
high effective bandwidth. Figure 1 depicts a scenario where a
command pattern is issued to a multi-bank memory.

Thus the snooping logic should handle the high frequency and
the interleaved commands to keep up with memory speeds.

How to reconstruct physical-to-virtual mapping?
 Although physical traces are useful for memory system research,
they can not provide deep insights into specified processes and
OS kernels. As known to all, virtual memory mechanism isolates
address spaces of processes running on one machine
simultaneously. It is impossible to differentiate processes’ address
spaces without physical-to-virtual mapping information,
especially in multi-processes environments.
 Moreover, a new challenge is posed when given the mapping
information. That is how to synchronize the mapping information
with memory trace for replaying virtual memory trace correctly
and effectively.
 It should be noted that none of previous hardware monitors
provides the physical-to-virtual mapping information, although
they are able to track complete, undistorted and full-system
physical trace fast.

How to dump mass trace?
 Usually, memory reference traces are generated at very high
speed. Our experiments show that most applications generate
memory trace at bandwidths of more than 30MB/s even when
utilize the DDR-200MHz memory (Detailed in Section 7.1). An
execution of a 10-minutes interval would generate more than

Figure 1. DDR Interleaved Commands to Multi-Bank [3]

18GB memory reference trace. Moreover, the high frequency of
the DDR2/DDR3 memory and the prevalent multi-channel
memory technology increase trace data generation bandwidth
further, up to 100X MB/s.
 Most previous hardware monitors utilize local memory to store
trace. BACH has made an improvement, adopting a technique
which is able to dump trace from long workload runs by halting
host system when local memory is full. However, the local
memory will be exhausted in a very short interval due to the trace
generation bandwidth of more than 100MB/s. Thus, a new
technique is demanded to sustain dumping mass trace.

4. The Trace Monitoring System Design
To overcome the above three challenges, we propose several new
techniques in the trace monitoring system design. We also
develop some toolkits to facilitate system operations. In this
section, we will detail the top-down design of the trace
monitoring system.

4.1 Top-Level Design
At the top-level, the monitoring system mainly consists of six
procedures for memory trace tracking and replaying. Figure 2
shows the system framework and the six procedures.

From Figure 2, the monitoring system utilizes several hardware
monitor boards plugged into DIMM slots of a traced system. The
main memories of the traced system are plugged into the DIMM
slots integrated on the hardware monitoring boards. The boards
snoop on all memory commands via DIMM slots (see ①) . An
on-board FPGA converts the commands into memory traces in
this format <address, r/w, timestamp>. Each hardware monitor
board generates trace separately and sends the trace to its
corresponding receiver via Gigabit Ethernet (see ②). With the
synchronized timestamps, the separated traces can be merged in
the trace replay phase (see ③). Meanwhile, a module injected into
OS kernel collects page table information and synchronizes the
information with memory trace dynamically (see ④). Then the
page table information is used to reconstruct physical-to-virtual
mapping information (see ⑤). Based on the information, i.e.
memory trace, virtual-physical mapping and synchronization tags,
we are able to perform trace replaying procedure correctly and
effectively for offline analysis (see ⑥).

The three challenges mentioned previously are hidden in the six
procedures. Procedure ① faces the challenge that how to keep up
with memory speeds; procedures ④&⑤ encounter the challenge
of physical-to-virtual mapping reconstruction; procedures ②&③

demand to solve the problem of dumping mass trace. We will
elaborate on our solutions in the following sections.

4.2 Keeping up with Memory Speeds
As mentioned previously, fast and efficient control logic is
demanded to keep up with memory speeds because of high
memory frequency and multi-bank technologies. Since only
memory address is indispensable for tracking trace, we could only
snoop on DDR commands at half memory data frequency. For
example, if use DDR2-533MHz memory, the control logic can
operate at a frequency of only 266MHz, at which most advanced
FPGAs are competent to work.

To interpret the two-phase read/write operations, the DDR
SDRAM specification [3] defines seven commands and a state
machine which has more than twelve states. Commercial memory
controllers may integrate even more complex state machines
which cost both time and money to implement and validate.
Nevertheless, we find that only three commands, i.e. ACTIVE,
READ and WRITE, are necessary for memory reference address
extraction. Thus, we design a simplified state machine to interpret
the two-phase operations for one memory bank. Figure 3 shows
the simplified state machine. It has only four states and performs
state transition based on the three commands. The state machine
is so simplified that its implementation in a common FPGA is
able to work at a high frequency. Our experiments show that the
state machine implemented in a Xilinx Virtex II Pro FPGA is able
to work at a frequency of more than 300MHz.

On the other hand, applications may generate occasional bursts
which may induce dropping trace. A large FIFO between the state
machine and the trace transmitting logic is provided to solve this
problem. In our initial system HMTT, we have verified that a 16K
entries FIFO is sufficient to match the state machine for DDR
200MHz memory and a transmission bandwidth of 1000 Mbps.
Moreover, few applications exhaust more than 8K entries except
181.mcf (SPEC CPU2000). Of course, to adopt a higher
bandwidth (e.g. use two Gigabit Ethernets) for trace transmission
is an alternative to reduce the FIFO size.

4.3 Physical-to-Virtual Mapping Reconstruction
There are two problems to reconstruct physical-to-virtual
mapping: 1) how to collect page table information; 2) how to

Figure 2. The Trace Monitoring System Framework

Figure 3. Simplified State Machine.
* addr is used to filter special address for configuration.

Figure 4. Virtual-Physical Mapping Times Distribution

synchronize the information with physical memory trace. We
introduce a Kernel Synchronization Mechanism (KSM) to handle
these problems.

The KSM is able to track each update of page table, in the form
of <pid, phy_page, virt_page, page_table_entry_addr>. The form
indicates that a mapping between physical page phy_page and
virtual page virt_page is created for process pid, and the mapping
information is stored in the memory location of
page_table_entry_addr. When a page fault occurs, the KSM
captures and stores each update of page table in the above form.
Thus, given one physical address, the corresponding process and
virtual address can be retrieved from the page table information.
 On Linux platform, the KSM provides an hmtt_printk routine
which can be called at any place from the kernel. Unlike Linux
kernel’s printk, the hmtt_printk routine supports large buffers and
user-defined data format, like some popular kernel log tools, such
as LTTng[4]. The KSM requires a kernel buffer to store the page
table information. Figure 4 shows that most physical pages are
mapped to virtual pages only once during application’s entire
execution (applications are list in Table 3). Under this observation,
we find that it is enough to allocate a kernel buffer by only 0.5%
of total memory size for storing page table information.

Every N page faults, the hmtt_printk routine will send a
synchronization tag to the hardware monitor boards. The choice
of the number N is sensitive. An ideal N should satisfy two
requirements that 1) one physical page will not be remapped in N
consecutive page faults and 2) the N should be large to increase
synchronization interval, consequently reduce the synchronization
overhead. It is a tradeoff that a smaller N indicates more accuracy
and a larger N means less overhead. Based on experimental
results, we find that one physical page is almost never remapped
in 50 consecutive page faults. Moreover, when N=50, the
synchronization overhead is very small, about one thousand
additional synchronization trace per billion. So, we choose N=50
in our system implementation. We will detail the KSM
implementation on Linux platform in Section 5.5.

4.4 Dumping Mass Trace
The memory trace size is dependent on two factors, trace
generation bandwidth and application’s execution time. Our
efforts mainly focus on reducing trace generation bandwidth.
 First, we adopt several straightforward methods to reduce the
memory trace generation and transmission bandwidth. When
memory works in burst mode [3], we only need to track the first
memory address of an addresses pattern. For example, when the
burst length is equal to four, the latter three addresses of a 4-
length addresses pattern are ignored. Trace format is usually
defined as <address, r/w, timestamp> which needs at least 6~8
bytes to store and transmit. We find that the high bits of the
difference of timestamps in two consecutive traces are always 0s
at most time. We use duration (=timestampn–timestampn-1) to
replace timestamp in the trace format. This differencing method
reduces the duration bits to ensure one trace to be stored and
transmitted in 4 bytes. However, the duration may overflow. We
define a special format <special_identifier, duration_high_bits>
to handle the overflows. Then, the timestamps can be calculated
in the trace replay phase. The straightforward compression
methods reduce trace generation and transmission bandwidth
significantly.
 Second, the experimental results show that trace generation
bandwidth is still high with the above compressions. As depicted

in Figure 2 procedure ②, we utilize multiple Gigabit Ethernets
(GE) and RAIDs to send and receive memory traces respectively.
In this method, all traces are received and stored in RAID storages
(the details about trace generation and transmission bandwidth
will be discussed in Section 7.2). Each GE sends trace
respectively, so the separated traces need to be merged when
replay. As shown in Figure 2 procedure ③, each trace has its own
timestamp. The timestamps are synchronized by a toolkit when
the monitoring system starts working. Once the base timestamps
of all monitor boards are synchronized, they increase at the same
memory clock rate respectively. Then the trace merge operation is
simplified to be a merge sort problem.
 The combination of the straightforward compressions, the GE-
RAID approach, and the trace merge procedure makes the
monitoring system be able to dump mass trace. Moreover, these
techniques are scalable for higher trace generation bandwidth.

4.5 Other Design Issues
The hardware monitor system requires a configuration mechanism.
We define some special addresses as configuration registers. To
differentiate normal accesses, only a continuous access pattern to
one specified address will be translated into an inner-command to
control the hardware monitor boards. For example, the inner-
command RESET operation is defined as a pattern of 16
continuous references on the 0x80 address. The cache influence is
also a problem. Fortunately, pages have a cache attribution which
can be altered by OS. When system powers on and OS boots, we
can reserve several pages which will be set to be uncacheable
later. These pages are defined as a configuration space of
hardware monitor boards. More details of implementation will be
present in Section 5.4.

As the on-board FPGAs are reconfigurable, we also design
some online analysis functionalities, such as memory bandwidth
statistic, page-level statistic (hot pages and reuse distance), and
reference address bit change statistic.

5. The Implementation of HMTT
At the first stage, we have implemented an initial monitoring
system according to the above design, named HMTT (Hyper
Memory Trace Tracker). HMTT, which is able to monitor DDR-
200 DIMMs currently, consists of a Memory Trace Board (MTB,
an FPGA board) plugged in a DIMM slot, a Kernel
Synchronization Module (KSMod) synchronizing page table
information with memory trace, and a trace capture and analysis
toolkit. Besides tracking trace, HMTT is reconfigurable to support
online analysisses, such as memory bandwidth statistic, page
reuse distance calculation, and hot pages collections.

5.1 Detail Framework of HMTT
As Figure 5(a) shows, HMTT comprises a Memory Trace Board
(MTB) plugged in DIMM slot, a Kernel Synchronization Module
(KSMod) and a trace packets capture and analysis Toolkit.

MTB, which is a hardware monitor board without on-board
DIMM currently at the first stage, is plugged in an idle DIMM
slot (see Figure 5(b)). It snoops on memory command signals
which are sent to DDR SDRAM from memory controller. MTB
captures the DDR commands, and forwards them to the simplified
DDR state machine (described in Section 4.2). The output of state
machine is a tuple <address, r/w, duration>. These raw traces are
sent out via GE directly or inputted for online analysis.

KSMod is an instance of the Kernel Synchronization
Mechanism (KSM) on Linux platforms. KSMod comprises two

modules and one kernel patch. The two modules collect page
table information and synchronize the information with memory
trace, and the kernel patch contains a few kernel modifications.

The Toolkit provides several programs for storing trace and
offline analysis. Additionally, it can also analyze process’ page
table information collected by KSMod (as shown in Figure 4).

5.2 HMTT parameters
Table 2 summarizes the parameters of HMTT. MTB utilize a
Xilinx Virtex II Pro FPGA which works at 100MHz to support
DDR 200MHz. HMTT is able to monitor more than one DIMM
simultaneously, so its supported memory size can be up to 8GB.
There is only one GE PHY on MTB (see Figure 5(b)), so the max
trace transmission bandwidth is 1Gb/s. The full functionalities
KSMod has been developed at Linux 2.6.14, and then has been
ported to other versions with few efforts, such as 2.6.18. A simple
KSMod for Windows has also been developed, but it can not
collect page table information currently.

5.3 FPGA Functionalities
Figure 6 shows the physical block diagram of the FPGA. It
contains eight logic units. The DDR Command Buffer Unit
(DCBU) captures and buffers DDR commands. Then the buffered
commands are forwarded to the Config Unit and the DDR State
Machine Unit. The Config Unit (CU) translates a specified access

pattern into inner-commands, and then controls MTB to perform
corresponding operations, such as switching work mode, inserting
synchronization tags to trace. The DDR State Machine Unit
(DSMU) interprets two-phase interleaved multi-bank DDR
commands to a format of <address, r/w, duration>. Then the trace
will be inputted into the TX FIFO Unit (TFU) and be sent out via
GE. The FPGA is reconfigurable to support two optional units –
the Statistic Unit (SU) and Reuse Distance & Hot Pages Unit
(RDHPU).

The Statistic Unit is able to do statistic of various memory
events in different intervals (1us ~ 1s), such as memory
bandwidth, bank behavior, and address bits change. The RDHPU
is able to calculate page’s reuse distance and collect hot pages.
The RDHPU’s kernel is a 128-length LRU stack which is
implemented in an enhanced systolic array proposed by J.P.
Grossman [24].

To keep up with memory speeds, the DDR State Machine Unit
adopts the simplified state machine described in Section 4.2. The
TX FIFO Unit contains a 16K entries FIFO between the state
machine and the trace transmitting logic.

5.4 Memory Trace Board (MTB) Configuration
As mentioned in Section 4.5, the hardware monitor board (MTB)
requires a configuration mechanism. Our implementation of MTB
configuration supports both Linux and Windows platforms.
Figure 7 shows the configuration mechanism. The configuration
space of MTB is the first physical page of 0x0~0x1000 (see ①).
This physical page is reserved when Linux or Windows boot. The
user programs (see ②) then map “/dev/mem” (Linux) or
“\\Device\\PhysicalMemory” (Windows) into their virtual address

Application

Kernel

Memory

KSMod

MTB

Toolkit

Traced System HMTT

RAID0

Memory Access

Page Fault
Syscall etc

Page Table
Trace

Memory
Reference

Trace

Control
Packets

Page Table

Store or
Online

Analysis

Offline
Analysis

Output

• Virtual/Physical Pattern
• Stream characteristic
• Cache/TLB Performance
• Page Reuse Distance

• Bandwidth

(a) Framework

(b) HMTT Hardware Board

FPG
A

DIMM Slots GE PHY & RJ45

Figure 5. (a) A detail Framework of the initial monitoring
system, HMTT (b) HMTT hardware board in a DIMM

Figure 7. MTB Configuration Mechanism. ① The first
physical page is reserved; ② User program maps the page
into its virtual address space; ③ Well-defined commands.

①

②

③

Table 2. HMTT parameters

Figure 6. The FPGA Physical Block Diagram

spaces and accesses the page directly. The Config Unit of MTB
will filter the well-defined address patterns and translate them into
inner-commands in order to control MTB’s work mode. We have
solved the following problems to make MTB work well. First, we
have defined the MTB configuration registers elaborately (see ③).
Only several continuous accesses to one specified address will be
translated into an inner-command. For example, the RESET
inner-command is defined as 16 continuous references on the
physical address of 0x80. Second, we have eliminated cache
influence. The first physical page is set as uncacheable after OS
startup, which will not influence system performance because the
page is already reserved and only OS may access it un-frequently.

5.5 Kernel Synchronization Module (KSMod)
The KSMod is an instance of the Kernel Synchronization
Mechanism (KSM) on Linux platform. It comprises two modules
and one kernel patch.

One module is added to alter the first page’s cache attribution.
Another is a more important module which provides the
hmtt_printk routine to collect page table information and to store
the information in a kernel-user shared buffer. It is not convenient
for users to find out the exact points in kernel where they should
call hmtt_printk, although hmtt_printk is so flexible that it can
collect any kernel information and can be called at any place from
kernel. The patch has done this work.

The kernel patch is less than 30 code lines which modifies two
files -- entry.S and pgtable.h (pgtable.h may be different on
different CPU platforms). It modifies set_pte_at macro in the
pgtable.h file (pgtable-2level.h in i386 platform and pgtable-
3level.h in x86-64 platform) to record each update of page table.
When a page fault occurs, the Linux kernel ultimately calls
set_pte_at to update application’s page table. At that time, the
hmtt_printk will be called to collect page table trace in the format
of <pid, phy_page, virt_page, page_table_entry_addr>.

Another patch for entry.S is optional. This patch inserts a few
codes at two macros (SAVE_ALL and RESTORE_REGS) and
two other points to send identifiers to MTB when kernel-enter and
kernel-exit occur. The identifiers are useful for analyzing full
system memory behaviors, including OS (see case study in
Section 6.3). Of course, they can also be removed when only
analyze user application’s behavior.

The KSMod will send a synchronization tag to MTB via the
configuration mechanism every 50 page faults, where the choice
of number 50 has been discussed in Section 4.3.

5.6 Trace Dumping and Replay
HMTT adopts the combination of straightforward compressions,
GE-RAID approaches to dump mass trace, which has been
described in Section 4.4. (The trace merge procedure is not
required, because HMTT has only one GE PHY currently.)

In the initial system, we used a PC with an Intel E1000 GE NIC
to receive memory trace. The Toolkit of HMTT includes a zero-
copy driver for the NIC. MTB sends trace data to the PC via a GE
PHY. Then, the zero-copy driver receives trace data from the NIC
and stores them in a shared buffer. Another program reads trace
data from the shared buffer and then writes them to a RAID
(Contemporary PCs can be setup in BIOS to support RAID).

The Toolkit provides several programs for trace relay and
analysis. The programs can read memory trace and page table
information simultaneously. They read the page table information
to reconstruct physical-virtual mapping table, and extract the
physical memory address to be queried in the mapping table to

retrieve the process’ pid and virtual address. When meet a
synchronization tag in the memory trace, the mapping table is
updated to ensure their consistency. The replayed virtual trace can
be used for many analyses, such stream-based access analysis,
cache/TLB performance analysis, kernel impact on memory
system, application page table statistic.

5.7 Verifications
HMTT is validated in five steps:

1) As a basic verification, we have checked the physical
address trace tracked by the monitoring board (MTB) with micro
benchmarks which generate sequential reads, sequential writes,
sequential read-after-writes and random reads in various level
from cache line to page size. As shown in Figure 6, the FPGA is
driven by a clock. There are two choices for clock: one is using
DDR clock driven by memory controller, and another is using
external clock generated by oscillators. HMTT is using an
external clock currently. The test results show that there are few
incorrect physical addresses, less than 1‰ (one per thousand)
owing to the tiny phase shift between DDR clock and external
clock. So, in the next version, we have chosen DDR clock.

2) We have used the micro benchmarks to check if virtual
pages and physical pages collected by the KSMod are both linear
and if they are one-to-one corresponded. This check results are
perfect, and all page table information has no errors.

3) We have replayed virtual memory trace to verify the
synchronization between physical memory trace and page table
information. Figure 8 shows an example of quicksort’s virtual
memory reference trace with an input of 100,000,000 integers.
Figure 8(b) shows the virtual address space and its corresponding
physical address space of quicksort’s data segment. The virtual
address space is linear but the physical address space is discrete.
Figure 8(a) shows a piece of virtual memory trace, which presents
the exact reference pattern of quicksort. Moreover, the address
space (0xA2800~0xA5800) also belongs to the virtual address
space of data segment (0xA0000~0xC0000) (Figure 8(b)).

4) We say a Miss occurs, if retrieve result is null when query a
physical address in the virtual-physical mapping table. There are
two reasons why “Misses” occur. One is the incorrect physical
addresses introduced by jitters and another is some special I/O
operations which are performed without page mapping. The
“Miss” column in the Appendix Table shows the Miss proportion
of various applications on an i386/Linux platform. The Miss
proportions of most applications are less than 0.5%, except
desktop applications whose vary from 1% to 2.4%. However, the
Miss proportions are reasonable and acceptable.

5) A comparison with performance counter (use O-Profile [6]
with DRAM_ACCESS event) is listed in the Appendix Table.
Through the table, most differences of memory access numbers
acquired by HMTT and performance counter respectively are less
than 1%, mainly incurred in initialization and finalization phases.

The above verification works indicate that HMTT is a feasible
and convincing memory trace monitoring system.

Figure 8. QuickSort_100M: (a) Virtual Memory Reference
Pattern; (b) Page Table – Virtual-to-Physical mapping

(a) (b)

6. Case Studies
In this section, we will present several case studies of HMTT on
two different platforms, an i386/Linux platform and a x86-
64/Linux platform respectively. The case studies include: (1)
memory bandwidth; (2) stream-based access analysis; (3) OS
impact on memory hierarchy in real systems.

We have done experiments on two different machines as listed
in Table 3. Because HMTT mainly depends on DIMM, it can be
ported to various platforms, including multicore platforms. We
have studied memory behaviors of three classes of benchmarks
including (See Table 3): computing intensive applications (SEPC
CPU2006, SPEC CPU2000, both using ref input sets), OS
intensive applications (OpenOffice, Realplayer), and Java Virtual
Machine applications (SPECjbb 2005).

6.1 Memory Bandwidth Analysis
Limited memory bandwidth can degrade scalability of a multicore
system as the number of cores increases [32]. In this study, we
focus on the memory bandwidth utilization of various applications.

Usually, average memory bandwidth is adopted to evaluate an
application’s memory requirements. However, CPU may not
generate memory reference at a stable frequency. Burst accesses
can be issued in a short interval. In this study, memory
bandwidths are sampled every 1ms, and burst bandwidth is
defined as the 90th percentile of the bandwidth samples. Figure 9
shows all of the benchmarks’ average bandwidth and burst
bandwidth. Throughout Figure 9, the burst bandwidths are more
than the average bandwidths, varying from 2% (171.swim) to 5X
(OpenOffice) in Intel Celetron platform, as well as in AMD
Opteron platform. Moreover, the highest burst bandwidths on

both platforms already exceed 90% of peak bandwidths.
Moreover, the average bandwidths of SPECjbb2005 from one
thread to seven threads increase modestly by 1.9%, but the burst
bandwidths increase by 26.3%. The burst bandwidths on AMD
platform are much higher than Intel platform because AMD
platform uses dual-channels.

We have replayed all samples to do a deep investigation of
memory bandwidth. Figure 10 shows the memory access
frequency (same meaning as bandwidth) of 255.vortex and
OppenOffice in Celetron platform. Figure 10(b) shows that those
high burst bandwidths of OpenOffice occur when move on to next
slide. The 51 aiguilles indicate 51 slide movements. The
255.vortex in Figure 10(a) represents a typical burst characteristic
of most applications. The obvious different memory bandwidth
phases indicate different program behaviors. The run-time phases,
observed by Sherwood et. al. [44] with SimpleScaler, are
interesting and useful. Shen et. al. [43] used ATOM to generate
data reference trace for locality phase prediction. HMTT is also
able to analyze run-time phases.

Back to the bandwidth issue, since applications generate
various behavior phases during long-time running, burst
bandwidth should be regarded the same important as average
bandwidth, especially in multicore systems.

6.2 Stream-Based Access Analysis
Stream-based memory accesses, also called fixed-stride access,
can be used in many optimization approaches, such as prefetching
and vector loads. We define “Stream Coverage Rate (SCR)” as the
proportion of stream-based memory accesses in application’s total
accesses:

SCR = stream_accesses / total_access * 100%
Previous works have proposed several stream prefetchers in

cache or memory controller [11, 26, 29, 38, 45]. These proposed
techniques are usually based on one or two stream characteristics,
such as stream stride, stream length. However, we find that at
least four factors, e.g. stride, length, interval, and active stream
number, should be considered when a new prefetcher is to be
proposed, because the four factors can influence prefetch effect.
In this study, we have used HMTT to reveal the four factors as
well as the SCRs of various applications in a real system (Intel
Celetron Platform).

Table 3. Experimental Machines and Applications

Applications on Intel Celetron Platform

(a) 255.vortex

(b) OpenOffice

Figure 10. Memory
Reference Phase

SPEC CPU2006 on AMD Opteron Platform

Figure 9. Mean Bandwidth V.S. Burst Bandwidth

We adopte an algorithm proposed by Tushar Mohan et. al. [35]
to detect stream in cache line level. The algorithm is simple and
efficient. We add a stream_age attribute, which is calculated as
current_time – stream_last_update_time. If one stream’s
stream_age is greater than a threshold, it is considered as inactive
and can be removed from stream table. The overhead of prefetch
hardware mainly depends on stream table capacity which only
stores active streams. The choice of the threshold is a tradeoff.
Our studies shows that the stream characteristics are almost same
when use a static threshold of one second and a dynamic thread of
5 * stream_ mean_interval respectively. Thus, we choose the
latter threshold for detecting active streams. Figure 11(a) shows
the physical and virtual SCRs detected with different scan-
window sizes. As shown in Figure 11(a), most applications can
achieve SCRs of more than 40% under a 32-size window (The
following studies are under the 32-size window). The numbers on
top of bars indicate the SCRs proportion reduced by OS page
mapping, from 0.04% (wupwise) to 30.2% (apsi). As shown in
Figure 8(b), although the linear virtual page may become un-
linear physical pages after page mapping in OS kernel.

We investigated into the four factors of all streams. Figures
11(b) ~ (e) present the stream statistical characteristics of some
benchmarks. Figure 11(b) shows the stream length distribution. It
is observed that the lengths of most streams are less than 10.
Moreover, more than 85% streams are only 4-length. Thus, the
stream lengths are so short that traditional prefetching techniques
may increase prefetch bandwidth significantly.

Figure 11(c) shows that most streams’ strides are also less than
10, within one page. The short strides indicate that most streams
have good spatial locality which can be explored with the efforts
of cache and memory controller. The results also indicate that OS
page mapping may influence the SCRs slightly when streams are
within one physical page. Nevertheless, the 301.apsi represents
another typical class of applications whose SCRs reduce more
than 10% from virtual to physical stream detection. We find that
most strides are quite large. For example, the stride of 301.apsi is
mainly more than 64B*1000 ≈ 64KB, covering several pages.

Figure 11(d) shows that about 90% of average intervals fall
between 100ns ~ 10us which are multiple times of one memory
access latency. Therefore, hardware has enough time to perform

prefetching even in distributed systems. Moreover, Figure 11(e)
shows that the number of active streams is less than 10 at most
time, so hardware stream table capacity can be small.

Overall, the results show that the SCRs of most applications are
more than 40%, streams have good spatial locality, the stream
interval is appropriate for prefetch, and active streams at a time is
few. Thus, prefetching in cache and memory controller is
reasonable. Nevertheless, the stream length is so short that
prefetchers should be more intelligent to avoid high additional
bandwidth.

6.3 OS Impact on memory hierarchy in real systems
Cache and TLB are two of the most important topics in micro
architecture fields. Using the full system simulator SimOS [41],
Barroso [13], Redstone [40], Rosenblum [42] et. al. have studied
the OS impact on cache/TLB performance. The OS impact to
buffer cache in main memory has also studied (e.g. [21] and [28]).
With the cache/TLB miss reference trace provided by HMTT, we
have evaluated the impact of OS in a real i386/Linux system.

We believe that the kernel impact should be divided into two
parts: (1) the Cache/TLB misses in the kernel mode; (2) user
programs’ refilling cache line and TLB entries evicted by kernel
data after kernel exiting. We use “In Kernel (IK)” and “Kernel
Exit (KE)” to identify them. With the kernel-enter/kernel-exit
identifiers and page table information, we can figure out the OS
impact on Cache/TLB performance.

The Appendix Table lists the Cache/TLB performance of all
benchmarks. Throughout the table, we can see that the IK cache
misses in most SPEC CPU2000 benchmarks are less than 10%,
with values of around 1~6%. However, IK cache misses in
SPECjbb 2005 and Realplayer are about 11%, and it is near 30%
in OpenOffice. KE cache misses are distributed undeterminedly,
from 1% to 75% of IK misses. The sum of IK and KE cache
misses accounts for quite a proportion of total cache misses.

In X86 CPUs, MMU will perform page table walk on a TLB
miss, then incur cache miss. The Appendix Table shows that the
cache misses caused by TLB misses are distributed from 0.2% to
13%. Compared to other benchmarks, 255.vortex and 301.apsi are
more than 10%. Thirteen benchmark’s IK TLB misses account for
more than 10%, and Realplayer is more than 45%. All
benchmarks’ KE TLB misses are more than 20% of the IK, and

(a) The Virtual and Physical SCR in different window sizes. The numbers on top of bars indicate the
decreased proportions between virtual SCRs and physical SCRs due to OS virtual-to-physical mapping.

Figure 11. Stream Statistic: (a) SCR; (b) Length Accumulative Distribution; (c) Stride Accumulative Distribution;
(d) Interval Accumulative Distribution; (e) Active Stream Distribution;

-0.8%

-12.3%

-3.3% -9.2%

-9.3%

-5.0% -2.0% -16.4%

-0.5%

-1.0%

-22.9%

-0.04% -3.6%
-6.1%

-2.0%-18.3%

-3.5%
-3.0%

-0.8%
-3.3%

-30.2%

-1.3%

-12.7%
-0.2%

+0.2%

most fall within 40% ~ 60%. From these statistics, we can
summarize that TLB is more kernel-sensitive than cache.

We find that the distributions of cache miss number in cache
indexes are absolutely different in programs’ user address space
(crafty.user and gap.user, the upper two curves in Figure 12(a)).
But it is so interesting that their kernel distributions are very
similar (crafty.kern and gap.kern in Figure 12(a)). The TLB
misses have the same phenomenon. In Figure 12(b), the TLB miss
in kernel space distributions are fall within the same regions, but
they are different in the user space. Thus, user programs and OS
kernel will disturb each other at each kernel-user mode switch.

Li et. al. [30] also addressed the user/OS branch history
interference problem. Multicore has already become popular, and
the trend of manycore is coming. Since computing resources are
no longer inadequate, asymmetric kernels and dedicated OS cores
may alleviate kernel impact and improve an application’s
performance in the forthcoming manycore era [20].

7. Evaluations and Discussions
7.1 Trace Generation Bandwidth
The two “NBW” columns in the Appendix Table list trace
generation bandwidth on Intel and AMD platforms, respectively.
When utilize DDR-200MHz memory. The bandwidth varies from
5.7MB/s (45.6Mbps) to 72.9MB/s (583.2Mbps) on Intel platform,
and from 0.1MB/s (0.8Mbps) to 106.8MB/s (854.4Mbps) on
AMD platform. This indicates that a bandwidth of 1000Mbps is
sufficient for HMTT to capture all applications’ traces on Intel
platform and most applications’ traces on AMD platform.

However, the high frequency of DDR2/DDR3 memory and the
prevalent multi-channel memory technology increase trace data
generation bandwidth. The next version of monitoring system will
support trace generation bandwidth of at least 2Gbps.

7.2 Overhead
The overheads of HMTT include trace size, kernel buffer for
collection of page table information, synchronization latency,
additional execution time and additional memory accesses.

The traces are generated on two experimental machines whose
parameters are list in Table 3. The “NUM” columns and the
“Size” columns in the Appendix Table list the total number and
size of reference trace of all applications. There are billions of
traces and most trace sizes are more than 10GB. The trace size is
quite large, and large capacity disks are demanded. Fortunately,
the disks are becoming cheaper and cheaper.

The capacity of kernel buffer for page table information
collection is less than 0.5% of total memory size of traced system;
because most physical pages are mapped to virtual pages only
once during application’s entire execution lifetime (see Figure 4).

Figure 7 describes the configuration mechanism of HMTT and
shows a small piece of control codes to configure and synchronize
HMTT. The codes are run many times on the experimental

machines (see Table 3), and the average execution time of control
codes is only 5.9us. Moreover, the application’s execution time is
increased by about 1% when HMTT enables all optional
synchronization tags, such as kernel_enter/kernel_exit identifiers.
The additional memory access (about 1%) arisen by control codes
will not influence the memory reference trace because HMTT
filters these accesses as configurations.

7.3 Limitations
It is important to note that the monitoring mechanism can not
distinguish the prefetch commands.

Regarding the impact of prefetch on memory trace, it has both
up side and down side. The up side is that we can get real memory
accesses trace to main memory, which can benefit research on
main memory side (such as memory thermal model research [31]).
The down side is that it is hard to differentiate the prefetch
memory accesses and on-demand memory accesses. Regarding
prefetch, caches could generate speculative operations. However,
they do not influence memory behaviors significantly. Most
memory controllers do not have prefetch unit, although several
related efforts have been made, such as Impluse project [53],
proposed region prefetcher [48], and the stream prefetcher in
memory controller [26]. Thus, it is not a critical weakness of our
monitoring system. It is to be noted that all hardware monitors
also have the same limitation, prefetching from various levels of
the memory hierarchy. In fact, caches can be disabled to eliminate
caches’ influence. However, the execution time dilation would be
10X~100X, and the trace size would be magnified.

7.4 Discussions
As a new tool, HMTT is a complementary tool to binary
instrumentation and full system simulation with software, rather
than a thorough substitution. Since it is running in real-time and in
a real system, the combination with different techniques would be
more efficient for architecture and application research.

Combination with simulators: to combine with simulators,
HMTT is used to collect trace from real system, include multicore
systems. Then, the trace is analyzed for finding new insights.
Some new optimization mechanisms proposed basing on new
insights can be evaluated by simulators.

Combination with binary instrumentation: HMTT provides
control codes to send synchronization tags into memory trace. So,
instrumentation tools can instrument these control codes into
application binary as annotations to indicate memory references
designated functions/loops/blocks. Moreover, with compiler-
provided symbol table, the virtual-address trace can be utilized for
semantic analysis. As shown in Figure 10, besides tracking trace,
HMTT is also able to analyze run-time phases. Binary instrument
tools can be adopted to insert function/loop/block indicators into
phase’s graphs as well.

8. Conclusion and Future Work
In this paper, we have proposed a platform independent full-
system memory trace monitoring system, which is able to track
virtual memory reference trace of the full systems. It adopts the
DIMM monitoring mechanism, a simplified state machine to keep
up with memory speeds, a Kernel Synchronization Mechanism to
reconstruct virtual-physical mapping, and a GE-RAID approach
to dump full mass trace. We present our implementation and
several case studies of an initial monitoring system, named
HMTT, to show the feasibility of our proposed monitoring
mechanism and techniques.

Figure 12. (a) Cache Miss Number Distribution;
(b) TLB Miss Number Accumulative Distribution

The two kernel
curves are similar

craft.user is
mainly here

The two user curves are different.
gap.user is
mainly here

Both kernels are
mainly here

The current HMTT version 1.0 is the first stage of the
monitoring system. At the next stage, we have been building an
enhanced monitoring system to monitor multiple DDR2 DIMMs
in support of mainstream servers with more than 8GB memory.

Acknowledgments
We would like to thank Prof. Kai Li (Princeton University) for his
constructive and valuable suggestions on this study. Moreover, he
encouraged us throughout this study and even gave us detailed
suggestions on paper organization. We give special thanks to Prof.
Xiaodong Zhang (Ohio State University) for shepherding the final
version of this paper with detailed and valuable suggestions. His
Dragon Star Lecture on "Caching and Buffer Management" held
at the Institute of Computing Technology (ICT) in 2005 gave us
insights into memory systems and motivated us to work in several
memory systems research projects. We thank Jiang Lin (Iowa
State University), Guangmin Tan, Wengli Zhang, Peiheng Zhang,
Zeng Cao, Lei Li and other teammates from ASL, ICT for their
help in discussions, experimental setup and paper writing. We
also thank Xia Cao (University of Michigan) and our anonymous
reviewers for their insightful suggestions. This research is
supported by the National Natural Science Foundation of China
(NSFC) under a grant number 60633040 and the National High
Technology Research and Development Program of China (863
Program) under grant numbers 2006AA01A102, 2007AA01Z115.

References
[1] DyninstAPI. http://www.dyninst.org/.
[2] Intel Corp. Intel Itanium2 Processor-Reference Manual, 2004.
[3] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION.

Double Data Rate (DDR) SDRAM Specification. Jan 2004.
[4] Linux Trace Toolkit Next Generation. http://ltt.polymtl.ca/.
[5] M5. http://m5.eecs.umich.edu/.
[6] O-Profile. http://oprofile.sourceforge.net/.
[7] PIN. http://rogue.colorado.edu/pin/.
[8] RAMP. http://ramp.eecs.berkeley.edu/.
[9] SimpleScalar 3.0. http://www.simplescalar.com/.
[10] Valgrind. http://valgrind.org/.
[11] J. L. Baer and T. F. Chen. Effective hardware-based data

prefetching for high-performance processors. IEEE
Transactions on Computers, 44(5):609–623, 1995.

[12] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand,
Tim Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, Andrew
Warfield. Xen and the Art of Virtualization. SOSP, 2003.

[13] L. A. Barroso, K. Gharachorloo, E. Bugnion. Memory
System Characterization of Commercial Workloads. ISCA,
June 1998.

[14] L. A. Barroso, S. Iman, J. Jeong, K. Oner, K. Ramamurthy
and M. Dubois. RPM: A Rapid Prototyping Engine for
Multiprocessor Systems. IEEE Computer, February 1995.

[15] L. A. Barroso. Design and Evaluation of Architectures for
Commercial Applications. Technique Reprot, 1999.

[16] Fabrice Bellard. QEMU, a Fast and Portable Dynamic
Translator. Usenix Annual Technical Conference, April 2005.

[17] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew
Edwards, Ron Murray, M. Drinic, Darek Mihocka, Joe Chau.
Framework for Instruction-level Tracing and Analysis of
Program Executions. Proceedings of the 2nd International
conference on Virtual execution environments (VEE), 2006.

[18] Prashanth P. Bungale and Chi-Keung Luk. PinOS: A
Programmable Framework for Whole-System Dynamic

Instrumentation. the 3rd international conference on Virtual
execution environments (VEE), June 2007.

[19] Nirut Chalainanont, Eriko Nurvitadhi, Roger Morrison, Lixin
Su, Kingsum Chow, Shih-Lien Lu, and Konrad Lai. Real-
time L3 Cache Simulations Using the Programmable
Hardware-Assisted Cache Emulator (PHA$E). IEEE 6th
Annual Workshop on Workload Characterization, 2003.

[20] K. Chakraborty, P. M. Wells, G. S. Sohi. Computation
Spreading: Employing Hardware Migration to Specialize
CMP Cores On-the-fly. ASPLOS, 2006.

[21] Xiaoning Ding, Song Jiang, Feng Chen, Kei Davis, and
Xiaodong Zhang. DiskSeen: exploiting disk layout and
access history to enhance I/O prefetch. Proceedings of the
2007 USENIX Annual Technical Conference, 2007.

[22] J. K. Flanagan, B. E. Nelson, J. K Archibald, K. S. Grimsrud.
BACH: BYU Address Collection Hardware, The Collection
of Complete Traces. Computer Performance Evaluation '92:
Modeling Techniques and Tools, August 1993.

[23] K. Grimsrud, J. Archibald, M. Ripley, K. Flanagan, and B.
Nelson. BACH: A Hardware Monitor for Tracing
Microprocessor-based Systems. Microprocessors and
Microsystems, v.17, n.8, October 1993, pp. 443-458.

[24] J.P. Grossman. A Systolic Array for Implementing LRU
Replacement. Technical Memo, MIT, 2002.

[25] Jumnit Hong, Eriko Nurvitadhi, Shih-Lien L. Lu. Design,
implementation, and verification of active cache emulator
(ACE). International Symposium on Field Programmable
Gate Arrays (FPGA), 2006.

[26] Ibrahim Hur, Calvin Lin. Memory Prefetching Using
Adaptive Stream Detection. Micro, 2006.

[27] J. Iyer, C. L. Hall, J. Shi, Y. Huang. System memory power
and thermal management in platforms built on Intel®
Centrino® Duo mobile technology. Intel Technology Journal.

[28] Song Jiang, Xiaoning Ding, Feng Chen, Enhua Tan, and
Xiaodong Zhang. DULO: an effective buffer cache
management scheme to exploit both temporal and spatial
localities. FAST, 2005.

[29] N. P. Jouppi. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers. ISCA, 1990.

[30] T. Li, Lizy K. John, A. Sivasubramaniam, N. Vijaykrishnan,
J. Rubio. Understanding and improving operating system
effects in control flow prediction. ASPLOS, 2002.

[31] Jiang Lin, Hongzhong Zheng, Zhichu Zhu, Howard David
and Zhao Zhang. Thermal Modeling and Management of
DRAM Memory Systems. ISCA, June, 2007.

[32] Jiang Lin, Qingda Lu, Xiaoning Ding, Zhao Zhang,
Xiaodong Zhang, and P. Sadayappan. Gaining insights into
multicore cache partitioning: bridging the gap between
simulation and real systems. HPCA, 2008.

[33] ShihLien L. Lu, Peter Yiannacouras,Taeweon Suh, Rolf
Kassa, Michael Konow. An FPGA-based Pentium® in a
complete desktop system. FPGA, 2007.

[34] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson,
Daniel Forsgren, Gustav Hållberg, Johan Högberg, Fredrik
Larsson, Andreas Moestedt, Bengt Werner. Simics: A Full
System Simulation Platform. IEEE Computer, Feb 2002.

[35] Tushar Mohan, Bronis R. de Supinski, Sally A. McKee,
Frank Mueller, Andy Yoo, Martin Schulz. Identifying and
Exploiting Spatial Regularity in Data Memory References.
Supercomputing Conference, November 2003.

[36] Ashwini K. Nanda, Kwok-Ken Mak, Krishnan Sugavanam,
R. K. Sahoo, V. Soundararajan, T. Basil Smith. MemorIES:
A Programmable, Real-Time Hardware Emulation Tool for
Multiprocessor Server Design. ASPLOS, 2000.

[37] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, Rich
Uhlig. Intel Virtualization Technology: Hardware Support
for Efficient Processor Virtualization. Intel Technology
Journal, vol. 10, August 2006.

[38] S. Palacharla and R. E. Kessler. Evaluating stream buffers as
a secondary cache replacement. ISCA, 1994.

[39] K. Rajamani. Memsim users’ guide. IBM research report.
Technical Report RC23431, October 2004.

[40] J. A. Redstone, S. J. Eggers and H. M. Levy. An Analysis of
Operating System Behavior on a Simultaneous
Multithreaded Architecture. ASPLOS, November 2000

[41] M. Rosenblum, S. A. Herrod, E. Witchel, A. Gupta.
Complete Computer System Simulation: the SimOS
Approach. IEEE Parallel and Distributed Technology:
Systems and Applications, 1995.

[42] Mendel Rosenblum, Edouard Bugnion, Stephen Alan Herrod,
Emmet Witchel, Anoop Gupta. The Impact of Architectural
Trends on Operating System Performance. SOSP, 1995.

[43] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality Phase
Prediction. ASPLOS, 2004.

[44] Timothy Sherwood, Suleyman Sair, Brad Calder. Phase
Tracking and Prediction. ISCA, June 2003.

[45] A. Smith. Sequential program prefetching in memory
hierarchies. IEEE Transactions on Computers, 1978.

[46] Amitabh Srivastava, Alan Eustace. ATOM: a system for
building customized program analysis tools. PLDI, 1994.

[47] David Wang, Brinda Ganesh, Nuengwong Tuaycharoen,
Katie Baynes, Aamer Jaleel, and Bruce Jacob. DRAMsim: A
Memory System Simulator. SIGARCH Computer
Architecture News, vol. 33, no. 4, September 2005.

[48] Z. Wang, D. Burger, K. S. McKinley, S. K. Reinhardt, and C.
C. Weems. Guided Region Prefetching: A Cooperative
Hardware/Software Approach. ISCA, 2003.

[49] M. Watson and J. Flanagan. Simulating L3 Caches in Real
Time Using Hardware Accelerated Cache Simulation
(HACS): a Case Study with SPECint 2000. Symposium on
Computer Architecture and High Performance Computing,
2002.

[50] Win. A. Wulf, Sally A. McKee. Hitting the Memory Wall:
Implications of the Obvious. Computer Architecture News,
23(1):20-24, March 1995.

[51] Hyung-Min Youn, Gi-Ho Park, Kil-Whan Lee, Tack-Don
Han, Shin-Dug Kim, and Sung-Bong Yang. Reconfigurable
Address Collector and Flying Cache Simulator. High
Performance Computing Asia, April 1997.

[52] R. A.Uhilg, T. N. Mudge. Trace-driven memory simulation:
A survey. ACM Computing Surveys, Jun., 1997.

[53] Lixin Zhang, Zhen Fang, Mide Parker, Binu K. Mathew,
Lambert Schaelicke, John B. Carter, Wilson C. Hsieh, Sally
A. McKee. The Impulse Memory Controller. IEEE
Transactions on Computers, pp. 1117 – 1132, 2001.

Appendix Tables. Memory Reference Trace and Cache/TLB Statistics

Notes: NUM = Total Memory Reference Trace Number (in Billion); Size = Total Trace Size; NBW = GE Bandwidth; PerfCnt = Performance Counter;
Miss = Physical address missed in virtual-physical mapping; APP = Applications Proportion; IK = “In Kernel” Proportion; KE = “Kernel Exit” Proportion;
Diff = Difference between HMTT and PerfCnt, calculated as (HMTT.NUM-PerfCnt)/HMTT*100%; TLB/NUM = The ratio of Cache Miss caused by TLB Miss to total trace
number; KE/IK = The ratio of “Kernel Exit” proportion to “In Kernel” proportion; IK+KE = The sum of “In Kernel” proportion and “Kernel Exit”
 proportion, equal to IK*(1+KE/IK).

HMTT Trace Perf.Cnt
Benchmarks NUM

(B)
NBW

(MB/s)
DRAM

Access(B)

HMTT
Perf.Cnt
Diff (%)

400.perlbench 2.57 8.27 2.56 0.07
401.bzip2 14.70 33.60 14.61 0.67
403.gcc 35.13 85.48 34.61 1.51
429.mcf 28.38 46.71 28.25 0.46
445.gobmk 3.27 11.00 3.23 1.26
456.hmmer 7.82 19.29 7.83 -0.23
458.sjeng 1.91 4.84 1.91 0.02
462.libquantum 77.46 102.04 76.83 0.82
464.h264ref 5.30 9.02 5.32 -0.25
461.omnetpp 19.57 60.14 19.50 0.38
473.astar 11.98 31.16 11.81 1.40

SPEC
CPU
2006
INT

483.xalancbmk 14.54 29.16 14.51 0.21
410.bwaves 41.83 42.98 41.52 0.74
416.gamess 0.30 0.50 0.31 -0.95
433.milc 38.97 96.54 38.68 0.75
434.zeusmp 14.72 34.14 14.64 0.54
435.gromacs 1.78 4.92 1.78 -0.23
436.cactusADM 18.16 24.36 18.00 0.89
437.leslie3d 43.39 84.84 42.97 0.97
444.namd 0.35 1.19 0.36 -0.49
447.dealII 12.94 32.80 12.94 0.03
450.soplex 29.63 69.39 29.42 0.74
453.povray 0.02 0.10 0.02 0.75
454.calculix 3.95 3.67 3.95 -0.01
459.GemsFDTD 49.94 87.94 49.51 0.87
465.tonto 11.98 26.06 11.92 0.52
470.lbm 68.64 106.82 67.66 1.44
481.wrf 26.68 44.80 26.58 0.35

SPE
C

CPU
2006
FP

482.sphinx3 49.64 71.78 49.63 0.03

Reference Trace Info Cache Miss
Statistics(%) TLB Miss Statistics(%)

Benchmarks NUM
(B)

Size
(GB)

NBW
(MB/s)

Miss
(%) APP IK KE

/IK
IK

+KE
TLB

/NUM APP IK KE
/IK

IK
+KE

164.gzip 2.8 13.7 33.9 0.13 97.2 2.1 37.8 2.9 0.4 57.9 34.8 51.0 52.5
165.vpr 5.9 25.7 44.9 0.18 96.0 3.7 19.0 4.4 2.6 96.0 3.3 50.1 5.0
176.gcc 3.0 15 44.5 0.29 96.3 3.0 38.4 4.1 1.2 78.6 12.0 43.6 17.3
181.mcf 9.4 40 63.4 0.11 92.9 7.0 28.4 9.0 6.3 99.0 0.9 47.0 1.3
186.crafty 2.1 8.1 27.3 0.13 96.6 2.9 57.4 4.6 1.5 90.4 7.7 55.5 12.0
197.parser 4.1 18.9 36.1 0.23 95.5 4.2 34.4 5.6 2.7 94.5 4.5 49.4 6.8
252.eon 3.0 13.3 8.7 0.20 96.5 2.9 57.0 4.5 0.6 74.2 23.4 56.4 36.6
253.perlbmk 1.9 8 24 0.33 84.9 11.0 35.3 14.9 7.9 94.9 4.5 44.2 6.4
254.gap 1.0 5.4 29.3 0.39 94.8 4.1 21.7 5.0 1.8 84.3 12.7 36.3 17.3
255.vortex 3.4 12.7 32.8 0.51 86.1 11.9 38.0 16.4 10.4 98.3 1.5 43.8 2.2
256.bzip2 3.8 16.1 36.7 0.08 97.3 2.3 14.6 2.7 1.2 90.7 7.9 48.5 11.7

SPEC
CPU
2000
INT

300.twolf 10.9 50.3 48.7 0.13 98.1 1.5 21.6 1.8 0.5 78.8 18.3 63.9 30.0
168.wupwise 1.6 7.4 24.6 0.15 97.0 2.3 6.3 2.5 0.5 62.4 31.5 44.8 45.6
171.swim 14.5 63.2 65.8 0.1 94.1 5.8 75.2 10.1 5.1 98.8 1.0 48.6 1.5
172.mgrid 5.6 26.4 48 0.06 98.3 1.4 1.8 1.4 0.4 78.4 18.3 56.0 28.6
173.applu 4.5 24.2 47.9 0.08 97.4 2.4 30.6 3.1 1.3 91.7 7.1 53.2 10.8
177.mesa 0.5 3.4 11.2 0.77 88.4 8.1 35.5 10.9 2.0 72.9 24.7 51.3 37.4
179.art 28.6 128.9 72.9 0.04 99.1 0.8 19.3 1.0 0.3 83.9 13.1 54.0 20.1
183.equake 3.1 13.2 58.3 0.05 98.2 1.5 2.7 1.5 0.7 89.3 8.8 54.9 13.7
187.facerec 5.0 24.3 34.4 0.19 95.9 3.6 7.7 3.9 1.1 66.3 30.0 26.3 38.0
188.ammp 8.9 39.2 46.4 0.11 95.4 4.4 35.5 5.9 3.5 87.2 2.1 42.2 3.1
189.lucas 3.6 19.2 41.7 0.12 93.3 6.4 1.1 6.5 5.2 97.7 2.0 44.3 2.9
191.fma3d 3.3 17.7 33.8 0.13 97.5 2.1 15.2 2.4 0.5 72.4 26.1 58.6 41.4
200.sixtrack 0.4 1.8 5.7 0.19 83.6 12.8 11.5 14.3 2.2 54.4 39.0 48.6 58.0

SPEC
CPU
2000
FP

301.apsi 9.4 40.7 44.4 0.12 85.8 14.0 33.1 18.6 13.2 99.4 0.5 41.1 0.7
OpenOffice 0.7 3.3 10.5 2.40 66.7 29.3 14.5 33.6 7.2 60.7 34.9 24.8 43.1Desktop ReadPlayer 2.5 13 22.2 1.2 83.9 12.3 8.2 13.3 3.0 50.0 45.2 30.3 59.0

Java SPECjbb2005 17.2 77.5 41.3 1.01 87.3 11.5 28.1 14.7 7.1 94.0 5.2 49.1 7.7

