
Memory Access Pattern Analysis

Mary Brown� Roy M. Jeneveiny Nasr Ullah
System Performance, Modeling, and Simulation, Motorola Inc.

6300 Bridgepoint Parkway
Austin, TX 78730

mdb@eecs.umich.edu, rmj@powerquest.com, nasr@ibmoto.com

Abstract

A methodology for analyzing memory behavior has been
developed for the purpose of evaluating memory system
design. MPAT, a memory pattern analysis tool, has been
used to profile memory transactions of dynamic instruction
traces. This paper will first describe the memory model and
metrics gathered by MPAT. Then the metrics are evaluated
in order to determine what hardware and software changes
should be made to improve memory system performance.

1 Introduction

It is well known that as processor performance increases,
the gap between memory access and processor execution
rate widens. We must provide the methodology to better
understand the patterns of memoryaccess so that more op-
timum performance can be achieved from the memory sub-
system. In order to develop a better understanding of mem-
ory usage, a methodology has been developed for the study
of these memory access patterns. This study has allowed
us to observe the impact of memory access patterns on the
utilization of the memory system. The results of the study
are used to help make specific architectural decisions for
memory controller and memory system design. Without
information about the impact of program behavior on the
memory sub-system, it is difficult to make the necessary
architectural design and sizing decisions for a memory con-
troller. In addition, operating system designers should be
aware of the detrimental impact of page coloring algorithms
on memory system performance, which is revealed by this
study.

The main parts of the memory system architecture that
we are focusing on in this study are the necessity for open
page retention, the open page replacement algorithms used

�The University of Michigan at Ann Arbor
yPowerQuest Corporation. On leave from The University of Texas at

Austin

by the memory controller, and the requirements for the
memory transaction scheduler. It is possible to determine
the cost-performance benefits of these features by profil-
ing the physical memoryaccesses to measure the benefit
of keeping DRAM pages open.

When a system makes the first memory reference to a
memory subsystem, there are no memory pages open and
the memory controller must issue a full memory address
(both row and column addresses) to the selected DRAM
bank. Subsequent references to the same page (with the
same row address) can be accessed by simply providing
the column address if the memory controller keeps the cur-
rent row address active. This method allows lower latency
accesses to the same page than would be possible if the
controller had to provide a full address for each access.
Current-generation memory controllers provide the neces-
sary register space to keep DRAM pages open. This paper
presents some novel techniques for visualizing the memory
paging behavior of applications in order to evaluate the ben-
efits of maintaining open page information.

2 Methodology

The use of open pages in the memory sub-system is gov-
erned not only by the memory activity of the application,
but also by the refresh interval of the DRAMs used in the
memory sub-system as well as the number of DRAM banks
used to implement the memory structure. In order to prop-
erly investigate the performance impact of open pages, it
is necessary to consider all these factors when modeling
a memory sub-system. The more DRAM banks a mem-
ory subsystem has, the greater the number of possible open
pages. DRAM refresh impacts open-page performance be-
cause all open pages are closed during a refresh cycle.

The key metrics of paging activity which must be mea-
sured are how many pages are open before each refresh,
how many unique pages are accessed each refresh interval,
and the page hit ratio for each interval.

A tool named MPAT (Memory Pattern Analysis Tool)



has been developed for profiling the memory transactions of
programs. This tool accepts an instruction trace or memory
access trace generated by software or a bus monitor as input.
After all memory accesses of the trace are filtered through
a cache model, thephysical memory transactions are pro-
filed through a memory model for evaluating the memory
scheduler and open page demands.

2.1 Cache model

The cache models that were used depict the caching
structure and dataflow of the PowerPCTM microprocessor
family[3]. The L1 instruction and data caches used by
MPAT are both 32KB write-back caches with 32-byte lines,
8-way set-associativity, and an LRU way replacement algo-
rithm. The L2 cache is a 2-way set-associative write-back
cache with 32-byte lines. Simulations were run using both
a 512KB and 1MB L2cache. All cache accesses as well as
cache misses are processed in the order that they occur in
the instruction trace.

2.2 Memory model

The synchronous DRAM model used by MPAT is pa-
rameterizable with respect to page sizes, number of DRAM
banks, open page retention, and refresh intervals. The page
retention buffer is a collection of registers which assert the
row address strobe for a specified bank. In the memory
model used by MPAT, there may be as many registers in
the page retention buffer as banks in the memory system.
The buffer is fully associative but only one row address
strobe may be asserted for any bank. Thus in the MPAT
model there can be as many open pages as the the num-
ber of DRAM banks in the memory subsystem. Although
some DRAM subsytems support more than one open page
per bank, these will not be considered in this paper. MPAT
considers any two addresses which are in the same bank and
have the same row address strobe to be in the same page.
Any page which is accessed will remain open until one of
the following conditions occurs[2]:

� The new page to be accessed lies in the same bank
as a currently open page. The currently open page is
forced to close in order to precharge the new row ad-
dress strobe.

� There is an access to anunopened page on a bank
which does not have any open pages and the open page
retention buffer is full. One of the open pages must be
closed.

� A refresh occurs. All pages are closed when a refresh
occurs.

2.3 Metrics of Interest

The following metrics are gathered within each refresh
interval of the instruction trace:

� Number of open pages at the end of the refresh inter-
val. This is how many pages were forced to close due
to a page refresh. If the number of open pages is less
than or equal to the maximum number of open pages,
this metric indicates how many banks were used in this
refresh interval.

� Number of times pages were opened within the win-
dow.

� Number of unique pages accessed within the window.
This helps determine the working set size of the pro-
gram.

� Open page miss ratio. This is calculated as the number
of times a page had to be opened divided by the total
number of DRAM accesses.

� Number of I/O transactions and ROM accesses.
� Number of accesses to each bank. This helps deter-

mine the spatial distribution of the working set. It is
possible that some of the banks used within one re-
fresh interval actually had very few accesses to them.
If this happens, more space in the open page reten-
tion buffer will be utilized without adding significant
benefits to performance. Because of this, measuring
the open page miss ratios using a variable maximum
number of open pages is a better way to determine the
cost-performance optimal page retention buffer size.

� Number of transactions since the most recent access
to the same page. It is not uncommon for the ad-
dresses accessed to alternate or ”ping-pong” between
two pages on the same bank. In such a situation, if all
transactions are processed in order, there would be a
forced RAS precharge before every transaction. If a
memory scheduler were used, many of the precharges
could be avoided if the transactions were issued close
together in time. In order to determine how much
benefit arises from processing memory transactions
out of order, the amount of ”ping-pong” activity must
be measured. For every memory transaction, MPAT
counts how manyaccesses have occurred since the
most recent access to the same page. A number, which
we will refer to as a ping-pong distance, is associated
with each transaction. The ping-pong distance is de-
fined as the number of memory transactions since the
most recent transaction to the same page. If a mem-
ory transaction were to the same page as the previous
transaction, it would have a ping-pong distance of one.
The ping-pong distances for all transactions are mea-
sured throughout the simulations.



0

0.2

0.4

0.6

0.8

1

0 2e+07 4e+07 6e+07 8e+07 1e+08

A
v
e
r
a
g
e
 
H
i
t
 
R
a
t
i
o
 
f
o
r
 
R
e
f
r
e
s
h
 
I
n
t
e
r
v
a
l

Instruction Count

Open Page Hit Ratios for Compress

"Compress"

Figure 1. Open page hit ratios for the compress benchmark. This simulation used a 512KB L2 cache
and a memory configuration with a maximum of 16 open DRAM pages.

2.4 MPAT Constraints

Because the instruction traces used by MPAT may not
contain time stamps, an instruction count is used as an
approximation of time. The number of instructions be-
tween DRAM refresh intervals is calculated using the pro-
cessor cycle time, a standard refresh time interval of 15.6
microseconds[2], and the approximated CPI for the proces-
sor, benchmark, and memory configuration. This approx-
imation affects not only the refresh interval time, but the
time between transactions as well.

The order as well as time of memory transactions may
not reflect the actual system behavior. However, since we
estimate the time of memory transactions with instructions
and assume all transactions occur in program order, we
are still characterizing the behavior of the application with-
out being constrained by reordering within the processor-
system model. When an instruction trace is used as in-
put, the instruction address, followed by the data address
for load or store instructions, is processed in order for each
instruction in the trace. This means any rescheduling effects
due to the processor pipeline, caches, processor bus, or any
modules between the processor bus and memory controller
are not modeled. This does not present a problem because
analyzing the measurements of ping-pong activity while as-

suming transactions occur in program order allows us to
obtain an upper bound on the effects of processor-memory
controller rescheduling.

2.5 Benchmarks

Simulations have been run on the multimedia applica-
tions Specular InfiniD, Macromedia FreeHand, Adobe Pho-
toshop, MPEG, image rotation, gaussian blur, and Tartus-
Rave3D, as well as the SPECint95 benchmarks gcc, go, li,
perl, compress, vortex, ijpeg, m88ksim. The SPECint95
traces were generated on a PowerPC604eTM micropro-
cessor running on AIX, and the multimedia programs were
generated on a PowerPC 604e microprocessor running on
MacOS. Simulations for all benchmarks were run using
identical DRAM and cache configurations.

The ratio of the speed of main memory to the proces-
sor speed necessitates the use of extremely long instruction
traces. All of the traces used in these simulations contained
on the order of one hundred million instructions. Trends in
the memory patterns of certain benchmark algorithms have
been observed to last up to and possibly longer than several
tens of millions of instructions.



0

0.2

0.4

0.6

0.8

1

0 2e+07 4e+07 6e+07 8e+07 1e+08

A
v
e
r
a
g
e
 
H
i
t
 
R
a
t
i
o
 
f
o
r
 
R
e
f
r
e
s
h
 
I
n
t
e
r
v
a
l

Instruction Count

Open Page Hit Ratios

"InfiniD"

Figure 2. Open page hit ratios for the InfiniD benchmark. This simulation used a 512KB L2 cache and
a memory configuration with a maximum of 16 open DRAM pages.

0

20

40

60

80

100

120

140

160

180

200

0 2e+07 4e+07 6e+07 8e+07 1e+08

N
u
m
b
e
r
 
o
f
 
M
e
m
o
r
y
 
T
r
a
n
s
a
c
t
i
o
n
s
 
i
n
 
R
e
f
r
e
s
h
 
I
n
t
e
r
v
a
l

Instruction Count

Memory Activity

"InfiniD"

Figure 3. Memory Activity for the InfiniD benchmark. This simulation used a 512KB L2 cache and a
memory configuration with a maximum of 16 open DRAM pages.



0

0.2

0.4

0.6

0.8

1

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07 7e+07

A
v
e
r
a
g
e
 
H
i
t
 
R
a
t
i
o
 
f
o
r
 
R
e
f
r
e
s
h
 
I
n
t
e
r
v
a
l

Instruction Count

Open Page Hit Ratios

"FreeHand"

Figure 4. Open page hit ratios for the Adobe Freehand benchmark. This simulation used a 512KB L2
cache and a memory configuration with a maximum of 16 open DRAM pages.

3 Metrics Evaluation

In order to obtain a general characterization of the mem-
ory access patterns, we used several approaches for evaluat-
ing the metrics. First, overall statistics for each benchmark
such as the averages and standard deviations of the metrics
were determined. These statistics were too general and were
biased by periods of time when the memory system was in-
active and periods of time when the memory system activity
was highly irregular.

Next, instead of looking at overall averages, we focused
specifically on the metrics for each refresh interval. The
number of pages open before each refresh as well as the
miss ratios and number of unique pages accessed per refresh
interval were plotted for each benchmark trace. Plots of
open page hit ratios for the SPECint95 benchmark compress
and the multimedia benchmarks InfiniD and FreeHand are
shown in figures 1, 2, and 4. These plots show the changes
in the open-page hit ratios over time which are characteristic
of the program under execution. The x-axis ofeach graph
is the instruction count of the trace. It provides a measure
of progress through the trace (i.e. time). The y-axis repre-
sents the average open-page hit ratio for each refresh inter-
val. Each marked pixel of the plot represents the average
number of times that an open page is hit in one refresh in-

terval. The graph appears dense because of the great num-
ber of refresh intervals during the execution of the trace.
Figures 1,2, and 4 provides a fingerprint or pattern of the
applications use of open-pages.

Figure 3 shows the density of memory accesses through-
out the InfiniD trace. Each marked pixel of the trace in-
dicates the number of memory accesses within one refresh
interval. Comparisons of figures 2 and 3 illustrate the strong
correlation between the amount of memory activity and the
dispersiveness of the addresses. As is typical of all the
SPECint95 traces, the memory access patterns of the com-
press trace are not as regular as the multimedia benchmark
traces. The multimedia traces exhibit short bursts of heavy
memory activity at regular intervals. In general, the mul-
timedia benchmarks showed more regular patterns than the
SPECint95 traces.

This method provided a mechanism to visualize the pag-
ing and transaction behavior of the algorithms for each
Benchmark. Since the traces contain some 20,000 to 40,000
refresh intervals it is necessary to further process this in-
formation to focus on more precise memory page behav-
ior. To do this, we organized the refresh intervals into buck-
ets. These buckets were categorized according to how many
DRAM transactions occurred in each interval. Graphs of
the open page hit ratios and memory activity distributions



Figure 5. Open page hit ratios and number of transactions per refresh interval for compress using a
maximum of 2, 4, 8, and 16 open pages.

for compress, InfiniD, and Freehand are shown in figures 5,
6, and 7.

In these figures, we combine the transaction and the
open-page hit information. We take refresh intervals with
approximately the same memory transaction traffic and an-
alyze them together using the buckets. Each of these figures
are shown as a pair of graphs. The first graph depicts the
open-page hit ratio assuming 2,4,8 and 16 open page reg-
isters in the open-page retention buffer. The second graph
simply shows the number of refresh intervals that occurred
in each bucket. For example, in the first graph of Figure 6 all
refresh intervals containing zero transactions are placed in
the first bucket, while all refresh intervals containing one to
forty transactions were placed in the second bucket. Corre-
spondingly in the second graph of figure 6, we can observe
the number of refresh intervals for each bucket. As depicted

in the graph there are over 2000 refresh intervals that do not
have any memory transactions. Additionally we can ob-
serve that the largest number of refresh intervals (approx.
12000) contain 41 to 80 memory transactionseach.

Used together, these two graphs allowed us the ability to
sift out the periods of time with unusually heavy, very little,
or no memory activity. Because some of the benchmarks
periodically had refresh intervals with no memory activity,
without this further analysis, results obtained would have
been biased towards lower demands on the memory con-
troller.

A further analysis using the bucket method revealed that
the proportion of refresh intervals with no DRAM activ-
ity ranged from 0% to 50% for the simulations run with
a 512kB L2cache. For some of the traces, these periods of
time with no DRAM activity were occupied with ROM or



Figure 6. Open page hit ratios for the Adobe Freehand benchmark using a maximum of 2, 4, 8, and
16 open pages.

I/O accesses. For others, the working set lay almost com-
pletely in the cache.

4 Results

For all simulations, a DRAM configuration with 16
banks and various maximum numbers of open pages are
used. The page miss ratios and number of open pages be-
fore refreshes for each simulation were compared in order
to determine how much performance increased by using a
large number of open pages.

4.1 Open Page Retention

In order to determine an optimal number of open pages
to be supported in hardware, simulations were run using a

maximum of 2, 4, 8, and 16 open pages. As illustrated in
figures 6 and 7, the page hit ratios of the traces running
on MacOS showed little or no improvement when a maxi-
mum of more than four open pages were used. This is due
to the fact that not all banks of memory were used by the
programs. Because of the virtual tophysical page coloring
algorithm used by MacOS, the range of the physical mem-
ory used by a program does not occupy very many banks.
Because of the distribution of the working set, the high den-
sity of accesses to a small range of thephysical addresses
caused a significant amount of page contention. This results
in a large set of page close, page open sequences.

For most of the benchmarks running under AIX, the page
hit ratios tended to level off at 8 open pages and there was
little or no benefit to using 16 open pages. Only compress
and vortex frequently used more than 8 open pages. The



Figure 7. Open page hit ratios for the InfiniD benchmark using a maximum of 2, 4, 8, and 16 open
pages.

Figure 8. Ping-pong distributions for li, perl, compress, and gaussian blur.



increase in open page usage as compared to the MacOS
benchmarks is due to the fact that the physical pages used
by the programs were allocated randomly throughout mem-
ory, which increased the number of banks used within each
refresh interval.

The differences in the results obtained from the bench-
marks running under the two different operating systems
shows how heavily the virtual to physical OS page color-
ing algorithm affects the benefits of supporting several open
pages.

The effects of different page replacement algorithms on
the performance were found to be inconsequential. Sim-
ulations using a maximum of four open pages were run
using LRU, Round Robin, and Random DRAM replace-
ment. There was very little difference in the miss rates
among these replacement algorithms; LRU had a one per-
cent higher average hit ratio than Round Robin and Random
replacement.

4.2 Benefits of Out-of-order Scheduling

The ping-pong metric was used to study the affects of
out-of-order scheduling. For all of the benchmarks studied,
10% to 60% of all memory transactions were to the same
page as the previous transaction. The proportion of transac-
tions to unused pages varied widely among the benchmarks.
The distribution of ping-pong distances in the benchmarks
li, perl, compress, and Adobe Photoshop gaussian blur are
shown in figure 8. The first group (ping-pong distance of 1)
shows the percentage of transactions that were to the same
page as the previous transaction, and the last group (ping-
pong distance greater or equal to 15) shows the percentage
of transactions to pages which had not been accessed within
the previous 14 transactions. This graph shows the most ex-
treme cases of ping-pong activity for all benchmarks. Li and
perl showed the most regularity in page accesses. The gaus-
sian blur frequently had accesses which alternated between
2 pages. Compress had the most highly irregular access pat-
tern; over 50% of the memory transactions were to pages
that were not recently referenced. The proportion of trans-
actions with ping- pong distances between 2 and 15 ranged
between 25% and 50% for each benchmark. Overall, 37%
of the memory transactions had ping-pong distances in the
range of 2 to 15. If these transactions could be re-ordered
to be adjacent then they would benefit more from a memory
controller’s open page policy.

5 Conclusions

The results of this study have allowed us to evaluate the
degree of hardware complexity in the memory controller
that will be efficiently utilized by workloads. It also pro-
vides a rational basis for the determination of the number

of open pages to expect within a refresh cycle and hence
the size of the register set in the controller to support that
activity.

Because of the impact of the range of the working set
size on the memory performance, the physical page alloca-
tion algorithms of different operating systems should be in-
vestigated further. In addition, systems with more than one
processor sharing memory or one processor with multiple
cores executing more than one instruction stream may have
a wider combined working set[1]. If such systems are to be
used, the consolidated access patterns of multiple threads
should be investigated.

References

[1] Flynn, Michael J.Computer Architecture: Pipelined
and Parallel Processor Design.Jones and Barlett Pub-
lishers, Inc., Sudbury, MA, 1995.

[2] MPC106 PCI BridgeMemory Controller User’s Man-
ual. Motorola Inc., 1997.

[3] PowerPC 604e RISC Microprocessor User’s Manual.
Motorola Inc., 1998.

Motorola is a registered trademark of Motorola, Inc.
PowerPC and PowerPC 604e are trademarks of Interna-
tional Business Machines Corporation used under license
therefrom.


