
I/O Deduplication

Abstract

- Duplication of data in systems is becoming common-

place

- We introduce I/O deduplication, a technique that lever-

ages duplication for improving I/O performance.

- I/O deduplication has the potential to both reduce the

mechanical delays during I/O operations as well as elimi-

nate I/O operations altogether.

- Evaluation of a prototype implementation using a variety

of workloads including A,B,C, revealed that ...

- We believe that ...

1 Introduction

Data duplication in storage systems is becoming increas-

ingly common. The elimination of such duplication for

improving storage space utilization is an active area of re-

search []. Indeed, eliminating most duplicate content is in-

evitable (for cost-effectiveness) in capacity-sensitive appli-

cations (e.g., data backup). On the other hand, in systems

where the amount of duplicate content is not overwhelming,

eliminating duplicate content is not a key concern. Exam-

ples of such systems are more common than one may imag-

ine. Some of these include email servers where mailing-

lists, circulated attachments, and SPAM can equally con-

tribute to the creation of duplicate content, virtualized envi-

ronments where virtual machines may run similar software

and thus create co-located duplicate content across their vir-

tual disks, and file and versioning control servers of collabo-

rative groups that often store copies of the same documents,

executables, sources etc.

Taking a contrary view on data duplication, we explore the

premise that intrinsic data duplication in systems can be uti-

lized to improve I/O performance. Here, we refer to intrin-

sic (or application/user generated) duplication as opposed to

forced (system generated) duplication such as in a RAID 1

duplicated storage system, a member of a well-known class

of systems trade-off capacity for performance [?].

We conducted a preliminary trace-based analysis of in-

trinsic duplication in both production and non-production

systems. Our analysis revealed [[fill in based on section

2. two metrics of our interest: content similarity distribu-

tion (content-similarity / distance distribution for simi-

lar content as % of storage volume), and content reuse-

distance distribution.]].

In this paper, we present and evaluate techniques that uti-

lize data duplication for optimizing I/O operations. These

techniques either optimize disk head movement or elimi-

nate I/O operations altogether in a bid to minimize duplicate

I/O activity within the storage system. We refer to effect of

these optimizations collectively as I/O deduplication.

I/O deduplication comprises three key techniques: (i) con-

tent based caching that uses the popularity of “data con-

tent” rather than “data location” of I/O accesses in mak-

ing caching decisions, (ii) dynamic replica retrieval that

upon a cache miss, dynamically chooses target replica to re-

trive that minimizes disk head movement , and (iii) optional

replica updates that dynamically chooses between updating

the target location (as requested) for duplicate content and

registering persistent copy-on-write metadata information.

We evaluated a Linux implementation of the I/O dedu-

plication techniques both individually and collectively for a

variety of workloads including an email server, a virtual ma-

chine monitor running production servers, and a simulated

research group desktop virtual machine server. Our evalua-

tion aims at demonstrating the benefits and overheads of I/O

deduplication. Particularly, [[summarize performance re-

sults for various workloads. We also measured the mem-

ory and CPU overheads. —- summarize overhead.]]

In the rest of this paper, we make the case for I/O dedupli-

cation (§ ??), elaborate on a specific design and implemen-

tation (§ ??), perform a detailed evaluation of improvements

and overhead for various workloads (§ ??), discuss related

research (§ ??), and finally, present conclusions and suggest

directions for future work (§ ??).

2 Conclusion

3 Motivation

In this section we analyze the repetition of I/O requests

from two points of view: static and dynamic. Static refers

to the fact that some blocks might be copied over the disk.

1

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

F
re

q
u

e
n

c
y

Number of copies

"../data/homes-static-similarity.dat"

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

F
re

q
u

e
n

c
y

Number of copies

"../data/mail-static-similarity.dat"

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

F
re

q
u

e
n

c
y

Number of copies

"../data/web-static-similarity.dat"

Figure 1: Distribution of the number of copies for the a. homes,

the b. mail and the c. web workloads. The point on the far right

represents the zero block with a high number of copies.

Dynamic refers to the movement of similar content.

We start by defining these concepts:

Then calculate them over a set of workloads, described in

table ??.

3.1 Static similarity

3.2 Dynamic similarity

The importance of these graphs is that there are blocks,

after a long reuse distance that cannot be captured by sector

addressed caches. This is most notorious on figure ??

The importance of these graphs is that there are blocks,

after a long reuse distance that cannot be captured by sector

addressed caches. This is most notorious on figure ??

 100

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90 100

F
re

q
u

e
n

c
y

Reuse [10000]

"../data/homes-dynamic-similarity.dat"
"../data/homes-dynamic-similarity-sectors.dat"

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50

F
re

q
u

e
n

c
y

Reuse [10000]

"../data/boot-dynamic-similarity.dat"
"../data/boot-dynamic-similarity-sectors.dat"

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

F
re

q
u

e
n

c
y

Reuse [10000]

"../data/web-dynamic-similarity.dat"
"../data/web-dynamic-similarity-sectors.dat"

Figure 2: Distribution of reuse distance for the a. homes, b. boot

and c. web workloads. Content reuse distance is shown with a

solid line and sector reuse distance with a dotted line.

2

Name Description

mail application, number of users, etc etc TODO

web TODO

homes 4 home partitions being used by researchers using Ubuntu Desktop. The traces were taken for 2 days.

boot Simultaneous booting of two virtual machines using VMWare

Server and file based disks. Both virtual machines are Ubuntu servers

8.04. Note that the virtual disks blocks are not guaranteed to be 4K

aligned.

Table 1: Description of the workloads analyzed.

name blocks Unique blocks Static similarity Dynamic similarity

mail 29298535 15195268 0.49 -

web 5242880 1910287 0.63 47127

homes 49570806 33959841 0.31 306988

boot - - 0.31 171517

Table 2: static similarity, total number of used blocks, unique used blocks, and duplicate used blocks (i.e. number of blocks with at least

one copy) for the a. mail, b. web and c. homes workloads. Used blocks are those marked as used by the file system.‘

4 Design

References

3

 1

 10

 100

 1000

 10000

 100000

 0 50 100 150 200

F
re

q
u

e
n

c
y

Reuse [1000]

"../data/homes-dynamic-similarity-read.dat"
"../data/homes-dynamic-similarity-sectors-read.dat"

 10

 100

 1000

 10000

 100000

 0 50 100 150 200 250

F
re

q
u

e
n

c
y

Reuse [1000]

"../data/boot-dynamic-similarity-read.dat"
"../data/boot-dynamic-similarity-sectors-read.dat"

 10

 100

 1000

 10000

 0 5 10 15 20 25 30 35

F
re

q
u

e
n

c
y

Reuse [1000]

"../data/web-dynamic-similarity-read.dat"
"../data/web-dynamic-similarity-sectors-read.dat"

Figure 3: Distribution of read reuse distance for the a. homes, b.

boot and c. web workloads. Content reuse distance is showh with

a solid line and sector reuse distance with a dotted line.

4

