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Abstract

This paper presents the design, implementation, and
evaluation of BORG, a self-optimizing storage system
that performsautomatic block reorganizationbased on
the observed I/O workload. BORG is motivated by three
characteristics of I/O workloads: non-uniform access
frequency distribution, temporal locality, and partial de-
terminism in non-sequential accesses. To achieve its ob-
jective, BORG manages a small, dedicated partition on
the disk drive, with the goal of servicing majority of
the I/O requests from within this partition with signif-
icantly reduced seek and rotational delays. BORG re-
mains oblivious to the rest of the storage stack, including
applications, file system(s), and I/O schedulers, thereby
requiring no or minimal modification to storage stack im-
plementations. We evaluated a Linux implementation of
BORG using several real-world workloads, including in-
dividual user desktop environments, a web-server, a vir-
tual machine monitor, and an SVN server. These exper-
iments demonstrate BORG’s effectiveness in improving
I/O performance and its incurred resource overhead.

1 Introduction
There is a continual increase in the gap between CPU
performance and disk drive performance. While the
steady increase in main memory sizes attempts to bridge
this gap, the impact is relatively small; Pattersonet
al. [23] have pointed out that disk drive capacities and
workload working-set sizes tend to grow at a faster rate
than memory sizes. Present day file systems, which con-
trol space allocation on the disk drive, employ static data
layouts [7, 14, 18, 20, 35, 4]. Mostly, they aim to pre-
serve the directory structure of the file system and opti-
mize for sequential access to entire files. No file system
today takes into account the dynamic characteristics of
I/O workload within its data management mechanisms.

We conducted experiments to reconcile past observa-
tions about the nature of I/O workloads [28, 6, 8] in the
context of current-day systems including end-user and
server-class systems. Our key observations that motivate
BORG are:(i) on-disk data exhibit anon-uniform access
frequency distribution; the “frequently accessed” data is
usually a small fraction of the total data stored when con-
sidering a coarse-granularity time-frame.(ii) considering
a fine-granularity time-frame, the “on-disk working-set”

of typical I/O workloads is dynamic; nevertheless, work-
loads exhibittemporal localityin the data that they ac-
cess. (iii) I/O workloads exhibitpartial determinismin
their disk access patterns; besides sequential accesses to
portions of files, fragments of the block access sequence
that lead to non-sequential1 disk accesses also repeat. We
elaborate on these observations in§ 2.

While the above observations mostly validate the prior
studies, and may even appear largely intuitive, surpris-
ingly, there is a lack of commodity storage systems that
utilize these observations to reduce I/O times. We believe
that such systems do not exist because(i) key design and
implementation issues related to the feasibility of such
systems have not been resolved, and(ii) the scope of ef-
fectiveness of such systems has not been determined.

We built BORG, an onlineBlock-reORGanizingstor-
age system to comprehensively address the above issues.
BORG correlates disk blocks based on block access pat-
terns to capture the I/O workload characteristics. BORG
manages a dedicated,OPtimized Target (OPT)partition.
It dynamically copies working-set data blocks (possibly
spread over the entire disk) in their relative access se-
quence contiguously within this partition, thus simulta-
neously reducing seek and rotational delays. In addi-
tion, it assimilates allwrite requestsinto the OPT par-
tition’s write buffer. Since BORG operates in the back-
ground it presents little interference to foreground appli-
cations. Also, BORG provides strong block-layer data
consistency to upper layers, by maintaining a persistent
page-levelindirection map.

We evaluated a Linux implementation of BORG for
a variety of workloads including a development work-
station, an SVN server, a web server, a virtual machine
monitor, as well as several individual desktop applica-
tions. The evaluation shows both the benefits and short-
comings of BORG as well as its resource overheads.
Particularly, BORG can degrade performance when a
non-sequential read workload suddenly shifts its on-disk
working-set. For most workloads, however, BORG in-
creased average case disk throughput in the range 13.3%
to 50%, offering the greatest benefit in the case of non-
sequential write workloads. A sensitivity study with var-

1We use the term “non-sequential I/O” in a slightly differentsense
than ”random I/O” since by definition true random I/O may not exhibit
repeatable determinism.



Workload File System Memory Reads [GB] Writes [GB] File System Top 20% Partial
type size [GB] size [GB] Total Unique Total Unique accessed data access determinism

office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 % 65.42 %
developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 % 61.56 %
SVN server 23.96 0.5 0.29 0.17 0.62 0.18 1.41 % 45.79 % 50.73 %
web server 169.54 0.5 21.07 7.32 2.24 0.33 4.51 % 59.50 % 15.55 %

Table 1: Summary statistics of week-long traces obtained from four different systems.
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Figure 1: Frequency and working-set plots for week-long traces from four different systems. In the top row
graphs, the solid and dashed lines represent the top 20% threshold access counts for writes and reads respectively.

ious parameters of BORG demonstrates the importance
of careful parameter choice; a self-configuring BORG is
certainly a logical and feasible direction. Memory over-
heads of BORG are bound within 0.25% of OPT, but
CPU overheads are higher. Fortunately, most processing
can be done in the background and there is ample room
for improvement.

This paper makes the following contributions:(i) we
study the characteristics of I/O workloads and show how
the findings motivate BORG (§ 2) , (ii) we motivate and
present the detailed design and the first implementation
of a disk data re-organizing system that adapts itself to
changes in the I/O workload (§ 3 and§ 4), (iii) we present
the challenges faced in building such a system and our
solutions to it (§ 5), and finally,(iv) we evaluate the sys-
tem to quantify its merits and weaknesses (§ 6).

2 Characteristics of I/O Workloads

In this section, we investigate the characteristics of mod-
ern I/O workloads, specifically elaborating on those that
directly motivate BORG. We collected I/O traces, down-
stream of an active page cache, over a one-week pe-
riod from four different machines. These machines
have different I/O workloads, including anoffice-class
and developer-classdesktop workloads, a small-scale
version controlSVN (Subversion) serverof our research
group, and our department’sproduction web-server. The
traces are summarized in Table 1. We define theon-disk

working-set2 of an I/O workload as the set of all unique
blocks accessed in a given interval.

2.1 Non-uniform Access Frequency Distribution

Researchers have pointed out that file system data have
non-uniform access frequency distribution [1, 36, 27].
This was confirmed in the traces that we collected where
less than 1.5-22.3% of the file systems were accessed
over the duration of an entire week. Figure 1 (top row)
shows block access frequency plots for the workloads.
Some uniform trends to be observed are that while the
really high frequency accesses tend to be writes, there
are a substantial number of reads that occur repeatedly
(some as many as 100 times). We also observed a skew-
ness in data access behavior. As depicted in Table 1, the
top 20% most frequently accessed blocks contributed to
a substantially large (∼45-66%) percentage of the total
accesses. These numbers are within the ranges reported
by Gómez and Santonja (Figure 2(a) in [6]) for the Cello
traces they examined.

Based on the above observations, it is reasonable to ex-
pect that co-locating frequently accessed data in a small
area of the disk would help reduce seek times, as com-
pared to when the same data is spread throughout the en-
tire disk area. Akyurek et. al. [1] have demonstrated the
performance benefits of such an optimization via a sim-
ulation study. This observation also motivates the choice
of reorganizing copies of “popular blocks” in BORG.

2henceforth also referred to simply as “working-set”.



2.2 Temporal Locality

Temporal localityin I/O workloads is observed when the
on-disk working-sets remain mostly static over short du-
rations. Here, we refer to a locality of hours, days, or
weeks, rather than seconds or minutes (typical of main
memory accesses). For instance, a developer may work
on a few projects over a period of a few weeks or months,
typically resulting in her daily or weekly working sets
being substantially smaller than her entire disk size. In
servers, popularity of client requests result in temporal
locality. A web server’s top-level links tend to be ac-
cessed more frequently than content that is embedded
much deeper in the web-site; an important new revision
of a specific repository on an SVN server is likely to be
accessed repeatedly over the initial weeks.

Figure 1 (bottom row) depicts the changes in the per-
day working-sets of the I/O workload. The two end-user
I/O workloads and the web server workload exhibit large
overlaps in the data accessed across successive days of
the week-long trace with the first day of the trace. There
is substantial overlap even among the top 20% most ac-
cessed data across successive days. Interestingly, these
workloads do not necessarily exhibit a gradual decay in
working-set overlap with day 1 as one might expect, in-
dicating that popularity is consistent across multi-day pe-
riods. The SVN server exhibits anomalous behavior be-
cause periods of highcommitactivity degrade temporal
locality (new data gets created), while periods of high
updateactivity improve temporal locality.

These observations indicate that optimizing layout
based on past I/O activity can improve future I/O per-
formance for some workloads. This motivates planning
block reorganization based on past activity in BORG.

2.3 Partial Determinism

Partial determinismin I/O workload occurs when certain
non-sequential accesses in the block access sequence are
found to repeat. Anon-sequential accessis defined by a
sequence of two I/O operations that are addressed non-
contiguous block addresses. It manifests in both end-
user systems and servers. For instance, I/O during appli-
cation start-up is largely deterministic, both in terms of
the set of I/O requests and the sequence in which they
are requested. Reading files related to a repeatable task
such as setting up a project in an integrated development
environment, compilation, linking, word-processing, etc.
result in a deterministic I/O pattern. In a web-server, ac-
cessing a web-page involves accessing associated sub-
pages, images, scripts, etc., in deterministic order.

In Table 1, we present thepartial determinismfor each
workload calculated as the percentage of non-sequential
accesses that repeat at least once during the week. The
partial determinism percentages are high for the two end-
user and the SVN server workloads. Further, for each of

these workloads, there were a non-trivial amount of non-
sequential accesses that repeated as many as 100 times.
These findings suggest that there is ample scope for op-
timizing the repeated non-sequential access patterns.

3 Overview and Architecture
BORG is motivated by the simple question:What stor-
age system optimizations based on workload character-
istics can allow applications to utilize the disk drive
more efficiently than current systems do?This sec-
tion presents the rationale behind the design decisions
in BORG and its system architecture.

3.1 BORG Design Decisions

A Disk-based Cache.
The operating system uses main memory to cache fre-
quently and recently accessed file system data to reduce
the number of disk accesses incurred. In any given du-
ration of time, the effectiveness of the cache is largely
dependent on the on-disk working-set of the I/O work-
load, and can degrade when this working-set increases
beyond the size of the page cache. Storage optimiza-
tions such as prefetching [31, 15, 22] and I/O schedul-
ing [30, 25, 24, 12] help improve disk I/O performance
in such situations.

Using a disk-based cache as an extension of the main
memory cache offers three complementary advantages
in comparison to main memory caching alone, prefetch-
ing, and I/O scheduling. First, it is more effective as a
cache (than main memory) because it offers a less expen-
sive (and thus larger) as well as reliable caching solution,
thus allowing data to be cache-resident for long periods
of time. Second, the size of the disk-based cache can
easily be configured by the system administrator with-
out changing any hardware. And finally, dynamically
optimizing data layout based on access patterns within
a disk-based cache provides the unique ability to make
originally non-sequential data accesses more sequential.

A Block Layer Solution.
A self-optimizing storage solution can be built at any
layer in the storage stack (shown in Figure 2). Block
level attributes of disk I/O operations are not easily ob-
tained at the VFS or the page cache layer. While file
system layer solutions can benefit from semantic knowl-
edge of blocks, they incur a significant disadvantage in
being tied to a specific file system (and perhaps even ver-
sion). Device driver encapsulations (interface at P4) are
incapable of capturing upper layer attributes, such as pro-
cess ID and request time-stamp due to I/O scheduler re-
ordering and loss of process context.

We contend that the block layer (interface at P3) is
ideal for introducing block reorganization for serveral
reasons. First, key temporal, block- and process- level



attributes about disk accesses are available. Second, op-
erating at the block layer makes the solution independent
of the file system layer above, allowing it the flexibility
to support multiple heterogeneous file systems simulta-
neously. Finally, new abstractions due to virtualization
trends (e.g., virtual block device abstraction) as well as
network-attached storage environments (SAN and NAS)
can be supported in a straightforward way. In the case
of SAN, BORG can reside on the client where all con-
text for I/O operations are readily available with the un-
derlying assumption that the SAN device’s logical block
address space is optimized for sequential access. In the
case of NAS, the BORG layer can reside within the NAS
device where I/O context is readily available. Modifying
the NAS interface to include process associations within
file I/O requests can complete the profile information.

Using an Independent OPT partition.
The file system optimizes for sequential accesses to en-
tire files, a common form of file access. However, cer-
tain workloads, including application start-up, content
indexing and, web-page requests, exhibit a more non-
sequential, but deterministic, access behavior. It is thus
possible that the same set of data can be accessed sequen-
tially by some applications and non-sequentially by oth-
ers. Further, some deterministic non-sequential accesses
may only be temporary phenomenon.

Based on this observation, Akyurek and Salem [1]
have argued in favor ofcopyingrather thanshuffling[36,
27] of data. Copying retains original sequential layouts
so a choice of location based on the observed access pat-
tern may be possible. Reverting back to the original lay-
out is straightforward. Borrowing the same principle,
rather than permanently disturbing the sequential layout
of files, BORG operates on copies of blocks placed tem-
porarily in an independent OPT partition, optimizing for
the current common case of access for each data block.

3.2 BORG Architecture

Applications

VFS

Page Cache

File System: EXT3, JFS,
· · ·

BORG

I/O Scheduler

Device Driver

P1

P2

P3

P3

P4

Analyzer Planner

I/O Profiler OPT Reconfigurator

I/O Indirector

: New components : Existing Components : Control Flow

Figure 2:BORG System Architecture.

Abstractly, BORG follows a four-stage process:
1. profiling application block I/O accesses,

2. analyzingI/O accesses to derive access patterns,

3. planninga modification to the data layout, and

4. executingthe plan to reconfigure the data layout.
In addition, an I/O indirection mechanism runs contin-
uously re-directing requests to the partition that it opti-
mizes as required. Figure 2 presents the architecture of
BORG in relation to the storage stack within the oper-
ating system. The modification to the existing storage
stack is in the form of a new layer, which we termBORG
layer, that implements three major components: theI/O
profiler, theOPT reconfiguratorand theI/O Indirector.
A secondary throttle-friendly user-space component im-
plements theanalyzerand theplannerstages of BORG
and performs computation and memory-intensive tasks.
While profiling and indirection are both continuous pro-
cesses, the other stages run periodically and in succes-
sion culminating in a reconfiguration operation.

For the I/O profiler, we use a low-overhead kernel tool
calledblktrace [2]. The analyzer reads the I/O trace
collected by the profiler periodically (based on a config-
urable reconfiguration interval) and derives data access
patterns. Subsequently, the planner uses these data ac-
cess patterns and generates a new reconfiguration plan
for the OPT partition, which it communicates to the OPT
reconfigurator component. The user-space analyzer and
planner components run as a low-priority process, utiliz-
ing only otherwise free system resources. Under heavy
system load, the only impact to BORG is that generating
the new reconfiguration plan would be delayed.

The OPT reconfigurator is responsible for the periodic
reconfiguration of the OPT partition, per thelayout plan
specified by the planner. The reconfigurator issues low-
priority disk I/Os to accomplish its task, minimizing the
interference to foreground disk accesses. Finally, the I/O
indirector continuously directs I/O requests either to the
FS partition or the OPT partition, based on the specifics
of the request and the contents of the OPT.

3.3 OPT Space Management

The OPtimized Target partition (OPT) as managed by
BORG is shown in Figure 3. To reduce head move-
ment, we suggest that the OPT partition be created ad-
joining the swap partition if virtual memory is used.
BORG partitions the OPT into three fragments:BORG
Meta-data, Read-cache, and Write-buffer. The Read-
cache and Write-buffer are further sub-divided into fixed-
length segments which store both data and (valid/invalid)
map entries for the segment. The in-memory indirec-
tion map (elaborated in§ 4.5) maintained by BORG is
a union of all the segment map entries in the OPT. The
OPT map entries are synchronously updated each time
the in-memory map information changes. Additionally,
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Figure 3:Format of the OPT partition. Each entry in
the Write-Buffer and Read-Cache map tables is a 3-tuple
of the form (FS LBA, OPT LBA, valid bit).

the segment map in the write-buffer contains a “valid en-
tries counter” to track space usage in the write buffer.

Magic number BORG OPTpartition identifier.
BORG REQUIRE bit OPT contains dirty data.
OPT size OPT partition size.
Read-cache info Offset and size of the Read-cache.
Write-buffer info Offset and size of the Write-buffer.
Segment size Fixed size of segments in the OPT.

Table 2:Borg meta-data.
Table 2 depicts the OPT meta-data fragment. It stores

key persistent information that aid in the operation of
BORG. TheBORG REQUIRE bit is setwhen the OPT con-
tains data that requires to be copied back to the FS. If set,
the operating system initiates BORG at boot time to en-
sure consistent data accesses. The remaining meta-data
information is used to correctly populate the in-memory
indirection map structure during BORG initialization.

4 Detailed Design
In this section, we present the design details of BORG
by elaborating on its individual components.

4.1 I/O Profiler

The I/O profiler is a data collection component that
is responsible for comprehensively capturing all disk
I/O activity. The I/O profiler generates anI/O trace
that includes the temporal(timestamp of the request),
process(process ID and executable) and the block-
level(address range and read/write mode) attributes. We
use theQ events reported by blktrace [2], which capture
the I/O requests queued at the block layer. These include
all requests as issued by the file system(s), including any
journaling and/or page destaging mechanisms. We defer
further details to the blktrace work [2].

4.2 Analyzer

Theanalyzeris responsible for summarizing the disk I/O
workload. It first splits the I/O trace obtained from the
profiler into multiple I/O traces, one per process. Each
process trace is used to build a directedprocess access

graphGi(Vi, Ei), where vertices represent LBA ranges
and edges a temporal dependency (correlation) between
two LBA ranges. The weight on an edge between ver-
tices (u, v) represents the frequency of accesses (reads
or writes) fromu to v. Thedirectedandweightedgraph
representation is powerful enough to identify repeated
sequences of multiple non-sequential requests.
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Figure 4: Building the master access graph.Vertices
are defined by (start LBA, size of request). Since vertices
r1 and s1 have overlapping LBAs,r1 is split into two
vertices in the master access graph, one with size 1 and
the other with the overlappings1 blocks, starting at LBA
1 with size 2.

Since multiple processes may access the same LBA,
a singlemaster access graphG(V, E), that captures all
available correlations into a single input for the reconfig-
uration planner is created (illustrated in Figure 4). The
complexity of the merge process increases if two ver-
tices (either within the same graph or across graphs) have
overlapping ranges. This is resolved by creating multi-
ple vertices so that each LBA is represented in at most
one range vertex. While we omit the detailed algorithm
for vertex splitting and graph merging due to space con-
straints, we point out that we reduce the complexity of
the merge algorithm by keeping the vertices sorted by
their initial LBA. The total time complexity for the ana-
lyzer stage is given byØ(n ∗ l), wheren is the number
of vertices andl is the size of the largest vertex in the
graph. Once the merge operation is completed, the mas-
ter access graph,G, is obtained.

4.3 Planner
The planner takes the master access graph,G, as input
and determines a reconfiguration plan for the OPT par-
tition. It uses a greedy heuristic that starts by choos-
ing for placement the most connected vertex,u, i.e., with
the maximum sum of incoming and outgoing edges (Fig-
ure 5). Next it chooses the vertexv most connected (in
one direction only, either incoming or outgoing) tou. If
v lies on the outgoing edge ofu, it is placed afteru and
if it lies on the incoming edge it is placed before. The
next vertex to be placed is the one most connected to the



groupu ∪ v. This process is repeated until either all the
vertices inG are placed, or the OPT is fully occupied, or
the edges connecting to the unplaced vertices in the mas-
ter graph have weight below a certain threshold. If the
graph contains disconnected components, each of these
are placed as separate groups. The time complexity for
the planner isO(n ∗ lg(m)) wheren is the number of
vertices andm is the number of edges; finding the most
connected vertex takesn ∗ lg(m) time and finding the
next vertex takesO(m) time .
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Figure 5: Placing the master access graph. C is
the most connected vertex and is chosen for placement
first. Next, vertexB is placedafter vertexC since it
is connected by an outgoing edge and has the highest
weight of all the edges connected toC. Next, vertex
G is placedbefore vertex groupC ∪ B. The final se-
quence of vertices from the lowest LBA to the highest is:
L = [F, H, J, A, G, C, B, E, D].

4.4 OPT Reconfigurator

TheOPT reconfiguratorimplements the plan created by
the planner component by performing the actual data
movement to realize the new configuration of the OPT.
This task is complicated primarily because of consis-
tency and overhead concerns. Overhead is partially ad-
dressed by issuing low-priority I/O requests3 for data lay-
out reconfiguration. BORG ensures block data con-
sistency between the FS and OPT copies of data blocks
by maintaining a persistent indirection map, termed the
borg map, that continuously tracks the most up-to-date
location of a data block. This map is updated each time
a block location changes.

The reconfigurator copies blocks in three stages;out-
going, where it copies all the dirty blocks that are no
longer in the new plan back to the original file system
(FS) location,relocatewhere, it copies blocks that have
to be relocated within the OPT, andincomingwhere it
copies all the new blocks that have to be copied from
the FS to the OPT. A single data movement operation
and the corresponding update onborg map entry can be
considered ‘atomic’ since any applicationwrite request
to thesourceLBA during data movement is put on hold
until after the movement is complete and theborg map

3Priority scheduler is a prerequisite. BORG prototype uses CFQ.

entry is updated. This ensures that an up-to-date version
of data is always maintained by the file system.

4.5 I/O Indirector
TheI/O indirectoroperates continuously, redirecting file
system I/O requests as required. An I/O request may
be composed of arbitrary number of pages. Each page
request is handled separately based on(i) number of
blocks that can be satisfied from the OPT as per the
borg map entry, (ii) type of operation (read or write)
and(iii) presence of a free page in the OPT.

For each I/O request larger than one page, the indi-
rector splits it into multiple per-page requests. If map-
ping exists for all the pages of the I/O request in the
borg map, the request is indirected to the OPT. If no
mapping exists, and the request is a read request, it is is-
sued unchanged to the file system. If only some pages of
a read I/O request are mapped and the mapped entries are
clean, the entire I/O is indirected to the file system; this
optimization reduces the seek overhead incurred to serve
the request partially from the OPT and the rest from the
FS. For a write request, when no mapping exists for any
of the pages, the blocks are still written to awrite-buffer
portion of the OPT reserved for assimilating write re-
quests (if space permits) and a new entry is created in the
borg map with the dirty bit set. For a partially-mapped
write request, the mapped blocks are indirected to their
OPT locations; the unmapped pages are also absorbed
in the write-buffer, space permitting, otherwise these are
issued to the FS.

4.6 Kernel Data Structures
The persistent data structureborg map is implemented
as a radix tree such that given an FS LBA, the OPT LBA
can be retrieved efficiently and vice-versa. It also main-
tains thedirty information for the OPT LBAs. For every
page of 4KB, BORG stores 4 bytes each for the forward
and the reverse mapping and one dirty bit. If all the pages
in the OPT of sizeS GB are occupied, the worst case
memory requirement is2 ∗ S MB (S MB for forward
and reverse mapping each), andS

25 MB for the dirty in-
formation. Thus, in the worst case,borg map requires
memory of 0.25% of the size of the OPT partition, a typ-
ically acceptable requirement for kernel-space memory.

5 Implementation Issues
In this section, we discuss the particularly challenging
aspects of the BORG implementation that help address
data consistency and overhead.

5.1 Persistent Indirection Map
Since BORG replicates popular data in the OPT space,
the system must ensure that reads are always up-to-
date versions of data, including after a clean shutdown
or a system crash. BORG implements a persistent
borg_map, which is distributed within read-cache and



write-buffer segments of the OPT. Map entries on-disk
are updated (along with their in-memory version) each
time the OPT partition is reconfigured or when a new
map entry is added to accommodate a new write ab-
sorbed into the OPT. Upon writes to an existing OPT
mapped block, its indirection entry in the in-memory
copy of the reconfiguration map is marked as dirty, once
the I/O is completed. To minimize overhead for OPT
writes, we chose not to maintain dirty information in the
on-disk copy. Upon reboot after an unclean shut down,
all entries in the persistent map are marked as dirty and
future IOs to these blocks are directed to the OPT.

5.2 Indirection Complexity

BORG maintains metadata at the granularity of apage
(rather thanblock) to reduce metadata memory require-
ment (by 8X for Linux file systems). Consequently, the
indirector must carefully handle I/O requests whose sizes
are not multiples of the page-size and/or which are not
page-aligned to the beginning of the target partition. Fig-
ure 6 illustrates this problem. We address this issue via
I/O request splitting and page-wise indirection.

Disk pages: 0 8 16 . . . OPT pages: . . . 24 32 40 . . .

Request

mapped to

mapped to

Figure 6: Addressing request alignment during indi-
rection. Two pages of the FS are mapped to the OPT.
The first FS page starting at block 0 is mapped to the
fifth OPT page starting at block 40. Similarly, the third
FS page is mapped to the fourth OPT page. The second
FS page is not mapped to the OPT. The application I/O
request is the shaded region.

For splitting I/Os, BORG creates new requests us-
ing the Linux kernelblock io structure calledbio, one
per page. All attributes of thebio structure are then
populated based on theindirection map, including the
sector, offset, and length within the page that will be
filled/emptied depending of the operation. After the
splitting and issuing each “sub-I/O”, the indirector waits
for all sub-I/Os to complete before notifying the applica-
tion. A special case arises while handling write requests
that are not already mapped to OPT and are not page-
aligned. To avoid partially inconsistent OPT pages, we
let such requests continue on to the file system partition.

5.3 Optimizing Reconfiguration

Consider a setL of n LBAs, L1, · · · , Ln, sequentially
located in the OPT space.L forms achain if ∀Li ∈ L,
whereLi 6= Ln, Li has to be relocated to locationLi +1
andLn an outgoing block. IfLn, has to be relocated to
L1 within the OPT,L forms acycle. Information about
chains and cycles, that occur exclusively for the relocated

blocks, can be used to further optimize data movement.
If a cycle exists, it is broken by copying the last block
Ln back to the FS (if dirty) and then deleting the plan
entry for that block; an additional plan entry is then cre-
ated to mark this asincoming block to Lo. Next, all
remaining blocks belonging to the same chain/cycle are
copied to their new locations in the OPT. To do so, the
reconfigurator issues all reads to the source locations in
parallel; once all reads have been completed, it issues
all the writes in parallel, in each case allowing the I/O
scheduler to optimize the request schedule.

5.4 Module Unload

BORG is dynamically included in the I/O stack by sub-
stituting themake request function of the device tar-
geted for performance optimization. While module in-
sertion is straightforward, module removal/unload must
ensure data consistency. Upon removal, BORG flushes
dirty OPT blocks to their original locations in the file
system. In addition, BORG must address race conditions
caused when an application issues an I/O request to a
page that is being flushed to disk at that exact instant.
BORG stalls (viasleep) the foreground I/O operation
until the specific page(s) being flushed are written to the
disk. Since we expect module unload to be a rare event
and the probability that a request for a page at the exact
time it is being flushed to be low, the average response
time for application I/O remains virtually un-impacted.

6 Evaluation
We evaluate BORG under various workloads to answer
the following questions.
(i) How well does BORG perform?We use disk band-
width observed during active I/O operation (i.e., exclud-
ing idle periods) as our primary performance metric to
evaluate the performance benefits of BORG with dif-
ferent kinds of workloads. We compare performance
against avanilla system when all the blocks are stat-
ically located in the FS space.
(ii) Why is BORG effective? We would like to know
if BORG gains mainly because of the sequentiality or
the proximity of data (or both) in the OPT. We use two
metrics,non-sequential accesses percentage4 andaver-
age seek distancefor a workload for this purpose.
(iii) When is BORG not effective?BORG can degrade
the system performance for certain workloads. We evalu-
ate BORG for varying workloads and when it would start
performing worse than the vanilla system.
(iv) How much CPU resource overhead does BORG in-
cur? While the upper bound on memory overhead was
elicited in§ 4.6, the CPU resources consumed by BORG

4Measured as{numberOfSeeks

totalBlocksRead
}. Non-sequential accesses are an

order of magnitude (or more) less efficient than sequential;even a small
reduction in this metric can lead to substantial performance benefit.



Host Make Model RAM Capacity (GB)
(MB) Total FS OPT

O1 WD 2500AAKS 1024 250 46 1
O2 WD 360GD 1024 39 24 2
O3 Maxtor 6L020L1 1024 20 15 2
O4 WD 2500AAKS 1024 250 180 8
O5 Maxtor 6L020J1 1536 20 8 1

Table 3:Experimental test-bed details.
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Figure 7: Disk throughput in various phases of the
developer trace replay. (*) Ranges that correspond to
reconfiguration phases.

should also be within acceptable limits. We use the exe-
cution times for various stages of BORG as an approxi-
mate measure of CPU resource utilization.
Experimental Setup. All experiments were performed
on machines running the Linux 2.6.22 kernels. We
used host machines,O1 throughO5, with differing hard-
ware configurations and disk drives (Table 3). We used
reiserfs for O1 andO3, andext3 for the rest. No
additional hardware was required to implement BORG.

We conducted four different set of experiments. The
first set use week-long traces of a developer’s system
and an SVN server. The second experiment is an ac-
tual deployment of a web server that mirrors our CS de-
partment’s web server. The third experiment evaluates
BORG performance in a virtual machine environment.
The fourth experiment evaluates the performance im-
provement due to BORG for application start-up events.

6.1 Trace Replay

To evaluate BORG under realistic workloads, we con-
ducted trace replay experiments usingSVN serverand
developerworkloads described in Table 1. For the traces
and the replay, we usedblktrace and btreplay respec-
tively [2]. Additionally for the developer workload, we
evaluate the impact of the write buffer size in BORG.
We used an acceleration factor of 168x, after verifying
that the resultant block access sequence was not affected
due to the speed-up. In each experiment, we performed
4 reconfigurations, equally spaced in time; the trace-
playback acceleration factor was reverted to 1x during
each reconfiguration operation to accurately estimate the
impact of reconfiguration overhead on foreground I/O.
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Figure 8: Disk throughput in various phases of the
SVN server trace replay. (*) Ranges correspond to re-
configuration phases. (+) The vanilla bar here is zero
because there are no I/Os for that range.

6.1.1 SVN Server

For the SVN server trace replay, we used the hostO2(Ta-
ble 3). The write buffer size was set to 20% of the OPT
size. Figure 8 shows the disk throughput of the replay
in different phases of the experiment. In all the recon-
figuration phases the throughput, as expected, is notably
lower. However, it is clear that in almost all the non-
reconfiguration phases, BORG behaves better than the
vanilla configuration. In the best case (range 1.38-2.79),
BORG improves the disk throughput by approximately
50%. This is a surprising result, since as per Figure 1(c),
the working-set for this workload undergoes rapid shifts.
One explanation is that a write-intensive workload and
the OPT write-buffer is successful in sequentializing a
rapidly changing, possibly non-sequential, write work-
load. Analysis of the block level traces revealed that with
borg, the non-sequential access percentage reduced from
1.70% to 1.15%, and the average seek distance reduced
from 704 to 201 cylinders.

6.1.2 Developer

For the developer trace replay, we used the hostO1 (Ta-
ble 3) with the OPT write buffer set to 40% of the OPT
size. Figure 7 shows the disk throughput for this ex-
periment in all the BORG phases. For the reconfigura-
tion phases, once again, the throughput of the BORG
configuration is substantially lower. In contrast to the
SVN server workload, we see a clear increase of per-
formance (13% to 30%) for all the non-reconfiguration
periods of time. Analysis of the block level traces re-
vealed that with BORG the non-sequential access per-
centage reduced from 3.93% to 3.30%, and the average
seek distance reduced from 1203 to 782 cylinders.

6.2 Web Server

To evaluate BORG in a production server environment,
we made a copy of the our Computer Science depart-
ment web server on theO4 machine (see Table 3), and
replayed all the web requests for a one week period. Dur-
ing this week a total of 1137234 requests to 256017 dis-



tinct files were serviced. We set BORG to reconfigure
four times during this period, using an OPT of 8GB (<

5% of the 170GB web server file system). To measure
the influence of the I/O history, we conducted two sets
of experiments. In the first experiment, we used all the
traces gathered from the beginning of the experiment as
input to the reconfigurator (cumulative). For the second,
we only used the portion of the trace corresponding to
period since the last reconfiguration (partial).
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Figure 9:Disk throughput for the week long web log
replay. Dotted vertical lines represent the start and end-
ing of the I/O activity of a reconfiguration, and the per-
centages are the hit ratio to the OPT in that interval.

Figure 9 shows the improvements in disk throughput
across various phases of the experiment along the 1 week
timeline when compared to a vanilla system. For both
the cumulativeand thepartial experiments, BORG im-
proves disk throughput in most cases, but not all, particu-
larly performing worse approximately two-thirds into the
week-long trace. This is partially explained by the lower
OPT hit-ratios approximately two-thirds into the exper-
iment, suggesting a more sharply changing working-
set. When considering the overall average, BORG out-
performs the vanilla system, yielding improved average
throughput of 12% and 17%, for the cumulative and par-
tial trace experiments respectively (not shown in figure).
It is interesting to note that short term training yielded
better results in this case, perhaps due to greater influ-
ence of short term locality.

Next we examine operational overhead of BORG. Fig-
ure 10 shows the amount of time taken in each phase
of the reconfiguration. With cumulative traces, the time
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Figure 10:BORG overhead. ColumnC and P represent
the cumulative and partial traces experiments respectively.

required for the analyzer and planner phases increases
linearly. While the planner and analyzer stages can run
as low-priority tasks in the background, we must point
out that the current implementation of BORG analyzer
and planner stages are highly unoptimized and there is
substantial room for improvement. Specifically, both the
planner and analyzer fail to take advantage of their past
computations altogether, which is the primary reason for
the linear increase in their processing times. We believe
that these overheads can be reduced in the future to ex-
hibit sub-linear (and possibly constant) behavior. With
partial traces, the time increases until the second recon-
figuration, but then decreases and stays almost constant
for the following ones.
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Figure 11:Differences in the reconfiguration plans.

To explain this phenomena we examine the reconfig-
uration plan divided by the type of operation (refer to
§ 4.3), presented in Figure 11. We note that the size of
the plan constantly increases for the cumulative case and
most of the movements correspond to page relocates, that
is changes within the OPT. The story is very different
for partial traces, where we see unused pages leaving the
OPT, maintaining a smaller working set in the OPT and
thereby reducing the amount of work done by subsequent
analyzer and planner stages.

6.3 Virtual Machines

BORG has the potential to significantly improve the per-
formance of virtualized environments, by capturing mul-
tiple virtual machine (VM) localities spread across a
physical volume. We evaluated the impact on the per-



VM boot time and the overall performance of virtual
machines by deploying BORG in a Xen [3] virtual ma-
chine monitor. We created four VMs, each with 64MB
memory and 4GB physical partition on the hostO5(refer
to Table 3). For evaluating boot-time improvement, we
trained BORG with the boot-time events of all the vir-
tual machines. BORG showed an almost 3X average im-
provement in VM boot-times -167 secondswith Vanilla
and65 secondswith BORG.
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Figure 12: BORG inside a VMM. (*) Ranges corre-
spond to reconfiguration phases.

To measure normal execution performance improve-
ment for the VMs, we ran the Postmark benchmark
which emulates an e-mail server and creates and updates
small files. We set the number of files to be 2000 in
500 directories and performed 200,000 transactions. We
reconfigured BORG after every 20% of the benchmark
was executed with the training set including I/O opera-
tions from the start of the execution of the benchmark.
The results for the I/O performance are shown in Fig-
ure 12. As before, the reconfiguration phases see a re-
duced disk throughput with BORG. For the normal op-
eration, as the training set increases, the throughput with
BORG starts improving. The overall performance im-
provement is modest with the average throughput over
the entire execution increasing from 3.0 MB/s to 3.4
MB/s (or 13.3%). However, this improvement is not
consistent; performance degrades substantially even dur-
ing normal operation in the early stages of the bench-
mark. Theloss of process contextinside the VMM is a
key problem that tends to convert sequentially laid out
files into non-sequential upon reconfiguration. We be-
lieve that making BORG aware of process context inside
the VMM [13] can substantially improve the OPT layout.

6.4 Application Start-up
We evaluated the impact of BORG on I/O-bound start-
up phase for common desktop applications using host
O3. We first trained the system for a duration of approx-
imately four hours, during which we invoked a subset
of the applications listed in Table 4 (but specifically ex-
cluding gimp andooimpress) multiple times for per-
forming common office tasks. We invalidated the page

App Start-up time Rand. I/O % Avg seek (#cyl)
V B V B V B

firefox 3.71 2.32 2.7 1.2 132 37
oowriter 5.30 2.74 3.8 0.2 193 20
xemacs 7.26 2.72 2.1 0.3 87 9

acroread 6.20 2.65 4.6 0.1 39 9
eclipse 4.12 1.52 2.5 0.3 198 29
gimp 3.62 3.66 2.5 2.1 102 63

ooimpress 5.18 1.97 2.7 0.3 61 39

Table 4: Application start-up time improvement. V:
vanilla, B: BORG.

cache periodically to artificially dilate time and simulate
system reboots. Table 4 shows the difference in applica-
tion start-up times, the percentage of sequential accesses
and average seek overhead. For the applications which
were used in training, it can be observed that there is a
noticeable improvement in the IO time with BORG - at
least 43% foroowriter and up to 67% foreclipse.
Further, it is interesting to observe that although the per-
centage of sequential I/Os decreases foroowriter and
acroread with BORG, there is an overall improvement
in I/O performance, possibly due to a reduction in the ro-
tational overhead . There is barely any difference in the
performance for untrained applicationgimp. However,
althoughooimpress was not used in the training, its
start-up user-time shows an improvement of 62% in the
average IO time; this can possibly be attributed to large
shared libraries in common withoowriter and which
was used in the training.

6.5 Sensitivity Analysis

To gain maximum performance improvement with
BORG its configurable parameters – the reconfiguration
interval, the OPT size, and the OPT write buffer fraction
— must be carefully configured for a given workload.
We now perform a sensitivity analysis using two of the
workloads to better understand the effects of these pa-
rameters.

We replayed the developer and the SVN workload
traces on hostO1 varying each of these parameters over
a range of values. In all the experiments, the trace replay
begins at the same starting point, that is after abase re-
configuration, which uses the first six hours of the trace
as the training period.

6.5.1 Reconfiguration Interval

Figure 13 shows the percentage improvement over the
vanilla system. The reconfiguration interval is varied
from 8 hours (18 reconfigurations) to 3 days (1 recon-
figuration). To boostrap the sensitivity analsyis, the OPT
size is fixed to 1GB, with 50% reserved for write buffer-
ing in this experiment. The throughput values shown are
for the periods inter-reconfiguration intervals, to more
accurately estimate improvements. For the developer
workload, as the reconfiguration interval increases the
throughput increases, the training set becomes larger, and
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varying OPT write buffer.

BORG can more effectively capture the working-set. For
the SVN workload, the performance decreases for higher
intervals. This is because the SVN working-set changes
quite frequently (elaboration in§ 2 and Figure 1(c)).

6.5.2 OPT size

We use the best-case reconfiguration intervals of 3 days
for the developer and a day for the SVN workload from
the previous experiment. We vary the OPT size from
256MB to 8GB, of which the write buffer is always cho-
sen as 50% of the OPT size. Figure 14 shows that as
the OPT size increases, BORG’s performance with the
developer workload increases since the developer work-
load has a larger working set. When most of the blocks
in the working set can be accomodated in the OPT, the
performance improvement stabilizes. Since the working
set size for the SVN workload is relatively smaller, the
performance improvement is almost same for the OPT
sizes>256MB.

6.5.3 Write Buffer Variation

From our previous results, we pick an interval of 3 days
and 1 day and OPT size of 2BG and 4GB for the de-
veloper and the SVN workloads respectively. We vary
the write buffer from 0-100%. Figure 15 shows that for
the developer workload, not having a write buffer results
in the lowest throughput. There is a steady increase in
performance, peaking at 50% write buffer. Thereafter,
it starts falling since read performance begins to degrade
due to lesser available read cache. For the write-intensive
SVN workload, the performance increases with increase
in the write buffer size, since all the writes can be colo-
cated in the OPT partition.
Configuring BORG parameters The above experi-
ments indicate that configuring parameters incorrectly
can lead to sub-optimal performance improvements with
BORG. Fortunately, iterative algorithms can be easily
employed to identify better parameter combinations in a
straightforward way. Exploring such iterative algorithms
more formally is one aspect of our future work.

7 Related Work
We examine related work by organizing the literature
into block and file based approaches.

7.1 Block level approaches

Early work [38] on optimized data layout argued for
placing the frequently accessed data in the center of
the disk. Vongsathornet al. [36] and Ruemmler and
Wilkes [27] both proposeCylinder Shuffling. Ruemm-
ler and Wilkes specifically demonstrated that perform-
ing relatively infrequent shuffling led to greater improve-
ment in I/O performance. In Akyurek and Salem’s
work [1], the authors demonstrated the advantages of
copyingovershufflingand the importance of reorganiza-
tion at the block (rather than cylinder) level. These early
data clusteringapproaches emphasized on process- and
access-pattern- agnosticblock countsto perform the data
reorganization and reported simulation-based results.

Researchers have also investigate self-optimizing
RAID systems. Wilkeset al. proposed HP Au-
toRAID [37], a controller-based solution, that transpar-
ently adapts to workload changes by using a two-level
storage hierarchy; the upper level provides data redun-
dancy for popular data while the lower level provides
RAID 5 parity protection for inactive data. Work on ea-
ger writing [39] and distorted mirrors [33] address mir-
rored/striped RAID configurations primarily for database
OLTP workload (which are characterized by little local-
ity or sequentiality) that choose to write to a free sec-
tor closest to the head position on one more disk drives.
While we are yet to explore BORG’s use in multi-disk
systems, the optimizations used in BORG are differ-
ent and mostly complementary to the above proposals,
whereby BORG attempts to capture longer-term on-disk
working-sets within a dedicated volume.

Hu et al.’s work on Disk Caching Disk [9] uses an ad-
ditional logging disk (or disk partition) to perform writes
sequentially and subsequently, destage to their original
locations. Write buffering in BORG is slightly differ-
ent in that writes to data already in the OPT partition are
written in place. The DCD work does not optimize for
data read operations; BORG optimizes reads as well so
head movement is substantially restricted.

Among recent work on block reorganization, Salmon
et al. [29] describe a framework for combining multi-
ple heuristics for data reorganization. BORG could eas-
ily fit within this larger framework. C-Miner [16] uses



advanced data mining techniques to mine correlations
between block I/O requests. These techniques can be
utilized in BORG to infer complex disk access patterns.
The Intel Application Launch Accelerator [11] reorga-
nizes blocks used during application start-up to be more
sequential, but does not provide a generic solution to im-
prove overall disk I/O performance of the system.

Among block level approaches, our work is closest to
ALIS [8], wherein frequently accessed blocks as well as
block sequences are placed sequentially on a dedicated,
reorganized areaon the disk. There are key differences
in design and implementation, though. First, BORG in-
curs reduced space, maintenance, and metadata overhead
since it maintains at most one copy of each data block.
The multiple replicas in ALIS can become stale quickly
in write-intensive workloads. Further, unlike BORG,
ALIS does not optimize write traffic. Finally, the evalu-
ation of ALIS techniques is performed using a disk sim-
ulator with trace playback. On the other hand, we imple-
ment and evaluate an actual system, thereby having the
opportunity to address a greater detail of system imple-
mentation issues.

7.2 File level approaches

In one of the early file oriented approaches, Staelinet
al. [34] proposed monitoring file accesses and mov-
ing frequently accessed files (entirely) to the center of
the disk. Log-structured file systems (LFS [26]) offer
superior performance for workloads with large number
of small writes by batching disk writes to the end of a
disk-sequentiallog. BORG writes all data to the OPT
partition to achieve a similar effect, but also attempts to
co-locate a majority of read operations with the writes.
Matthewset al.[17] proposed an optimization to LFS by
incorporating data layout reorganization to improve read
performance. Their use ofblock access graphsis similar
to theprocess access graphsused in BORG. Their LFS-
specific solution moves blocks within the LFS partition
storing exactly one copy of each block at any time. Since
BORG stores two copies, it can optimize for sequential
and application-driven deterministic, non-sequential ac-
cesses simultaneously.

Researchers have also explored data- and application-
specific layout mechanisms. Ganger and Kaashoek [5]
advocate collocating inodes and file blocks for small
files. Conversely, PLACE [21], exposes the underly-
ing layout structure to applications, so they can perform
custom data placement. Sivathanuet al. [32] propose
semantically-smart disk systems (SDS) that infer file sys-
tem semantic associations for blocks, subsequently used
for aligning files with track boundaries. Windows
XP [19] uses the defragmenter for co-locating temporally
correlated file data for speeding up application start-up
events. BORG is a generic solution in comparison to the

above approaches, since creates a block reorganization
mechanism that can adapt to an arbitrary workload.

Among file level approaches, BORG is closest to the
FS2 [10]. FS2 proposes replication of frequently ac-
cessed blocks based on disk access patterns in file sys-
tem free space. This strategy, unfortunately, also restricts
the degree of seek and rotational-delay optimization due
to the distribution of free space. Since FS2 may cre-
ate multiple copies of a block simultaneously, staleness,
and consequently, space and I/O bandwidth wastage, be-
come important concerns (similar to those in ALIS);
BORG maintains at most one extra copy of each block
and its strength is in being a non-intrusive, storage-stack
friendly, and file system independent (portable) solution.

8 Conclusions and Future Work
We presented BORG, a self-optimizing layer in the stor-
age stack that automatically reorganizes disk data layout
to adapt to the workload’s disk access patterns. BORG
was designed to optimize both read and write traffic
dynamically by making reads and writes more sequen-
tial and restricting majority of head movement within
a small optimized disk partition. A Linux implemen-
tation of BORG was evaluated and shown to offer per-
formance gains in the average case for varied workloads
including office and developer class end-user systems, a
web server, an SVN server, and a virtual machine mon-
itor. Average disk throughput improvement with BORG
across these workloads range from 13.3% (for the VM
workload) to 50% (for the SVN server workload).

BORG performs occasionally worse than a vanilla sys-
tem, specifically when a read-mostly workload (e.g., a
web server) drastically shifts its working set. BORG
is able to easily address changing working-sets with a
(possibly non-sequential) write workload (e.g. an SVN
server), since it has the ability to absorb and sequential-
ize writes inside the OPT. A sensitivity analysis revealed
the importance of choosing the right configuration pa-
rameters for reconfiguration interval, OPT size, and the
write-buffer fraction. Fortunately, simple iterative algo-
rithms can be quite effective in identifying the right pa-
rameter combination; a formal investigation of such an
approach is an avenue for future work. The memory and
CPU overheads incurred by BORG are modest, and with
ample scope for further optimization. In summary, we
believe that BORG offers a novel and practical approach
to building self-optimizing storage systems that can of-
fer large I/O performance improvements in commodity
environments.
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