BORG: Block-reORGanization for Self-optimizing Storage S§/stems

Medha Bhadkamkar, Jorge Guerra, Luis Useche, Sam Bijrdation Liptak
Raju Rangaswami, and Vagelis Hristidis
Florida International University;Carnegie Mellon University,Syracuse University

Abstract of typical 1/0 workloads is dynamic; nevertheless, work-
boads exhibittemporal localityin the data that they ac-
cess. (i) I/O workloads exhibitpartial determinismn
their disk access patterns; besides sequential accesses to
portions of files, fragments of the block access sequence
that lead to non-sequentlalisk accesses also repeat. We
elaborate on these observationg iR.
b- While the above observations mostly validate the prior
n'studies, and may even appear largely intuitive, surpris-
the disk drive, with the goal of servicing majority of mglly, there is a lack c.)f commodity S“’ra.ge systems Fhat
utilize these observationsto reduce I/0 times. We believe

the 1/0 requests from within this partition with signif- . . .
icantly reduced seek and rotational delays. BORG re:[hat such systems do not exist becafiskey design and

mains oblivious to the rest of the storage stack, includindmplemerr‘]tatlon |ssbues relatelzd :jo thzﬂf}ea&bﬂﬂy Off s}uch
applications, file system(s), and I/O schedulers, thereb yst.ems ave; notheen reso ;]/e ’ a')b € SZOPG ole -d
requiring no or minimal modification to storage stack im- ectiveness of such systems has not been determined.

plementations. We evaluated a Linux implementation of Ve built BORG, an onlin@lock-reORGanizingtor-
BORG using several real-world workloads, including in- age system to Comprehenswely address the above issues.
dividual user desktop environments, a web-server, a vir—BORG correlates disk blocks based on block access pat-

tual machine monitor, and an SVN server. These experlems to capture the I/O workload characteristics. BORG

iments demonstrate BORG’s effectiveness in improving'”n"’m‘"‘ges a dedicatedPtimized Target (OPTpartition.

/0 performance and its incurred resource overhead. 't dynamically copies working-set data blocks (possibly
spread over the entire disk) in their relative access se-

1 Introduction guence contiguously within this partition, thus simulta-

There is a continual increase in the gap between cpupeously reducing seek and rotational delays. In addi-
performance and disk drive performance. While thetion, it assimilates allvrite requestdnto the OPT par-
steady increase in main memory sizes attempts to bridghtion’s write buffer. Since BORG operates in the back-
this gap, the impact is relatively small; Pattersen ground it presents little interference to foreground appli
al. [23] have pointed out that disk drive capacities andcations. Also, BORG provides strong block-layer data
workload working-set sizes tend to grow at a faster ratecOnsistency to upper layers, by maintaining a persistent
than memory sizes. Present day file systems, which corRage-levelndirection map
trol space allocation on the disk drive, employ static data Ve evaluated a Linux implementation of BORG for
layouts [7, 14, 18, 20, 35, 4]. Mostly, they aim to pre- & variety of workloads including a development work-
serve the directory structure of the file system and opti-Station, an SVN server, a web server, a virtual machine
mize for sequential access to entire files. No file systemfnonitor, as well as several individual desktop applica-
today takes into account the dynamic characteristics ofions. The evaluation shows both the benefits and short-
1/0 workload within its data management mechanisms. comings of BORG as well as its resource overheads.
We conducted experiments to reconcile past observaParticularly, BORG can degrade performance when a
tions about the nature of 1/O workloads [28, 6, 8] in the non-sequential read workload suddenly shifts its on-disk
context of current-day systems including end-user andvorking-set. For most workloads, however, BORG in-
server-class systems. Our key observations that motivatg'eased average case disk throughputin the range 13.3%
BORG are(i) on-disk data exhibit aon-uniform access 0 50%, offering the greatest benefit in the case of non-
frequency distributionthe “frequently accessed” data is sequential write workloads. A sensitivity study with var-
usually a small fraction of the total data stored when con- TWe use the term "non-sequential /0" in a slightly differaense

sid_ering a coar_se-granularity time'fran@) ConSiqering than “random 1/0” since by definition true random I/O may nxitibit
a fine-granularity time-frame, the “on-disk working-set” repeatable determinism.

This paper presents the design, implementation, an
evaluation of BORG, a self-optimizing storage system
that performsautomatic block reorganizatiobased on
the observed I/O workload. BORG is motivated by three
characteristics of 1/0 workloads: non-uniform access
frequency distribution, temporal locality, and partial de
terminism in non-sequential accesses. To achieve its 0
jective, BORG manages a small, dedicated partition o

Workload File System | Memory Reads [GB] Writes [GB] File System | Top 20% Partial
type size [GB] size [GB] | Total | Unique | Total | Unique accessed | data access| determinism
office 8.29 1.5 6.49 1.63 0.32 0.22 22.22 % 51.40 % 65.42 %
developer 45.59 2.0 3.82 2.57 10.46 3.96 14.32 % 60.27 % 61.56 %
SVN server 23.96 0.5 0.29 0.17 0.62 0.18 1.41 % 45.79 % 50.73 %
web server 169.54 0.5 21.07 7.32 2.24 0.33 451 % 59.50 % 15.55 %

Table 1: Summary statistics of week-long traces obtained from four dferent systems.

10000

100000 10000 1000

Write count
Read count ©

Write count ~ +
Read count ©

Write count ~ +
Read count ~ ©

Wite count -+

10000

1000 |+ 1000

100
100

Per-page access count

1
0 10 20 30 40 50 6 0 50 0 50 100 150 200 250 300 350 400 450 500

Logical block address (millions)

100 150 200 250 300 35 0 5
Logical block address (millions)

10 15 20 25 30 35 4
Logical block address (millions)

Logical block address (millions)

All accesses Gxem 100
Top 20% accesses mmm—

All accesses =z
Top 20% accesses mum— 100

All accesses Gxem o
Top 20% accesses mumm— accesses

Top 20% accesses mmm—

80 80

60 60

40 40

g 20
1. 10 ¢ :
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Days of the week

() SVN server

20

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Days of the week

(d) web server

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Days of the week

(b) developer

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
Days of the week

(a) office

Data access overlap with Day 1 (%)
38

Figure 1: Frequency and working-set plots for week-long traces fromdur different systems. In the top row
graphs, the solid and dashed lines represent the top 20%ttloid access counts for writes and reads respectively.

ious parameters of BORG demonstrates the importanceorking-set of an 1/0 workload as the set of all unique
of careful parameter choice; a self-configuring BORG isblocks accessed in a given interval.

certainly a logical and feasible direction. Memory over- - T
heads of BORG are bound within 0.25% of OPT, butz'1 Non-uniform Acgess Frequenc;_/ Distribution

CPU overheads are higher. Fortunately, most processinBesearChers have pointed out that file system data have

can be done in the background and there is ample roorffon-uniform access frequency distribution [1, 36, 27].
for improvement. This was confirmed in the traces that we collected where

. . o less than 1.5-22.3% of the file systems were accessed
This paper makes the following contribution} we 0 e sy W

o over the duration of an entire week. Figure 1 (top row)
study the characteristics of 1/0 workloads and show howShOWS block access frequency plots for the workloads.
. Some uniform trends to be observed are that while the
r|]eaIIy high frequency accesses tend to be writes, there

of a disk data re-organizing system that adapts itself %re a substantial number of reads that occur repeatedly

changes in the I/0 worlkloa@. 6_and§ 4), (iif) we present some as many as 100 times). We also observed a skew-
the challenges faced in building such a system and ou

luti OitE5 d finallv(i luate th ess in data access behavior. As depicted in Table 1, the
solutions to it € ;), an ' fina y(iv) we evaluate the sys- top 20% most frequently accessed blocks contributed to
tem to quantify its merits and weaknessgs§).

a substantially large~45-66%) percentage of the total
accesses. These numbers are within the ranges reported
by Gbmez and Santonja (Figure 2(a) in [6]) for the Cello

In thi . . . he ch istics of dtraces they examined.
n this section, we investigate the characteristics of mod-- g¢q o the above observations, it is reasonable to ex-

g_rn I/? WorlfloadsB,glp?(ézn‘\;c\:/ally (ﬁlabo;alt)gg on tho(sje thatpect that co-locating frequently accessed data in a small
irectly motivate - We collecte traces, doWn- o a4 of the disk would help reduce seek times, as com-

s_trgafm of fan a<(:jt_|;r/e patge car;:_he, oveilfha one-weﬁ_k IOer.iared to when the same data is spread throughout the en-
riod from four difierent machines. €se MachiNeSy e gisk area. Akyurek et. al. [1] have demonstrated the

ha\éedd|ff(|erent |/|O gorl;(loads, 'nk(iIUdd'ng aﬁ|ce-|(|:lass| performance benefits of such an optimization via a sim-
and developer-classiesktop workloads, a small-scale | 4tqn study. This observation also motivates the choice

version controlSVN (Subversion) servef our research iy - “ "

. of reorganizing copies of “popular blocks” in BORG.
group, and our departmenpsoduction web-servefThe ¢ gcop Pop
traces are summarized in Table 1. We defineahealisk

2 Characteristics of I/0 Workloads

2henceforth also referred to simply as “working-set”.

2.2 Temporal Locality these workloads, there were a non-trivial amount of non-

Temporal localityin /O workloads is observed when the Séduential accesses that repeated as many as 100 times.
on-disk working-sets remain mostly static over short du- 1 h€se findings suggest that there is ample scope for op-
rations. Here, we refer to a locality of hours, days, ortimizing the repeated non-sequential access patterns.
weeks, rather than seconds or minutes (typical of malrl\% Overview and Architecture
memory accesses). For instance, a developer may wor)) . .

on a few projects over a period of a few weeks or monthsBORG is motivated by the simple questiohat stor-
typically resulting in her daily or weekly working sets @ge System optimizations based on workload character-
being substantially smaller than her entire disk size. IniStics can allow applications to utilize the disk drive
servers, popularity of client requests result in temporaimore efficiently than current systems do?This sec-
locality. A web server's top-level links tend to be ac- fion presents the rationale behind the design decisions
cessed more frequently than content that is embeddelft BORG and its system architecture.

much degper in thg web-site; an |mportan.t new revision; 1 porG Design Decisions

of a specific repository on an SVN server is likely to be

accessed repeatedly over the initial weeks. A Disk-based Cache.

Figure 1 (bottom row) depicts the changes in the per-The operating system uses main memory to cache fre-
day working-sets of the 1/O workload. The two end-userquently and recently accessed file system data to reduce
I/0 workloads and the web server workload exhibit |argethe number of disk accesses incurred. In any given du-
overlaps in the data accessed across successive daysigfion of time, the effectiveness of the cache is largely
the week-long trace with the first day of the trace. Theregependent on the on-disk working-set of the 1/0 work-
is substantial overlap even among the top 20% most adpad, and can degrade when this working-set increases
cessed data across successive days. Interestingly, the@gyond the size of the page cache. Storage optimiza-
workloads do not necessarily exhibit a gradual decay injons such as prefetching [31, 15, 22] and /0 schedul-

working-set overlap with day 1 as one might expect, in-ing [30, 25, 24, 12] help improve disk 1/O performance
dicating that popularity is consistent across multi-day pe in such situations.

riods. The SVN server exhibits anomalous behavior be- Using a disk-based cache as an extension of the main

cause periods of highbommitactivity degrade temporal memory cache offers three complementary advantages
locality (new data gets created), while periods of highin comparison to main memory caching alone, prefetch-
updateactivity improve temporal locality. ing, and 1/0 scheduling. First, it is more effective as a
These observations indicate that optimizing layoutcache (than main memory) because it offers a less expen-
based on past I/O activity can improve future I/O per-sjye (and thus larger) as well as reliable caching solution,
formance for some workloads. This motivates planningthys allowing data to be cache-resident for long periods
block reorganization based on past activity in BORG. of time. Second, the size of the disk-based cache can
easily be configured by the system administrator with-
. L . out changing any hardware. And finally, dynamically
Partial deterr_mmsmn I/0 workload occurs when certain optimizing data layout based on access patterns within
non-sequential accesses in the block access sequence arisk-pased cache provides the unique ability to make

found to repeat. Aon-sequential accessdefinedby a iginally non-sequential data accesses more sequential.
sequence of two 1/O operations that are addressed non-

contiguous block addresses. It manifests in both endA Block Layer Solution.
user systems and servers. For instance, 1/0 during appliA self-optimizing storage solution can be built at any
cation start-up is largely deterministic, both in terms of layer in the storage stack (shown in Figure 2). Block
the set of I/O requests and the sequence in which thelevel attributes of disk I/O operations are not easily ob-
are requested. Reading files related to a repeatable taskined at the VFS or the page cache layer. While file
such as setting up a project in an integrated developmerdystem layer solutions can benefit from semantic knowl-
environment, compilation, linking, word-processing,.etc edge of blocks, they incur a significant disadvantage in
result in a deterministic I/O pattern. In a web-server, ac-being tied to a specific file system (and perhaps even ver-
cessing a web-page involves accessing associated suion). Device driver encapsulations (interface at P4) are
pages, images, scripts, etc., in deterministic order. incapable of capturing upper layer attributes, such as pro-
In Table 1, we present tigartial determinisnfor each cess ID and request time-stamp due to 1/O scheduler re-
workload calculated as the percentage of non-sequenti@rdering and loss of process context.
accesses that repeat at least once during the week. TheWe contend that the block layer (interface at P3) is
partial determinism percentages are high for the two endideal for introducing block reorganization for serveral
user and the SVN server workloads. Further, for each ofeasons. First, key temporal, block- and process- level

2.3 Partial Determinism

attributes about disk accesses are available. Second, op-Abstractly, BORG follows a four-stage process:
erating at the block layer makes the solution independent 1. profiling application block 1/0 accesses,

to support multlple heterogene_ous file systgms s_lmglta- 3. planninga modification to the data layout, and
neously. Finally, new abstractions due to virtualization

trends (e.g., virtual block device abstraction) as well as 4- xécutinghe plan to reconfigure the data layout.
network-attached storage environments (SAN and NAS)n addition, an /0 indirection mechanism runs contin-
can be supported in a straightforward way. In the casd!OUsly re-directing requests to the partition that it opti-
of SAN, BORG can reside on the client where all con- Mizes as required. Figure 2 presents the architecture of
text for I/O operations are readily available with the un- BORG in relation to the storage stack within the oper-
derlying assumption that the SAN device’s logical block aing system. The modification to the existing storage
address space is optimized for sequential access. In titack is in the form of a new layer, which we teBORG
case of NAS, the BORG layer can reside within the NAS@Yer, that implements three major components: il
device where 1/0 context is readily available. Modifying Profiler, the OPT reconfiguratomnd thel/O Indirector.
the NAS interface to include process associations withinf* Sécondary throttle-friendly user-space component im-

file 1/0 requests can complete the profile information. Plements thenalyzerand theplannerstages of BORG
and performs computation and memory-intensive tasks.

Using an I ndependent OPT partition. While profiling and indirection are both continuous pro-
The file system optimizes for sequential accesses to ercesses, the other stages run periodically and in succes-
tire files, a common form of file access. However, cer-sion culminating in a reconfiguration operation.
tain workloads, including application start-up, content For the I/O profiler, we use a low-overhead kernel tool
indexing and, web-page requests, exhibit a more nonealledbl kt race [2]. The analyzer reads the I/O trace
sequential, but deterministic, access behavior. It is thugollected by the profiler periodically (based on a config-
possible that the same set of data can be accessed sequarable reconfiguration interval) and derives data access
tially by some applications and non-sequentially by oth-patterns. Subsequently, the planner uses these data ac-
ers. Further, some deterministic non-sequential accessegss patterns and generates a new reconfiguration plan
may only be temporary phenomenon. forthe OPT patrtition, which it communicates to the OPT
Based on this observation, Akyurek and Salem [1]reconfigurator component. The user-space analyzer and
have argued in favor afopyingrather tharshuffling[36, planner components run as a low-priority process, utiliz-
27] of data. Copying retains original sequential layoutsing only otherwise free system resources. Under heavy
s0 a choice of location based on the observed access paystem load, the only impact to BORG is that generating
tern may be possible. Reverting back to the original lay-the new reconfiguration plan would be delayed.
out is straightforward. Borrowing the same principle, The OPT reconfigurator is responsible for the periodic
rather than permanently disturbing the sequential layouteconfiguration of the OPT partition, per tteyout plan
of files, BORG operates on copies of blocks placed temspecified by the planner. The reconfigurator issues low-
porarily in an independent OPT partition, optimizing for priority disk 1/Os to accomplish its task, minimizing the
the current common case of access for each data block.interference to foreground disk accesses. Finally, the I/O
indirector continuously directs I/O requests either to the
3.2 BORG Architecture FS partition or the OPT partition, based on the specifics
of the request and the contents of the OPT.

Applicatons [rszer | —{ e 3.3 OPT Space Management

VFs The OPtimized Target partition (OPT) as managed by
p1} BORG is shown in Figure 3. To reduce head move-
ment, we suggest that the OPT patrtition be created ad-
: Pz} joining the swap partition if virtual memory is used.
BORG partitions the OPT into three fragmenBORG
P} Meta-data Read-cacheand Write-buffer The Read-
[EORC] —_——————— — = 1 cache and Write-buffer are further sub-divided into fixed-
| I T : length segments which store both data and (valid/invalid)
Pl 'l_ _ DOhdedr map entries for the segment. The in-memory indirec-
tion map (elaborated if§ 4.5) maintained by BORG is

a union of all the segment map entries in the OPT. The
OPT map entries are synchronously updated each time
the in-memory map information changes. Additionally,

|E]: New componenE]: Existing Components——s : Control Flov{

Figure 2:BORG System Architecture.

OPT graphG;(V;, E;), where vertices represent LBA ranges

Disk: .. || sogvewdata | rearcacne || wiesuter || .. and edges a temporal dependency (correlation) between
(a) OPT overview two LBA ranges. The weight on an edge between ver-
tices (u, v) represents the frequency of accesses (reads
= ==inen S = or writes) fromu to v. Thedirectedandweightedgraph
RN ITT N[T T KN] representation is powerful enough to identify repeated
(b) Read-Cache detail (c) Write-Buffer detail sequences of multiple non-sequential requests.

Process graphs r and 's Master access graph after merging r and s

1

| : Read-Cache segment m@: Write-Buffer segment map + valid entries counD: Data blocks I

Figure 3: Format of the OPT partition. Each entry in
the Write-Buffer and Read-Cache map tables is a 3-tuple
of the form (FS LBA, OPT LBA, valid bit).

the segment map in the write-buffer contains a “valid en-

tries counter” to track space usage in the write buffer. o 2 B
- N e 0| 1] 2[2] [s|e] [8] o]] |
Magic number BORG OPTpartition identifier. space
BORG.REQUI RE bit OPT contains dirty data. sl s2
OPT size OPT partition size. . o .
Read-cache info Offset and size of the Read-cache. Figure 4: Building the master access graph.Vertices
Wirite-buffer info Offset and size of the Write-buffer. are defined by (start LBA, size of request). Since vertices
Segment size Fixed size of segments in the OPT. r1 and s; have overlapping LBAs;,; is split into two
vertices in the master access graph, one with size 1 and
Table 2:Borg meta-data. the other with the overlapping blocks, starting at LBA

Table 2 depicts the OPT meta-data fragment. It stores \,ith size 2.
key persistent information that aid in the operation of
BORG. TheBORG.REQUI RE hitis setwhenthe OPTcon- ~ Since multiple processes may access the same LBA,
tains data that requires to be copied back to the FS. If sef Singlemaster access grapf(V, £), that captures all
the operating system initiates BORG at boot time to en-available correlations into a single input for the reconfig-
sure consistent data accesses. The remaining meta-daéation planner is created (illustrated in Figure 4). The
information is used to correctly populate the in-memorycomplexity of the merge process increases if two ver-

indirection map structure during BORG initialization. tices (either within the same graph or across graphs) have
overlapping ranges. This is resolved by creating multi-

4 Detailed Design ple vertices so that each LBA is represented in at most
In this section, we present the design details of BORGone range vertex. While we omit the detailed algorithm
by elaborating on its individual components. for vertex splitting and graph merging due to space con-

) straints, we point out that we reduce the complexity of
4.1 O Profiler the merge algorithm by keeping the vertices sorted by
The I/O profiler is a data collection component that their initial LBA. The total time complexity for the ana-
is responsible for comprehensively capturing all diskjyzer stage is given by)(n « I), wheren is the number
/O activity. The I/O profiler generates afO trace of vertices and is the size of the largest vertex in the

that includes the temporal(timestamp of the request)graph. Once the merge operation is completed, the mas-
process(process ID and executable) and the blocker access grapid, is obtained.

level(address range and read/write mode) attributes. Wﬁ 3 Planner

use theQ events reported by blktrace [2], which capture .

the 1/ requests queued at the block layer. These includéhe plannertakes the master access graph,as input

all requests as issued by the file system(s), including an@"d determines a reconfiguration plan for the OPT par-
journaling and/or page destaging mechanisms. We defdfion. It uses a greedy heuristic that starts by choos-

further details to the blktrace work [2]. ing for placement the most connected vertex,e., with
the maximum sum of incoming and outgoing edges (Fig-
4.2 Analyzer ure 5). Next it chooses the vertexmost connected (in

Theanalyzeris responsible for summarizing the disk I/O one direction only, either incoming or outgoing)o If
workload. It first splits the 1/O trace obtained from the v lies on the outgoing edge af, it is placed after: and
profiler into multiple 1/O traces, one per process. Eachif it lies on the incoming edge it is placed before. The
process trace is used to build a direcprdcess access next vertex to be placed is the one most connected to the

groupu U v. This process is repeated until either all the
vertices inG are placed, or the OPT is fully occupied, or

entry is updated. This ensures that an up-to-date version
of data is always maintained by the file system.

the edges connecting to the unplaced vertices inthe magr 5 /0 |ndirector

ter graph have weight below a certain threshold. If the
graph contains disconnected components, each of thes
are placed as separate groups. The time complexity for

the planner iO(n * lg(m)) wheren is the number of
vertices andn is the number of edges; finding the most
connected vertex takes « lg(m) time and finding the
next vertex take®)(m) time .

Figure 5. Placing the master access graph. C is
the most connected vertex and is chosen for placeme
first. Next, vertexB is placedafter vertexC since it

is connected by an outgoing edge and has the highe
weight of all the edges connected €& Next, vertex
G is placedbe fore vertex groupC' U B. The final se-
guence of vertices from the lowest LBA to the highest is
L=|F,H JAG,C,B,E,D].

4.4 OPT Reconfigurator
The OPT reconfiguratoimplements the plan created by

the planner component by performing the actual datal_

movement to realize the new configuration of the OPT.
This task is complicated primarily because of consis-

tency and overhead concerns. Overhead is partially ad

dressed by issuing low-priority I/O requeitsr data lay-
out reconfiguration. BORG ensures block data con
sistency between the FS and OPT copies of data bloc
by maintaining a persistent indirection map,
bor g_map, that continuously tracks the most up-to-date
location of a data block. This map is updated each tim
a block location changes.

The reconfigurator copies blocks in three stages:
going where it copies all the dirty blocks that are no
longer in the new plan back to the original file system
(FS) locationrelocatewhere, it copies blocks that have
to be relocated within the OPT, amgcomingwhere it

termed the

Tepello indirector operates continuously, redirecting file
ystem 1/O requests as required. An 1/O request may
be composed of arbitrary number of pages. Each page
request is handled separately based(onnumber of
blocks that can be satisfied from the OPT as per the
bor g_map entry, (i) type of operation (read or write)
and(ii7) presence of a free page in the OPT.

For each I/O request larger than one page, the indi-
rector splits it into multiple per-page requests. If map-
ping exists for all the pages of the I/O request in the
bor g_map, the request is indirected to the OPT. If no
mapping exists, and the request is a read request, it is is-
sued unchanged to the file system. If only some pages of
aread /O request are mapped and the mapped entries are
clean, the entire 1/O is indirected to the file system; this
optimization reduces the seek overhead incurred to serve
the request partially from the OPT and the rest from the

™S, For a write request, when no mapping exists for any

of the pages, the blocks are still written tovate-buffer

%ortion of the OPT reserved for assimilating write re-

quests (if space permits) and a new entry is created in the
bor g_map with the dirty bit set. For a partially-mapped
write request, the mapped blocks are indirected to their
OPT locations; the unmapped pages are also absorbed
in the write-buffer, space permitting, otherwise these are

issued to the FS.

4.6 Kernel Data Structures

he persistent data structuser g_map is implemented
as a radix tree such that given an FS LBA, the OPT LBA
an be retrieved efficiently and vice-versa. It also main-
tains thedirty information for the OPT LBAs. For every
page of 4KB, BORG stores 4 bytes each for the forward

k%nd the reverse mapping and one dirty bit. If all the pages

in the OPT of sizeS GB are occupied, the worst case
memory requirement i€ x S MB (S MB for forward

and reverse mapping each), afngB for the dirty in-

eformation. Thus, in the worst caseer g_nmap requires

memory of 0.25% of the size of the OPT partition, a typ-
ically acceptable requirement for kernel-space memory.
5 Implementation Issues

In this section, we discuss the particularly challenging
aspects of the BORG implementation that help address

copies all the new blocks that have to be copied fromgata consistency and overhead.

the FS to the OPT. A single data movement operatio
and the corresponding update loor g_map entry can be
considered ‘atomic’ since any applicatiamite request
to thesourcel BA during data movement is put on hold
until after the movement is complete and the g_nmap

SPriority scheduler is a prerequisite. BORG prototype use@C

r]5.1 Persistent Indirection Map

Since BORG replicates popular data in the OPT space,
the system must ensure that reads are always up-to-
date versions of data, including after a clean shutdown
or a system crash. BORG implements a persistent
bor g_map, which is distributed within read-cache and

write-buffer segments of the OPT. Map entries on-diskblocks, can be used to further optimize data movement.
are updated (along with their in-memory version) eachlf a cycle exists, it is broken by copying the last block
time the OPT partition is reconfigured or when a new L,, back to the FS (if dirty) and then deleting the plan
map entry is added to accommodate a new write abentry for that block; an additional plan entry is then cre-
sorbed into the OPT. Upon writes to an existing OPTated to mark this asncom ng block to L,. Next, all
mapped block, its indirection entry in the in-memory remaining blocks belonging to the same chain/cycle are
copy of the reconfiguration map is marked as dirty, oncecopied to their new locations in the OPT. To do so, the
the 1/0O is completed. To minimize overhead for OPT reconfigurator issues all reads to the source locations in
writes, we chose not to maintain dirty information in the parallel; once all reads have been completed, it issues
on-disk copy. Upon reboot after an unclean shut downall the writes in parallel, in each case allowing the I/O
all entries in the persistent map are marked as dirty andgcheduler to optimize the request schedule.

future 10s to these blocks are directed to the OPT. 54 Module Unload

52 Indwgctpn Complexity) BORG is dynamically included in the I/O stack by sub-
BORG maintains metadata at the granularity gfa@e stjtuting themaker equest function of the device tar-
(rather tharblock) to reduce metadata memory require- geted for performance optimization. While module in-
ment (by 8X for Linux file systems). Consequently, the sertion is straightforward, module removal/unload must
indirector must carefully handle I/O requests whose sizegnsyre data consistency. Upon removal, BORG flushes
are not multiples of the page-size and/or which are nogjrty OPT blocks to their original locations in the file
page-aligned to the beginning of the target partition. Fig-system. In addition, BORG must address race conditions
ure 6 illustrates this problem. We address this issue Vig5,sed when an application issues an 1/O request to a

I/O request splitting and page-wise indirection. page that is being flushed to disk at that exact instant.
mapped to BORG stalls (vias| eep) the foreground I/O operation
| mapped to] until the specific page(s) being flushed are written to the
Disk pages] OMIMSHIMES [. OPTpages .. [[24] 32 [%0 [[- disk. Since we expect module unload to be a rare event
and the probability that a request for a page at the exact
time it is being flushed to be low, the average response
Figure 6: Addressing request alignment during indi- time for application I/O remains virtually un-impacted.

rection. Two pages of the FS are mapped to the OPT. .

The first FS page starting at block 0 is mapped to the6 Evaluation .

fifth OPT page starting at block 40. Similarly, the third We evaluate BORG under various workloads to answer
FS page is mapped to the fourth OPT page. The seconidne following questions.

FS page is not mapped to the OPT. The application I/0(i) How well does BORG perform?We use disk band-
request is the shaded region. width observed during active I/O operation (i.e., exclud-

ing idle periods) as our primary performance metric to

For splitting 1/0s, BORG creates new requests Us-evaluate the performance benefits of BORG with dif-
ing the Linux kerneblock io structure calledi 0, one ferent kinds of workloads. We compare performance
per page. All attributes of théi o structure are then against asani | | a system when all the blocks are stat-
populated based on thiedirection map including the jcally located in the FS space.
sector, offset, and length within the page that will be (j) why is BORG effective? We would like to know
filled/emptied depending of the operation. After the if BORG gains mainly because of the sequentiality or
splitting and issuing each “sub-1/0”, the indirector waits the proximity of data (or both) in the OPT. We use two
for all sub-1/Os to complete before notifying the applica- metrics, non-sequential accesses percenfagedaver-
tion. A special case arises while handling write requestge seek distander a workload for this purpose.
that are not already mapped to OPT and are not paggiii) When is BORG not effective?BORG can degrade
aligned. To avoid partially inconsistent OPT pages, Wethe system performance for certain workloads. We evalu-
let such requests continue on to the file system partition.gte BORG for varying workloads and when it would start

5.3 Optimizing Reconfiguration performing worse than the vanilla system.
Consider a sef. of n LBAs, Ly,--- , L., sequentially (iv) How much CPU resource overhead does BORG in-

. b 2 i
located in the OPT spacd. forms achainif VL; € L, Crrft (\j/\{h|le4t2etﬁppce|:r;80und on memory ovzrge?;ov&aé
whereL; # L,, L; has to be relocated to locatidn + 1 elicited in§ 4.6, the resources consumed by
andlf" ?m outgoing block. 1Ly, has to be re.located to 4Measured a$7?:tz‘ll§{ooc£f§$;}. Non-sequential accesses are an
Ly W'thm the OPT,L forms acycle |_nformat|0n about order of magnitude (or more) less efficient than sequergiain a small
chains and cycles, that occur exclusively for the relocatededuction in this metric can lead to substantial perforneaienefit.

RAM Capacity (GB o
‘ Host ‘ Make ‘ Model ‘ (MB) | Total F|) Fé(| C))PT 8 Br Vanilla om0

OL | WD | 2500AAKS | 1024 | 250 | 46 | 1 s
@ | WD 360GD | 1024 | 39 | 24 | 2 5
08 [Maxtor | 6L02001 | 1024 | 20 | 15 | 2 2
OF | WD | Z500AAKS | 1024 | 250 | 180 | 8 g
05 | Maxtor | 6L02001 | 1536 | 20 | 8 T £
j

a

Table 3:Experimental test-bed details.

Vanilla &xzxxx .
BORG mmmmm | Time ranges (days)

Figure 8: Disk throughput in various phases of the
SVN server trace replay. (*) Ranges correspond to re-
configuration phases. (+) The vanilla bar here is zero
because there are no 1/Os for that range.

6.1.1 SVN Server

Disk Throughtput (MB/sec)
O FP N WMo N ©

Forthe SVN server trace replay, we used the I@ia{Ta-
Time ranges (days) ble 3). The write buffer size was set to 20% of the OPT
size. Figure 8 shows the disk throughput of the replay
Figure 7: Disk throughput in various phases of the jn different phases of the experiment. In all the recon-
developer trace replay. (*) Ranges that correspond to figuration phases the throughput, as expected, is notably
reconfiguration phases. lower. However, it is clear that in almost all the non-

should also be within acceptable limits. We use the exef€configuration phases, BORG behaves better than the
cution times for various stages of BORG as an approxi-Va”'"a gonflguratlon. In the best case (range 1.3_8-2.79),
mate measure of CPU resource utilization. BORG improves the disk throughput by approximately
Experimental Setup. All experiments were performed 50%. Th_is Is a surpri;ing result, since as per Figure :.L(C)’
on machines running the Linux 2.6.22 kernels. Wethe working-set for this workload undergoes rapid shifts.

used host machine81. throughGs, with differing hard- One explanation is that a write-intensive workload and

ware configurations and disk drives (Table 3). We useothe.OPT writg-buffer is. successful in sgquent_ializing a
reiserfs for OL andO3, andext 3 for the rest. No rapidly changing, possibly non-sequential, write work-

additional hardware was required to implement BORG. load. Analysis of the block level traces revealed that with

. . borg, the non-sequential access percentage reduced from
) We conducted four different set of experlme!'lts. Thel.?O% to 1.15%, and the average seek distance reduced
first set use week-long traces of a developer’s syste

and an SVN server. The second experiment is an arc?_rom 70410 201 cylinders.

tual deployment of a web server that mirrors our CS de-6.1.2 Developer

partment's web server. The third experiment evaluategq, e developer trace replay, we used the I@is{Ta-

BORG performance in a virtual machine environment.ble 3) with the OPT write buffer set to 40% of the OPT
The fourth experiment evaluates the performance im-

> size. Figure 7 shows the disk throughput for this ex-
provement due to BORG for application start-up events'periment in all the BORG phases. For the reconfigura-

tion phases, once again, the throughput of the BORG
configuration is substantially lower. In contrast to the
To evaluate BORG under realistic Workloads, we Con'SVN server Work|oad’ we see a clear increase of per-

ducted trace replay experiments usiBYN serverand formance (13% to 30%) for all the non-reconfiguration
developemorkloads described in Table 1. For the tracesperiods of time. Analysis of the block level traces re-
and the replay, we useblktrace and btreplay respec- vealed that with BORG the non-sequential access per-
tively [2]. Additionally for the developer workload, we centage reduced from 3.93% to 3.30%, and the average

evaluate the impact of the write buffer size in BORG. seek distance reduced from 1203 to 782 cylinders.
We used an acceleration factor of 168x, after verifying

that the resultant block access sequence was not affectéd? Web Server

due to the speed-up. In each experiment, we performedio evaluate BORG in a production server environment,
4 reconfigurations, equally spaced in time; the tracewe made a copy of the our Computer Science depart-
playback acceleration factor was reverted to 1x duringment web server on th®4 machine (see Table 3), and
each reconfiguration operation to accurately estimate theeplayed all the web requests for a one week period. Dur-
impact of reconfiguration overhead on foreground 1/0. ing this week a total of 1137234 requests to 256017 dis-

6.1 Trace Replay

tinct files were serviced. We set BORG to reconfigure ~ 23900F o0 oivator

four times during this period, using an OPT of 8GB (20000 B RRINSE

5% of the 170GB web server file system). To measure §5000|-

the influence of the I/O history, we conducted two sets 2 5,000

of experiments. In the first experiment, we used all the <

traces gathered from the beginning of the experimentas >0

input to the reconfigurator (cumulative). For the second, 0 oa oo os oo
we only used the portion of the trace corresponding to Reconfigurations

period since the last reconfiguration (partial).
Figure 10: BORG overhead. ColumnC and P represent

the cumulative and partial traces experiments respegtivel

12 borg‘—c —
vanilla -

10
required for the analyzer and planner phases increases
linearly. While the planner and analyzer stages can run
as low-priority tasks in the background, we must point
out that the current implementation of BORG analyzer
24 a8 72 96 120 144 168 and planner stages are highly unoptimized and there is
Execution Time (hours) substantial room for improvement. Specifically, both the

(a) Using cumulative trace planner and analyzer fail to take advantage of their past
computations altogether, which is the primary reason for
the linear increase in their processing times. We believe
that these overheads can be reduced in the future to ex-
hibit sub-linear (and possibly constant) behavior. With
partial traces, the time increases until the second recon-
figuration, but then decreases and stays almost constant
for the following ones.

Disk Throughput (MB/sec)

o N b~ O
T —

12 1 borg-P —i— 5gg 82%
10 | vanilla g

Disk Throughput (MB/sec)

o N b O
T —

24 48 72 96 120 144 168 26+06
.) e+06 - .

W Static
Execution Time (hours) O Relocate

(b) Using last interval’s trace 1.5e+06 = hec%vrm%g

ges

Figure 9: Disk throughput for the week long web log £ 1e+06
replay. Dotted vertical lines represent the start and end- E

ing of the 1/O activity of a reconfiguration, and the per- 500,000
centages are the hit ratio to the OPT in that interval. 0

oo oo [S)N:N oo
Reconfigurations

Figure 9 shows the improvements in disk throughput
across various phases of the experiment along the 1 weekigyre 11:Differences in the reconfiguration plans.
timeline when compared to a vanilla system. For both
the cumulativeand thepartial experiments, BORG im-
proves disk throughput in most cases, but not all, particu
larly performing worse approximately two-thirds into the

To explain this phenomena we examine the reconfig-
uration plan divided by the type of operation (refer to
7 . : § 4.3), presented in Figure 11. We note that the size of
week-long trace. This is partially explained by the lower y,o hjan constantly increases for the cumulative case and
OPT hit-ratios approximately two-thirds into the exper- n,q ot the movements correspond to page relocates, that
iment, suggesting a more sharply changing working+g changes within the OPT. The story is very different
set. When cons@erlng the ovc_eral! average, BORG outy,, partial traces, where we see unused pages leaving the
performs the vanilla system, yielding improved averagenpT maintaining a smaller working set in the OPT and

throughput of 12% and 17%, for the cumulative and pary,q ey reducing the amount of work done by subsequent
tial trace experiments respectively (not shown in ﬁgure)'analyzer and planner stages

It is interesting to note that short term training yielded

better results in this case, perhaps due to greater infl@-3 Virtual Machines

ence of short term locality. BORG has the potential to significantly improve the per-
Next we examine operational overhead of BORG. Fig-formance of virtualized environments, by capturing mul-

ure 10 shows the amount of time taken in each phaséple virtual machine (VM) localities spread across a

of the reconfiguration. With cumulative traces, the time physical volume. We evaluated the impact on the per-

VM boot time and the overall performance of virtual App I S\‘/""“Tp time I 'f/a”‘l" Vo I L Slee" (gcy')l
ma_lchines k_:)y deploying BORG in a Xen [3] vi_rtuaI ma- T3l 23 27 12 [122 37
chine monitor. We created four VMs, each with 64MB oowr i ter 322 g;g g? g-é 18973 290
memory and 4GB physical partition on the h@s (refer e 1 620 | 265 | a6 o1 | 239 9
to Table 3). For evaluating boot-time improvement, we ecl i pse 431.(155 égé gg gi igg gg
trained BORG with the boot-time events of all the vir- coimress | 518 | 1907 | 27| 03 | 61 | 39
tual machines. BORG showed an almost 3X average M= Ple 4- Apolication start-up time improvement. V-
provementin VM boot-times 167 secondwith Vanilla - APP P P o

and65 secondsvith BORG. vanilla, B: BORG.

cache periodically to artificially dilate time and simulate
system reboots. Table 4 shows the difference in applica-
tion start-up times, the percentage of sequential accesses
and average seek overhead. For the applications which
were used in training, it can be observed that there is a
noticeable improvement in the 10 time with BORG - at
least 43% foroowr it er and up to 67% foecl i pse.
Further, it is interesting to observe that although the per-
centage of sequential 1/0s decreasesoforr i t er and

acr or ead with BORG, there is an overall improvement
Figure 12: BORG inside a VMM. (*) Ranges corre- in I_/O performance, possib_ly dueto aredu_ction inthe ro-
spond to reconfiguration phases. tational overhead . Th_ere is bar_ely any difference in the
performance for untrained applicatign np. However,

To measure normal execution performance improve-2lthoughooi npress was not used in the training, its
ment for the VMs, we ran the Postmark benchmarkstart-up user-time shows an improvement of 62% in the
which emulates an e-mail server and creates and updatéyerage 10 time; this can possibly be attributed to large
small files. We set the number of files to be 2000 inshared libraries in common withow i t er and which
500 directories and performed 200,000 transactions. W&vas used in the training.
reconfigured BQRG after every 20% of the benchmarkg g Sensitivity Analysis
was executed with the training set including 1/0 opera-_l_ . ; ; . ith
tions from the start of the execution of the benchmark.'© 93N maximum performance |mproveme_nt W'F
The results for the /O performance are shown in Fig-BORG its configurable parameters — the reconfiguration
ure 12. As before, the reconfiguration phases see a rdnterval, the OPT size, and the OPT write buffer fraction

' ' — must be carefully configured for a given workload.
I}(\/e now perform a sensitivity analysis using two of the
BORG starts improving. The overall performance im- workloads to better understand the effects of these pa-
provement is modest with the average throughput ovef@meters.
the entire execution increasing from 3.0 MB/s to 3.4 e replayed the developer and the SVN workload
MB/s (or 13.3%). However, this improvement is not traces on hodDl varying each of t.hese parameters over
consistent; performance degrades substantially even duft "@nge of values. In all the experiments, the trace replay
ing normal operation in the early stages of the benchP€dins at the same starting point, that is afteaae re-
mark. Theloss of process contekiside the VMM is a configuration which uses the first six hours of the trace
key problem that tends to convert sequentially laid out2S the training period.
files into non-sequential upon reconfiguration. We be-6.5.1 Reconfiguration Interval
lieve that making BORG aware of process context insid
the VMM [13] can substantially improve the OPT layout.

Vanilla =xxxa

Disk Throughtput (MB/sec)
o B N W A~ O

Time ranges (Minutes)

duced disk throughput with BORG. For the normal op-
eration, as the training set increases, the throughput wit

eFigure 13 shows the percentage improvement over the
vanilla system. The reconfiguration interval is varied
6.4 Application Start-up from 8 hours (18 reconfigurations) to 3 days (1 recon-
We evaluated the impact of BORG on 1/O-bound start-figuration). To boostrap the sensitivity analsyis, the OPT
up phase for common desktop applications using hossize is fixed to 1GB, with 50% reserved for write buffer-
03. We first trained the system for a duration of approx-ing in this experiment. The throughput values shown are
imately four hours, during which we invoked a subsetfor the periods inter-reconfiguration intervals, to more
of the applications listed in Table 4 (but specifically ex- accurately estimate improvements. For the developer
cluding gi np andooi npr ess) multiple times for per- workload, as the reconfiguration interval increases the
forming common office tasks. We invalidated the pagethroughputincreases, the training set becomes larger, and

100 100 100
Developer Exxx Developer Xzxx
80 SVN mmm 80 | SVN —

Developer xxzx
80 SVN mmm—m

% Improvement

. . . . 20
@ < < < < -20
o % % © % % G < B % & 2 3 S S z
% U % S % %& 2, S R & G % 8 2 8 00%
Reconfiguration Interval Size of OPT Size of OPT

Figure 13: Throughput improvemeriigure 14: Throughput improvemeriigure 15: Throughput improvement
varying reconfiguration intervals. varying OPT size. varying OPT write buffer.

BORG can more effectively capture the working-set. For7.1 Block level approaches

Fhe SVN Worl_<lo_ad,the performance decr_eases forhigheEa”y work [38] on optimized data layout argued for
intervals. This is because the SVN working-set changesjacing the frequently accessed data in the center of
quite frequently (elaboration 2 and Figure 1(c)). the disk. Vongsathoret al. [36] and Ruemmler and

6.5.2 OPT size Wilkes [27] both propos€ylinder Shuffling Ruemm-

We use the best-case reconfiguration intervals of 3 dayls(,ar and Wilkes specifically demonstrated that perform-

for the developer and a day for the SVN workload from ing relatively infrequent shuffling led to greater improve-

. . : ment in /O performance. In Akyurek and Salem’s
the previous experiment. We vary the OPT size from
: . : work [1], the authors demonstrated the advantages of
256MB to 8GB, of which the write buffer is always cho- . : : .
copyingovershufflingand the importance of reorganiza-

the OPT size increases, BORG's performance with theﬁon at the block (rather than cylinder) level. These early

) . data clusterin roaches emphasized on process- and
developer workload increases since the developer work:- PP P b

load has a larger working set. When most of the blocksaccess—pattern- agnostilock countso perform the data

in the working set can be accomodated in the OPT, théeorganlzatlon and reported symula'qon-based res.ultls..
Researchers have also investigate self-optimizing

performance improvement stabilizes. Since the workin X
set size for the SVN workload is relatively smaller, thegRAID systems. Wilkeset al. proposed HP Au-

performance improvement is almost same for the OP.IIORAID [37], a controller-based solution, that transpar-

sizes>256MB. ently adapts to workload changes by using a two-level
. . storage hierarchy; the upper level provides data redun-
6.5.3 Write Buffer Variation dancy for popular data while the lower level provides

From our previous results, we pick an interval of 3 daysRAID 5 parity protection for inactive data. Work on ea-
and 1 day and OPT size of 2BG and 4GB for the de-9€r writing [39] and distorted mirrors [33] address mir-
veloper and the SVN workloads respectively. We Varyrored/striped RAID configurations primarily for database
the write buffer from 0-100%. Figure 15 shows that for OLTP workload (which are characterized by little local-
the developer workload, not having a write buffer resultsity or sequentiality) that choose to write to a free sec-
in the lowest throughput. There is a steady increase ifor closest to the head position on one more disk drives.
performance, peaking at 50% write buffer. Thereafter,While we are yet to explore BORG's use in multi-disk
it starts falling since read performance begins to degradystems, the optimizations used in BORG are differ-
due to lesser available read cache. For the write-intensiv@nt and mostly complementary to the above proposals,
SVN workload, the performance increases with increasavhereby BORG attempts to capture longer-term on-disk
in the write buffer size, since all the writes can be colo-Working-sets within a dedicated volume.

cated in the OPT partition. Hu et al’s work on Disk Caching Disk [9] uses an ad-
Configuring BORG parameters The above experi- ditional logging disk (or disk partition) to perform writes
ments indicate that configuring parameters incorrectlysequentially and subsequently, destage to their original
can lead to sub-optimal performance improvements witHocations. Write buffering in BORG s slightly differ-
BORG. Fortunately, iterative algorithms can be easilyent in that writes to data already in the OPT partition are
employed to identify better parameter combinations in awritten in place. The DCD work does not optimize for
straightforward way. Exploring such iterative algorithms data read operations; BORG optimizes reads as well so

more formally is one aspect of our future work. head movement s substantially restricted.
Among recent work on block reorganization, Salmon
7 Related Work et al. [29] describe a framework for combining multi-

We examine related work by organizing the literature ple heuristics for data reorganization. BORG could eas-
into block and file based approaches. ily fit within this larger framework. C-Miner [16] uses

advanced data mining techniques to mine correlationgbove approaches, since creates a block reorganization
between block 1/0 requests. These techniques can bemechanism that can adapt to an arbitrary workload.
utilized in BORG to infer complex disk access patterns. Among file level approaches, BORG is closest to the
The Intel Application Launch Accelerator [11] reorga- FS2 [10]. FS2 proposes replication of frequently ac-
nizes blocks used during application start-up to be morecessed blocks based on disk access patterns in file sys-
sequential, but does not provide a generic solution to imiem free space. This strategy, unfortunately, also rdstric
prove overall disk I/O performance of the system. the degree of seek and rotational-delay optimization due
Among block level approaches, our work is closest toto the distribution of free space. Since FS2 may cre-
ALIS [8], wherein frequently accessed blocks as well asate multiple copies of a block simultaneously, staleness,
block sequences are placed sequentially on a dedicatednd consequently, space and I/O bandwidth wastage, be-
reorganized arean the disk. There are key differences come important concerns (similar to those in ALIS);
in design and implementation, though. First, BORG in-BORG maintains at most one extra copy of each block
curs reduced space, maintenance, and metadata overheied its strength is in being a non-intrusive, storage-stack
since it maintains at most one copy of each data blockfriendly, and file system independent (portable) solution.
The r_nuIFipIe rgplicas in ALIS can become ;tale quickly 8 Conclusions and Euture Work
in write-intensive workloads. Further, unlike BORG,
ALIS does not optimize write traffic. Finally, the evalu-
ation of ALIS techniques is performed using a disk sim-
ulator with trace playback. On the other hand, we imple-

We presented BORG, a self-optimizing layer in the stor-
age stack that automatically reorganizes disk data layout
to adapt to the workload’s disk access patterns. BORG

ment and evaluate an actual system, thereby having th as designed to optimize both read and write traffic

opportunity to address a greater detail of system impIe-.ynam'C"’IIIy t_)y_maklng rgads and writes more sequen-
mentation issues tial and restricting majority of head movement within

a small optimized disk partition. A Linux implemen-
7.2 File level approaches tation of BORG was evaluated and shown to offer per-
. . . formance gains in the average case for varied workloads
In one of the early file O.rlehted.approaches, Staelin including office and developer class end-user systems, a
al' [34] proposed monitoring f|Ie_ accesses and MOV-\veb server, an SVN server, and a virtual machine mon-
ing fr_equently accessed fll_es (entirely) to the center Ofitor. Average disk throughput improvement with BORG
the d'.5k' Log-structured file systems _(LFS [26]) Offer across these workloads range from 13.3% (for the VM
superior pe_rformance fo_r Wor_kloadg with large numberworkload) to 50% (for the SVN server workload).
OT small writes by batching d'.Sk writes to the end of a = gopg performs occasionally worse than a vanilla sys-
dlsk_-_sequenual_og. BO.R(.; writes all data to the OPT tem, specifically when a read-mostly workload (e.g., a
partition to ach|_ev_e a similar effect,.but als_,o attemp.ts ©ypeb server) drastically shifts its working set. BORG
co-locate a majority of read operations with the writes. o _pia 1o easily address changing working-sets with a

Matthewset al. [17] proposed an optimization to LFS by (possibly non-sequential) write workload (e.g. an SVN

incorporating data layout reorganization to improve readserver), since it has the ability to absorb and sequential-
performance. Their use dlock access graphs similar

: , ize writes inside the OPT. A sensitivity analysis revealed
to theprocess access graphsed in BORG. Their LFS- Y y

" luti blocks within the LES >~ the importance of choosing the right configuration pa-
specific solution moves blocks within the partition ., eters for reconfiguration interval, OPT size, and the

thng';ng exactly one copy of_each bloc_k Ef‘t arfwy time. Sm_CTWrite-buffer fraction. Fortunately, simple iterative alg
stores two copies, it can optimize for sequentialy, g can pe quite effective in identifying the right pa-
and appl!canon-dnven deterministic, non-sequential ac rameter combination; a formal investigation of such an
cesses simultaneously. ~_ approach is an avenue for future work. The memory and
Researchers have also explored data- and applicatiospy gyerheads incurred by BORG are modest, and with
specific layout mechanisms. Ganger and Kaashoek [Simple scope for further optimization. In summary, we
a_ldvocate collocating inodes and file blocks for smallpgjieve that BORG offers a novel and practical approach
files. Conversely, PLACE [21], exposes the underly-iq pyilding self-optimizing storage systems that can of-

ing layout structure to applications, so they can performgg, large 1/0 performance improvements in commodity
custom data placement. Sivathaeual. [32] propose gnvironments.

semantically-smart disk systems (SDS) that infer file sys-
tem semantic associations for blocks, subsequently useBeferences .
for aligning files with track boundaries. ~ Windows [1] S. Akyurek and K. Salem. Adaptive Block Rearrange-

XP [19] uses the defragmenter for co-locating temporally (., T%\Tbggmbﬁﬁttgcgyjégrrngjgg:?:%Blrﬁé}ylg(%g?

correlated file data for speeding up application start-up 3] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
events. BORG is a generic solution in comparisonto the A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and

the art of virtualization. IProc. of the ACM SOSPages [23] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,

164-177, New York, NY, USA, 2003. ACM. and J. Zelenka. Informed Prefetching and Caching. In

[4] H. Custer. Inside the Windows NT File SysteMicrosoft Proc. of the 15th ACM SOSPecember 1995.

Press August 1994. [24] F. 1. Popovici, A. C. Arpaci-Dusseau, and R. H. Arpaci-

[5] G.R. Ganger and M. F. Kaashoek. Embedded inodes and Dusseau. Robust, Portable I/0O Scheduling with the Disk
explicit grouping: Exploiting disk bandwidth for small Mimic. Proc. of the USENIX Annual Technical Confer-
files. Proc. of the USENIX Technical Confereng897. ence pages 297-310, June 2003.

[6] M. Gomez and V. Santonja. Characterizing Temporal [25] L. Reuther and M. Pohlack. Rotational-position-aware
Locality in 1/O Workload. Proc. of the International real-time disk scheduling using a dynamic active subset
Symposium on Performance Evaluation of Computer and (DAS). Proc. of the IEEE RTS®ecember 2003.
Telecommunication Systen202. [26] M. Rosenblum and J. Ousterhout. The design and im-

[7] M. Holton and R. Das. XFS: A Next Generation Jour- plementation of a log-structured file systeRroc. of the
nalled 64-bit filesystem with Guaranteed Rate IGGI ACM SOSPOctober 1991.

Technical Report1996. [27] C. Ruemmler and J. Wilkes. Disk Shufflingiechnical

[8] W. W. Hsu, A. J. Smith, and H. C. Young. The automatic Report HPL-CSP-91-30, Hewlett-Packard Laboratoyies
improvement of locality in storage system&CM Trans- October 1991.
actions on Computer Systen28(4):424—-473, Nov 2005. [28] C. Ruemmler and J. Wilkes. UNIX disk access patterns.

[9] Y. Hu and Q. Yang. DCD - Disk Caching Disk: A New Proc. of the Winter USENIX Conferende93.

Approach for Boosting I/O Performanc®roc. of the In- [29] B. Salmon, E. Thereska, C. Soules, and G. Ganger. A
ternational Symposium on Computer Architectur@95. Two-tiered Software Architecture for Automated Tuning

[10] H.Huang, W. Hung, and K. G. Shin. FS2: Dynamic Data of Disk Layouts. Workshop on Algorithms and Architec-
Replication In Free Disk Space For Improving Disk Per- tures for Self-Managing Systen2903.
formance And Energy ConsumptiorProc. of the ACM [30] M. Seltzer, P. Chen, and J. Ousterhout. Disk Scheduling

SOSP October 2005. Revisited. Proc. of the Winter 1990 USENIX Technical
[11] Intel Corporation. Intel application launch accetera Conference1990.

Online at http://support.intel.com/support/chipsetalj [31] M. Seltzer and C. Small. Self-Monitoring and Self-

1998. Adapting Operating SystemsProc. of the Workshop on
[12] S. Iyer and P. Druschel. Anticipatory scheduling: Alkdis HotOS May 1997.

scheduling framework to overcome deceptive idleness in[32] M. Sivathanu, V. Prabhakaran, F. |. Popovici, T. E.

synchronous i/o. Proc. of the ACM SOSPSeptember Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-

2001. Dusseau. Semantically-Smart Disk Systefgoc. of the
[13] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci- USENIX FASTMarch 2003.

Dusseau. Antfarm: Tracking processes in a virtual ma-[33] J. A. Solworth and C. U. Orji. Distorted Mirrors. pages

chine environmentProc. of the USENIX Technical Con- 10-17, 1991.

ference May 2006. [34] C. Staelin and H. Garcia-Molina. Smart Filesystems. In
[14] D. Kleikam, D. Blaschke, S. Best, and B. Arndt. JFS for USENIX Winter Conferencpages 45-52, 1991.

Linux. http://jfs.sourceforge.net/ [35] S. C. Tweedie. Journaling the Linux ext2fs File System.

[15] C.Liand K. Shen. Managing Prefetch Memory for Data- The Fourth Annual Linux Expday 1998.
Intensive Online Server$roc. of the 4th USENIX FAST [36] P. Vongsathorn and S. D. Carson. A System for Adap-

pages 253—-266, December 2005. tive Disk Rearrangemen$oftw. Pract. Exper20(3):225—
[16] Z. Li, Z. Chen, S. Srinivasan, and Y. Zhou. C-Miner: 242, 1990.

Mining Block Correlations in Storage SystemBroc. of [37] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The

the USENIX FAS,Tpages 173-186, April 2004. HP AutoRAID Hierarchical Storage Systerroc. of the
[17] J. N. Matthews, D. Roselli, A. M. Costello, R. Y. Wang, ACM SOSP1995.

and T. E. Anderson. Improving the Performance of Log- [38] C. K. Wong. Minimizing Expected Head Movement

Structured File Systems with Adaptive Method®&oc. of in One-Dimensional and Two-Dimensional Mass Storage

the ACM SOSP1997. SystemsACM Computing Survey$2(2):167-178, 1980.
[18] M. McKusick, W. Joy, S. Leffler, and R. Fabry. A Fast [39] C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang.

File System for UNIX*. ACM Transactions on Computer Configuring and Scheduling an Eager-Writing Disk Ar-

Systems,23:181-197, August 1984. ray for a Transaction Processing Workloa®roc. of the

[19] Microsoft Corporation. Fast System Startup for PCs-Run USENIX File and Storage Technologidanuary 2002.
ning Windows XP.Windows Platform Design NoteBe-
cember 2006.

[20] Namesys, Inc. The ReiserFS File SystemGo to:
http://www.namesys.com/

[21] J. Nugent, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Controlling your PLACE in the File System
with Gray-box TechniquesProc. of the USENIX Annual
Technical Conferenc@ages 311-324, June 2003.

[22] A. E. Papathanasiou and M. L. Scott. Aggressive
Prefetching: An Idea Whose Time Has Comroc. of
the Workshop on HotQSune 2005.

