
Decoupled Address Updates

Abstract

Reliable storage systems often create a copy of data ob-
ject on an update request to prevent system from running
into a data inconsistent state. Depending on how to make
the new object visible to the clients, there are two mecha-
nisms used in existing file systems: object update and ad-
dress update. For example, journaling in file systems is an
object update mechanism while copy on write (COW) is an
address update, more specifically a coupled address update
mechanism. These two mechanisms often lead to multiple
writes and recursive updates issues. In this paper, we iden-
tify that the addressing function used in both mechanisms
can be enhanced to overcome the limitations. We intro-
duce a new mechanism called decoupled address updates
that adopts an one-to-two/many addressing function, which
maps one logical object ID (e.g., file name) to several phys-
ical addresses. This enables the storage system to manage
both data and its copies in a unified space in a more efficient
way. By experimenting with file systems benchmarks on our
prototype systems, we conclude that 1-n addressing func-
tion obtains much better performance as compared to 1-1
addressing functions in Ext3 and ReiserFS for many repre-
sentative cases.

1 Introduction
A storage system typically adopts different kinds of

metadata and system data to manage application data in an
efficient fashion. The best known examples are perhaps file
systems and database systems. Our increasing dependence
on storage systems has not only enhanced our standard of
living, but has also left us vulnerable to ever increasing er-
rors and accidental faults. These hardware errors and faults
damage the data consistency in storage systems and can po-
tentially be introduced in every step in developing and uti-
lizing storage systems [1, 2, 3].

Moreover, recent years have seen the addition of many
new functionalities to storage systems such as enabling ver-
sioning service [4, 5, 6], dynamic metadata structures [7],
range queries [8], and file system transaction semantics [9,
10, 11, 12, 13]. Also, in the file systems, a myriad of meta-
data infrastructures have been generated by emerging data-
intensive applications, such as email clients (e.g., sendmail),
different kinds of search engines [14] (e.g., desktop, enter-
prise, metasearch, index,etc), multimedia management ap-
plications,etc. These infrastructures expand the horizon of
traditional file systems consistency semantics among meta-

data, to consistency between data and data, among multiple
file operations, multiple files, and even different file sys-
tems. In short, system failures and the trends in storage
systems have imposed new challenges to revisit the exist-
ing consistency solutions.

In file systems, consistency means that systems enforce
pre-defined integrity constraints among storage objects (inc.
both data and metadata). Existing consistency schemes of-
ten replicate the essential object at different addresses to
guard against data damage and tend to impact the perfor-
mance negatively especially when large data objects are in-
volved. To access a storage object, clients query thead-
dressing functionwith a logical address (e.g., file block
number or database page number). The addressing function
is a common mechanism to translate the logical address to a
physical address (e.g., physical disk block number—PBN)
in the non-volatile storage system space. Upon an update re-
quest, the system writes the new copy to a different location
before it persistently modifies a storage object. Otherwise
the system could enter an inconsistent state if a crash takes
place between the start and completion of the update. De-
pending on how to make the new object visible to clients,
we classify the existing mechanisms into two categories1:
object updatewhich overwrites the original object, andad-
dress updatewhich changes both the logical and physical
address of the object (i.e., value of object’s address). More
specifically, we call this address update mechanism in the
existing solutions acoupled address update. Journaling in
file systems [17, 18] is an object update mechanism, while
copy-on-write (COW) [19, 4] is a coupled address update
method.

Despite being successfully practiced for several decades,
these mechanisms have several major limitations.

• Object update method writes new objects at different
addresses, and then overwrites the old objects. New
objects are normally written in a log fashion to improve
performance, but also require crash recovery. Coupled
address update mechanism writes new objects one by
one and no crash recovery is needed. The ever in-
creasing amount of data and metadata (e.g., transac-
tion file system, versioning file system) makes logging
no longer low-latency.

1Soft updates [15] and Patch model [16] study a consistency policy only
for file systems whose users will face the persistence dangersthat they may
choose to accept (e.g., potential for loss of 30 seconds worth of information
in most UNIX-derived systems), which is not the main focus of this project.
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• Object Update does not break the logical locality of
objects unlike Coupled Address Update.

• Coupled Address Update changes the mapping rela-
tionship between the object ID and the object address.
In a system with complex data structures, it may cause
a recursive updateproblem and compromise the sys-
tem concurrency. Recursive updates are expensive ad-
dress updates when modifying object in complex data
structures (e.g., index tree). This is because the value
of object’s address (i.e., object pointer) and all relevant
control structures (e.g., metadata in file systems) need
to be changed.

Furthermore, existing solutions employ a1-1 mapping
schemeto implement the addressing function, which trans-
lates one logical address into a unique physical location to
locate the requested object. As a result, an object updat-
ing system manages object and its copies indispersed stor-
age spaces, which imposes extremely high overhead about
maintaining different copies. A coupled address updating
system does not write object twice by migrating object to
new locations.

Our solution to ensure storage consistency is based on
a new observation of the addressing function, which can
be leveraged to resolve the aforesaid limitations. We de-
velop a new address update mechanism, calleddecoupled
address updateusing1-n mapping scheme. The 1-n map-
ping scheme maps one logical address to two or more phys-
ical addresses, which renders two important features. First,
we manage the object and its copies in aunified storage
space. Hence, clients access the new object without phys-
ically overwriting the original object and avoid writing it
twice. Second, we decouple the logical address update from
the physical address update. Upon an object update, the
logical address of the object is kept unchanged while all
changes to physical locations are handled transparently to
upper layers by 1-n mapping scheme. As a result, there will
be no recursive updates. In summary, our new mechanism
is able to ensure a consistent system state while maintain-
ing high performance and without writing object twice and
incurring recursive updates.

The main contributions of this work are:

• We analyze pros and cons of current solutions to en-
sure data consistency in file systems. We conclude that,
existing one-to-one addressing function is one of the
major components that give rise to the aforementioned
limitations.

• We develop a new address update mechanism called
asDecoupled Address Updates (DAU)that employs a
one-to-two/many addressing function to realize bene-
fits of both object update and coupled address update
mechanisms and avoid most of their limitations.

• We implement a prototype system calledKero to con-
duct performance evaluation studies by comparing
with several representative file systems including Ext2,
Ext3, ReiserFS for both file system and database-like

workloads. Comprehensive experimental results indi-
cate that Kero significantly outperforms the baseline
systems in most cases.

2 Related Work
Consistency in file systems:A myriad of logging al-

gorithms have been developed to guarantee both data and
metadata consistency in file systems [24][25][26]. The last
decade has seen several recognized works in resolving the
metadata update problem [15]. Most local file systems, such
as Ext3 [20], JFS [17], XFS [18], etc. adopted the WAL
algorithm, so-called journaling, to protect metadata consis-
tency. Some local file systems also provide options to log
both data and metadata for strong consistency requirement,
such as the Ext3, Log-structured file system [27]. In log
structured file system, a garbage collection procedure is ex-
pensive, it needs to recollect all the invalid records and as-
semble all the valid records in a file to a continuous zone. In
Kero, garbage collection incurs less overhead because the
log size is smaller, and it can access both the file system and
log space. Table 1 summarizes the consistency schemes in
file systems.

Similar to databases’ shadowing approach, NetApp’s
WAFL [19] develops an online backup storage system that
can be quickly accessed with a coupled address update
mechanism. After that, most recent local file systems in-
cluding Ext3cow [5] and ZFS [4] adopt COW to better sup-
port versioning and deliver high I/O performance. Ext3cow
uses snapshot of the whole file system at various times-
tamps, hence all the updates between the crash point and
latest timestamp are not reflected. In ZFS, updating any data
block will cause a recursive procedure. If a client just up-
dates one block in a large file which has multiple-layered in-
direct blocks, this mechanism would cost lots of extra write
operations.

ReiserFS [22] considers recursive update problem in its
implementation and tries to update data block just once. If
the data in a node and its parent is changed in one trans-
action, reiserFS uses COW mechanism to update the node
which saves one write operation to the disk. But if the par-
ent node is not changed, reiserFS records the data node in
a log to guarantee the atomicity and durability of the trans-
action. In this scenario COW mechanism makes the parent
node dirty and causes the recursive update problem. Our de-
coupled address update mechanism avoids recursive updates
by using one-to-many address mapping function.

Recent years have seen several novel methods to realize
consistency in file systems, driven by a trend of increasing
complexity of data storage applications and computer sys-
tems. Soft updates [15] is a technique different from the
journaling by trading durability for better performance with
consistency guarantee [28]. Inspired by soft updates, a patch
work [16] develops a model to generalize all file system
dependencies. It simplifies the implementation of consis-
tency mechanisms for solving the metadata updates problem
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Table 1. Consistency techniques in file systems
Techniques Pros Cons Examples

Journaling/Logging complete history, high write object ext3, JFS,
i.e., object update concurrency, no atomic twice, require crash XFS, NTFS

[20, 21] block write assumption recovery DBFS
Extended Journaling write object once if logical log, Reiser FS

its parent node similar to
[22] is also updated journaling

COW no redo/undo, recursive updates, ZFS, WAFL,
i.e., coupled address update no need for low concurrency, System R,

[19, 5, 4] crash recovery fragmentation ext3cow
Soft Updates [23] reducing synchronous lack of durability, UNIX FFS

writes non-negligible mem. req.
Patch [16] general model, handle limited any FS

write-before relationship performance
Kero write object once, some mapping any FS

(i.e., decoupled address update) no crash recovery, overhead
high concurrency

in the file systems by separating the specification of write-
before relationships from their enforcement. In short, jour-
naling/logging has been recognized as a low latency mech-
anism to provide consistency, however the amount of data
and metadata in the current systems demand to revisit the
existing solutions.

Performance studies of Object Update and Coupled
Address Update Mechanisms:Researchers have also in-
vestigated the I/O performance impact of both object up-
dates and coupled address updates techniques. Rosenblum
and Ousterhout developed a log-structured file system [27]
that writes all modifications sequentially to disk in a log-
style structure. Its large sequential write makes good use
of nearly all of the disk bandwidth and thus obtains high
write I/O performance. Because it is the first file system to-
tally using coupled address update, many works further in-
vestigated its merits and shortcomings[29][30][31][32].It is
concluded that garbage collection is the big stumbling block
to success.

Logical disk inherits the rationale of log-structured file
systems by mapping file system to disks using a log-like
structure [33][34]. It defines a new interface to disk stor-
age that separates file management from disk block man-
agement. Similar to the logical disk, a more recent work
named type-safe disk [35] realizes better security, integrity
and semantics-aware performance optimization with aware-
ness of the pointer relationships between disk blocks im-
posed by higher layers such as file systems. We can use
type-safe disk to implement Kero efficiently. Another in-
teresting work is hFS [36], a hybrid local file system that
adopts a combination of two policies. hFS manages meta-
data and small files in a log partition while stores large files
in a normal data partition. Their experimental results show
reasonable performance gains. It shares an idea of the hy-
brid approach with one specific Kero implementation in lo-
cal file systems.

Table 2. Notations
Notations Meaning
S Various spaces in a computer system.

Slogical denotes logical storage space;
Sphysical denotes physical storage space;
Sshadow denotes shadow space;SKero de-
notes the a part of logical space used by
decoupled address update; andSbackup de-
notes backup space.

obj An object in logical storage space.
unit An atomic storage portion in physical stor-

age space.
meta Metadata object.
v A data value. To obtain the value of an ob-

ject, functionV (obj) = v is used.
F (obj) An addressing function for mapping anobj

to anunit.
D(unit) The function retrieving an object from an

unit.

3 Overview of Existing Update Mechanisms
File systems either useObject Updatesor Coupled Ad-

dress Updatesto achieve consistency. Both solutions use a
1-1 mapping schemeto implement the addressing function,
which translates one logical address into a unique physical
location to locate the requested object. We will briefly de-
scribe the addressing functions, their properties, and state-
of-the-art update mechanisms with their limitations in this
section.

Addressing Functions: An addressing functionmaps a
logical object to a physical storage unit. For instance in
Linux file systems files are interpreted as a set of logical
block numbers (LBN), and each LBN is used to locate a file
block.
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Figure 1 illustrates the relationship betweenSlogical and
the addressing function in a file system. It is noted that all
address translations in current file systems are denoted by
one-to-one mapping, which is calledunique address prop-
erty, i.e. there exists one and only oneF (obji) for any ob-
jectobji. Note: All the symbols are explained in the Table 2.

Furthermore, addressing functions are classified into two
categories:Direct Addressing Functions(DAF) andIndirect
Addressing Functions(IDAF). DAF can be a linear or hash
function. On the contrary IDAF can not use an object to
compute the address directly. It needs to get the value,e.g.
a pointer, of another object beforehand. In IDAF, modifying
an object address results in updates on other objects.

For example in aB+ tree based addressing function, to
access objectobji in a block, the system must access all the
indirect nodes on the path from theinodeto theobji. Hence,
if the file system organizes the metas in a tree or a list struc-
ture, the update operation in IDAF will be recursive, and
this important property is calledchain updates property.

In our new decoupled address update mechanism, we aim
to exploit one-to-one mapping to create one-to-many map-
pings. It is anticipated that this will allow us to change the
unique address property, and as a result the recursive up-
dates can be avoided.

Object Update Mechanism:In an Object Update mech-
anism, the address of an object remains unchanged, and the
new value ofobji replaces the old one inuniti. In a file sys-
tem, an update request from an upper layer client consists of
two steps.

(1) Write the new objectobji.v at a different address
unitj as a backup, i.e.write(unitj , obji.v).

(2) Write the new objectobji.v to the same address, i.e.
write(F (obji), obji.v).

It is noticed that step(1) does not trigger the system state
transition as it is performed to backup the consistent stateof
the system. The system transitions to a new state only after
the object is updated as shown in step(2). To keep the sys-
tem consistent, step(1) should always precede the step(2).
If there are multiple inconsistent objects, we should ensure

step(1) of all inconsistent objects finish execution before
starting executing step(2) of any inconsistent object. Other-
wise the system will transition to inconsistent states. Jour-
naling is a typical object update scheme. Figure 2 illustrates
this scheme.Sbackup contains objects as backup only for
the purpose of crash recovery. It does not belong toSlogical,
and therefore can not be used by clients. In this scheme
unitj ∈ Sbackup andunitj is managed by another address-
ing functionF

′

.
Coupled Address Update Mechanism:In the Coupled

Address Updates, the original mapping unituniti of the ob-
ject obji is replaced byunitj . It is done by changing the
pointer inmetai. Hence, the steps are:

(1) Write the new objectobji.v at a different address
unitj , i.e. write(unitj , obji.v). Note that this step is same
as for an object update

(2) Updatemetai as a result of this address update, i.e.
write(F (metai), unitj).

We can see that updates in the coupled address update
mechanism results in recursive procedures. Generally, it
would end by writing a master meta (e.g. inodes in file
systems) to the storage. Assuming that write is an atomic
operation, coupled address update can achieve consistency
because step(1) commits all the new values, but the system
state does not change until the master meta gets written.

COW is an example of this mechanism. Figure 3 demon-
strates the conceptual diagram of decoupled address update.
Sshadow contains shadow version of objects inSlogical. Af-
ter modifying metas,Sshadow becomes part ofSlogical and
thus can be accessed by clients directly. This procedure is
calledspace switch.

Limitations: Both mechanisms have shortcomings. For
the object update mechanism the data inSbackup can not be
used directly. Although the valid data is already inSbackup,
the storage system still needs to update it atuniti again to
make it available to the clients. On the other hand, if there is
a crash during step(2) in object update,Slogical transitions
to an inconsistent state. A recovery routine is needed to
retrieve a consistent state fromSbackup. The procedure is:
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write(uniti, read(unitj)), writing objects twice and per-
forming crash recovery would degrade system I/O perfor-
mance to some extent.

Coupled address update avoids the shortcomings of the
object update mechanism. By storing a copy of an object
at a different address in logical storage space, it avoids re-
dundant writing. Furthermore, although step(2) in coupled
address update usually needs to perform several I/O oper-
ations, the state transition procedure usually requires mod-
ifying one meta. Given the assumption that this update is
atomic, coupled address update can guarantee thatSlogical

is always consistent. As a result, no crash recovery proce-
dure is needed. However, all above-mentioned advantages
derive from IDAF. It is known that the coupled address up-
date mechanism causes chain updates in the storage system.
An address update of the objecti.e. meta update would lead
to an update in the address functionF (metai) itself. These
associative updates of constitute a recursive behavior as fol-
lows:

while(i! = root)
write(F (meta i), unit j) where

j corresponds to the parent node ofi, andunit j stores the
value ofmeta i.

In addition to the recursive updates, the system concur-
rency is affected because lots of related objects are locked
even if only one object is to be modified. Lastly, a logi-
cal object is divided into several non-contiguous pieces in
Sphysical. This would break logical locality and incur a
fragmentation problem in the system.

4 Kero: A Consistency Scheme using DAU

We develop Kero, as a high performance consistency
scheme using a new Decoupled Address Update mechanism
(DAU). Decoupled address update mechanism is developed
using a1-n mapping scheme, which maps one logical ad-
dress to two or more physical addresses. Its main purpose is
to avoid the limitations of existing update mechanisms yet
providing the same consistency semantics, i.e. object up-
date and coupled address update. These limitations include
writing the object twice in object updates mechanism and
recursive updates in coupled address updates. We manage
the objects and its copies in aunified space.

In this paper we propose anovel addressing translation
mechanismthat solves the above mentioned problems. Un-
like, a coupled address update where an update results in
modifying both logical and physical address, it decouples
the logical address update from the physical address up-
date. Upon an object update, the logical address of object
is kept unchanged while all changes to the physical loca-
tions are handled transparently to upper layers by 1-n map-
ping scheme. Kero spaceSKero is a part ofSlogical, and
is used in our new mechanism as shown in the Figure 4.
We call our new update mechanism asDecoupled Address
Updates, which implements a new addressing function by
mapping oneobji to eitheruniti0 in theSlogical or unitix
in theSKero as shown in eq. 1.

F (obji) =

{

uniti0, Slogical

unitix, SKero

(1)

It should be noted that in theSlogical, we perform an
object overwrite; inSKero, we write to a different unit
unitix, which could accommodate the object value at any
time point. If there is an update request, then based on a
decision making rule in specific implementation, we either
choose to update the unit in theSlogical or we create a new
unit in the SKero. We can see that the object is written
once to the one of the mapped units, hence unlike object
updates it does not have the “multiple writes” problem, and
also avoids the meta updates in coupled address update.

5 Design Considerations

In this section, we discuss different design issues we
considered in order to implement decoupled address update
mechanism. We also include various design options and our
preferences, especially for the one-to-two mapping function
for decoupled address update, and minimizing the size of
Kero space.

5.1 Decoupled Addressing Function

The fundamental issue in our design is how to implement
a decoupled addressing function. This choice would influ-
ence all the other design options. The conventional com-
puter systems do not support a decoupled addressing func-
tion, so we need find a new method to construct it. One way
is to define a1-1 mappingthat takes amark as a new param-
eter:F (obj,mark) = address, to emulate the behaviors of
1-2 mappingfunction. mark is introduced in the Section 4
Depending on the value of mark, either 1 or 0, this function
can compute two different physical addresses for one logi-
cal address. For example, in the file systems with theinode
structure, we can insert the mark parameter into inode. This
approach needs to modify the original addressing function
directly, which results in modest modification of the storage
system.

Another approach uses two functions to provide 1-2 map-
ping. The first function is the original addressing function,
i.e. F (obj) = address, and the address is taken as anobji

in the second function as:F (obji,mark) = address. A
practicable implementation is to add a new mapping layer
between the upper layer file systems and disk drivers. This
approach obviates the need of changing the addressing func-
tions in the upper layers, and the second function can easily
be implemented in the mapping layer. In addition, this ap-
proach is independent of any specific file system, so it can be
used to support multiple file systems. However it would in-
troduce an extra overhead compared with the first approach.
In our prototype, we use the second approach. It simplifies
the programing and can be used to evaluate several differ-
ent file systems as compared to modifying the addressing
functions for each individual file system.
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5.2 Minimizing the size of Kero space

Ideally the size of Kero space should be equal to that
of logical space in our model. However, this might not be
acceptable in most of the cases, even Kero provides impres-
sive data consistency service and performance. In real ap-
plications, it is unnecessary to use half of the disk space for
Kero (It maps 1 logical to 2 physical addresses). Firstly,
it is nearly impossible that all the files are updated at the
same time. In this scenario, even COW mechanism should
keep half of the disk space for storing the shadow copies.
Secondly,Kero space can be reusedby implementing a low
overhead garbage collection, when data is updated back into
the logical space. Therefore, a relative small storage space is
enough for Kero model. How to manage a small Kero space
without undermining the Kero mechanism is a challenging
task. In general, people attempt to map a large space to a
small one by using hash functions. In case of conflicts, all
objects with the same hash value are organized in a linked
list. However, this leads to random access because the con-
tiguous blocks in logical space may spread out in the storage
media, especially on disk, which degrades system perfor-
mance greatly. In our implementation, we choose to use a
2D-array as a mapping table because we want to write con-
tiguous blocks on the disk.

5.3 Enforcing the atomicity of updating a group
of objects

In our design, Kero uses DAU mechanism at block layer
with a mapping table. Then the consistency between map-
ping table and two spaces is a basic condition that we should
guarantee. There are two approaches to keep the updates of
objects atomic. A simple way is to allocate two separate
spaces in the storage to save them. Each space is assigned
a logical timestamp. After all the updated objects are syn-
chronized to the disks, a new timestamp is recorded by in-
crementing the current timestamp by one. The space with
a more recent timestamp stores valid object. The other ap-
proach is based on a log-structured Kero space. Given a
log, we are able to write the objects to the log space directly
and utilize the properties of log to enforce the atomicity of
objects updates.

5.4 Crash Recovery

In the ideal scheme, the file system state transition is
done by writing a file mark. Then assuming that this sin-
gle bit writing is an atomic operation, crash recovery is not
needed. However, because we try to save storage space and
improve I/O performance, a mapping layer and a mapping
table are used. The information in the table is crucial for
the file system consistency and it should be kept persistent.
On the other hand, we implement Kero at block layer which
means several marks should be updated in one file update
operation. Therefore, a crash recovery is still needed. But
compared with crash recovery in journaling file system, the
procedure is very simple because Kero just recovers a ta-
ble which contains much less information than journaling.

What’s more, in most cases, only one table entry is revised
when a file is updated. The atomic block update assumption
is common in file systems, and therefore crash recovery is
unnecessary.

6 Implementation
In this paper we focus on the implementation of decou-

pled address update in a unified space as a module between
the Linux file systems and generic block layer. In this sec-
tion we associate our Kero model with file systems. With
Kero the storage system can separate the complicated ad-
dressing structure from the exact physical location of the
data. It can provide persistent data consistency with high
I/O performance because it saves one object write for large
disk updates; and inherits low-latency logging benefit for
small updates. Figure 5 illustrates a conceptual architecture
of our design.

6.1 Implementing the Kero Space-SKero

Normally the logical spaces of file systems are managed
with tree structures(Linux file systems) or linked list struc-
tures(FAT file systems). The file data uses object update in
these systems. Those structures work fine in Kero space.
However, Kero manages its storage space in a log-structure
fashion, henceforth, named semantic log. All the data be-
ing written to the Kero space would be written to disk con-
tiguously, just as a regular log service does. The difference
between semantic log and regular log is that the data on the
semantic log can be accessed by the clients with the supports
of 1-2 decoupled function. There are several merits to build
Kero space as a log. Firstly, without changing the original
data objects, writing the updated objects to storage with a
log manner can guarantee the atomicity and the durability
of the operation. With the supports of log, we can simplify
the implementation greatly. Secondly writing data to disk
contiguously can improve the system I/O performance dra-
matically. Thirdly, the log structured space can be reused
easily.

When an upper layer file system updates data, and there
is no related information in the mapping table, the mapping
layer redirects the request to the log and then records the
LSN of this record. Hence from the upper layer file sys-
tem’s perspective, it is an object update policy because the
data addresses are unchanged. A direct benefit is, even for
a system that employs complicated data structures to sup-
port fast indexing, both recursive update and low concur-
rency problems are resolved. From the underneath layer’s
perspective, the copy of new data is written at a shadow ad-
dress, which means a coupled address update. By recording
the data address in the Kero space, the system does not have
to update the object again.

In the real implementation, Kero utilizes a table to map
physical address in file system space. Each in-flight blocks
which is mapped into log record has one entry: (address,
LSN)(LSN is log sequence number). When a block is up-
dated back into file system space, the related entry is re-
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Figure 5. This figure demonstrates the architecture of our
design. The light arrow represents a flow controlled by file
systems. They can only access part of the storage space.
The mapping layer implements a table that records the orig-
inal data address in the file system and a shadow address of
the data in log.

moved from the table. By using this table, the mapping layer
can keep track of the mapping address of an block in Kero
space.

6.2 Implementing the Addressing Function

As discussed in the Section 5, we implement the address-
ing function by using a mapping layer. Some system re-
sources such as internal memory space and CPU time are
consumed in its implementation. It would potentially de-
grade the overall performance if this layer incurs much over-
head. An important question to answer is how much map-
ping information we should maintain in this abstract layer.
First, if a piece of data does not have a shadow version, Kero
does not need to create an entry for it. We only need to keep
the mapping information for those blocks which data are
not synchronized to the file system yet. Just as aforemen-
tioned, our system sometimes chooses to update data in its
original block address to promote logical locality. It is un-
necessary to store the mapping information for such data.
Additionally, because all the victim pages are flushed into
the file system, the pages not present in the page cache do
not need to be recorded. In our prototype system, we im-
plement two fields — LBA (Logical Block Address) in file
systems and the address of log record per mapping table en-
try, each of which is 4 Bytes. In the worst case, Kero needs
8/4K = 0.2% of the total page cache size to store all the
mapping information.

Based on the above analysis, we simply choose hash
functions to do the mapping job. Since hash is a DAF, this
would avoid recursive updates problem. Given a common
LBA in the file system, the hash function calculates a hash
value, which becomes an index for the mapping table. The
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i=hash(block i)
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Do not find r
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Synchronize
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Data flow of write operation Data flow of read operation

Hash value i

Log record
number r

Figure 6. This figure demonstrates the components of the
mapping layer and how it works.

other field in the table is the address of the corresponding
log record. After computing the index, Kero looks up the
table. Upon a hit, the data in the log is accessed. Otherwise,
Kero accesses the data from the file system.

There are two kinds of recovery strategies, depending on
whether we make the mapping table durable or not. First,
if the mapping table is not stored on disk, crash recovery
is needed when the system reboots from crashes. However,
during the normal process, redo and undo functions are not
needed. Second, if we store the mapping table on external
memory, the file system does not require a crash recovery
process. In our experiments, we implement the second ap-
proach. There are multiple dedicated segments to store the
mapping table in the log. When Kero performs some writes
on log, the nearest segment is chosen to store the mapping
information. To identify which segment holds the most re-
cent data, a timestamp is used. We make the table durable
by two steps. The first step is to write the table content to
the log space. This is done by packing the table as a log
record. Furthermore, the log record is assigned a logical
timestampt at the time point. After the table is written to
the log, a synchronous write request gets executed by Kero.
This operation writest into a specific address in the seg-
ment, which is similar to writing a commit record into log in
the WAL algorithm. If two time stamps match, the segment
contains valid data; vice versa. When the system reboots
from crashes, the valid segment with the largest time stamp
holds the most recent valid table. With this table and data in
both file system and log, Kero can rebuild a consistent sys-
tem state before crash. The diagram of the mapping layer is
illustrated in Figure 6.

Decision Making Rule in Kero: A decision making rule
in our implementation specifies whether to update the unit in
the file system or create a new unit in the log as shown in the
Figure 5. Most of the local file systems often adopt object
update to maintain logical locality. They save the related
data in a continuous space. An exception is log-structured
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Figure 7. This figure demonstrates the way that Kero
writes new data to a block. Graph (a) shows a initial state of
system. Graph (b) shows if the block B is a hot block, which
means the time internal between two block operations is less
than the pre-defined time-out variable, when a write opera-
tion comes, Kero would write the new data into log space
to keep temporal locality. Graph (c) shows that if the block
is not accessed for a long time, exceeding the pre-defined
time-out variable, Kero redirects the write operation back
into the file system, and the corresponding mapping entry is
abandoned. If the mapping entry for a block is not found,
that means the latest copy is in the file system.

file system [27] that employs coupled address update to ob-
tain temporal locality. But neither of them realizes both ad-
vantages. Kero can achieve both localities to some extent
because it can access both file system and semantic log. To
implement the semantic log, we define a timeout variable,
which captures the degree of temporal locality.

More specifically, Kero writes the data into a log-style
space. After the log records are written to the disks, the
immediately following reads are directed to the log space. If
the upper layer systems do not access a file for a long time,
it implies that system would not access these data any more
in the near future. At this point, we can update these data in
the file system. This approach promotes logical locality. To
implement this scheme, we do not switch two spaces right
after a file is updated. Kero writes data back into file system
space only when it is not accessed for a long time. When
the storage system flushes dirty data out of the page cache,
all the last-access-time fields in the mapping table would
be checked. If the result of subtracting the flush time to
the last access time of corresponding files is larger than the
timeout, the mapping layer would dispatch the request to
the file system. By adopting a new hybrid mechanism to

achieve both kinds of localities, Kero can improve system
read performance to some extent. Figure 7 demonstrates
two situations of update operations in Kero.

On the other hand, the page cache would accommodate
many small in-flight writes and then consolidate into a large
sequential one. Hence, when Kero updates the file system,
we defer the requests for a while to merge several small I/O
operations into a single large one. As discussed previously,
a log is used to keep as much updates as possible in Kero.
Then a large random write workload can be converted to a
sequential one. As a result seek and rotational latency are
reduced greatly. Because Kero can guarantee file system
consistency with one write operation instead of two, system
write performance can also be promoted for small random
writes. Therefore, our implementation not only keeps the
storage system consistent, but also potentially promotes the
overall I/O performance in disk-based storage systems.

During system running, some log records are invalidated
due to repeated block updates. As a result, agarbage col-
lection process is needed. This process would migrate all
the valid data back into file system and then release the
whole log space for reuse. In our implementation, the over-
head of this process is very small. Firstly, the size of log is
very small. To guarantee file system consistency, Kero just
needs several Mega bytes to save the records, similar to ext3
file system. Secondly, Kero manages file system space and
log space together. As discussed before, when the system
flushes the dirty blocks out of the buffer cache and a block
is not accessed for a long time, it would be written to the
file system rather than the semantic log. There are other sit-
uations that data are written back. For example, if a page
is swapped out of the main memory, its content would be
updated in file system because the block is not hot. Based
on the above-mentioned facts, when the utilization space of
the log is approaching to a threshold (e.g., 80%), all the up-
dates to the blocks which have mapping entries are directed
to the file system to save log space. By the time when Kero
performs garbage collection, lots of information is written
back to the file system already, and therefore the number of
valid records is not large. In summary, the garbage collec-
tion procedure in Kero is efficient.

6.3 Implementing the Prototype System

The Kero prototype system runs as a Linux 2.6 kernel
module. It interacts with the Linux generic block device
layer. In general, each I/O operation executed in traditional
file systems involves a group of blocks. In this layer, the
requests dispatched from the upper layers are reorganized
in the unit of disk sector. Our Kero module replaces the
generic block layer with the new one-to-two address map-
ping function. By introducing a mapping table, one block
can be addressed with two different set of sectors.

Kero consists of a set of dynamic Linux modules. It
provides several functions for the Linux kernel. At first
we revised the Linux kernel to provide a set of new inter-
faces for Kero. This is implemented by declaring many new
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structures of function pointers in the Linux kernel source
code. During the initialization procedure of modules, Kero
sets several signals and assigns valid values for all func-
tion pointers. When the kernel functions snoop the relevant
signals set, they switch to the corresponding functions that
Kero pre-defines. After that, Kero functions take over the
program control.

Kero modules interact with Linux generic block device
layer mainly via the submitbh function. In main memory,
the block is the basic unit of data transfer for the VFS, while
the sector is the basic unit of data transfer for the hard drive
device. This function is little else than a glue function that
creates a bio structure from the content of the buffer head
and then sends read or write requests to a Linux disk sched-
uler, which may eventually release them to the device. By
revising the submitbh function call, the content of bio is de-
cided by Kero. Each time when Linux generates a read bio
structure, Kero checks if there is a mapping item in the table
for the corresponding buffer head. If the answer is yes, the
bi bdev field is assigned with the block device description of
our log device in the implementation. The bisector field is
also set to the mapping location. After the data is read from
disks, a record interception module is called. If it is a write
operation and no item in the table is found for the block, the
data is assembled into a log record and flushed to the log
partition. The call back function notifies Kero to record the
mapping information in the table. If a mapping item exists,
the due time of the block gets checked. Data that are not
accessed for a certain amount of time is object update other-
wise coupled address update. An exception is when a page
is removed from the page cache in the Linux page cache
implementation. We revised the removefrom pagecache
function to remove the mapping items of the page in the ta-
ble.

In our prototype, we implement decoupled address up-
date at generic block layer in Linux with a log. This imple-
mentation not only enjoys all the merits of DAU, but also
provides the same consistency semantics as ext3 (including
cross-object consistency such as updates among directory
block and file inode block). By recording different objects
in the log, the Kero system can provide the same function as
write-back journaling and full journaling. With the support
of ext3 file system, a consistent model as ordered journaling
also can be implemented.

Our modules implement all necessary functions as re-
quired in our original design. The new code is with nearly
2000 lines. We did not apply some popular optimiza-
tion techniques, such as extent based addressing translation,
group commit and so on. It is anticipated that Kero can
achieve better performance by incorporating more popular
performance optimization schemes.

7 Evaluation
In this section we evaluate the effectiveness of Kero, the

performance of the Kero prototype system relative to differ-
ent baseline file systems including Ext3 and reiserFS using

both file systems and database-style benchmarks.

7.1 Experimental Setup

All experiments were performed on a commodity PC
system equipped with a 3.6 GHz Intel E5320 dual core pro-
cessor, 1 GB of main memory, and one 7200 RPM Seagate
SCSI disk of 250 GB capacity. In the tests we used a 50
GB file system and a 20 GB log partition with Linux 2.6.11
kernel with the Fedora v4 distribution. Log partition was
left empty. And only 4MB capacity is used for each Kero
prototype. To reduce the influence of other non-related ap-
plications in the experiments, we disabled as many system
services as possible.

To conduct fair comparisons with the state-of-the-art, we
implemented two new “journaling” file systems on the up-
per layer of Kero. We tested the performance of both Kero
prototype systems with three other baselines. All the file
systems we tested are listed in Table 3. In ext3 with anor-
dered model, only updates made to file systems metadata are
logged into the journal. The ext3 file system groups meta-
data and relative data blocks so that data blocks are written
to disk before the metadata. On the contrary, in afull jour-
nal model, both file system data and metadata updates are
logged into the journal. This model minimizes the possi-
bility of losing the updates made to each file. When we
incorporate a file system with Kero, asynchronous model
of the file system is always chosen. Because the Kero pro-
totype system monitors all the data updates at block level,
enforcing ordered updates between metadata and data is not
necessary any more.

Table 3. File system notations used in experi-
ments

Notations File Systems.
ext3(o) Ext3 with an ordered journal model.
ext3(f) Ext3 with a full journal model.
reiserFS ReiserFS file system.
ext2-k Ext2 with Kero support.
reiserFS-k ReiserfsFS that employ Kero instead of

its own journal service. This is done by
using mount options.

7.2 Methodology

To comprehensively evaluate Kero, we chose three dif-
ferent kinds of benchmarks. The first postmark benchmark
emulates a heavy small file workload seen on email servers,
net news servers and web-based commerce. We used Post-
Mark v1.5 [37] in experiments, and configured it to create
1,000 files ranging in sizes from 512 B to 1 MB. Other con-
figurations include performing 1,000 transactions inc. both
reads/writes and creates/deletes. The read or create bias pa-
rameter is set to 5.

Bonnie++ [38] is a second benchmark suite that aims
at performing a number of simple tests of hard drive and
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file system performance. The first part of tests came from
the original Bonnie program. It initially performs a series
of tests, such as sequential output, rewrite, sequential in-
put and random seek, on a large file with 1 GBytes in our
experiments. The performance of per-character sequential
output and input is not tested in our experiment. The next
six tests involve file create/stat/unlink to emulate some oper-
ations that are common bottlenecks on large Squid and INN
servers. More specifically, there are different workload pat-
terns: sequential create, sequential read, sequential delete,
random create, random read and random delete. Lastly, we
vary file sizes in the last six tests to evaluate the CPU uti-
lization rate of file systems. In all the tests, for performance,
the higher of the number, the better; for CPU utilization rate,
the lower, the better.

The last benchmark is a modified TPC benchmark, which
was used to evaluated the performance of log-structured file
system [27]. We do not use the new TPC benchmark suite
because most of them portray database applications under
distributed environments. However our experiments focus
on the performance of local file systems and databases. This
benchmark emulates a check-cashing application. There
are four files in our configuration: an account file contains
1,000,000 records; each record is a 1,000-byte structured
data; a branch file has 10 records while a teller file has 100
records. We use this micro-benchmark to evaluate the I/O
performance of local file systems when they execute lots of
concurrent requests. File systems deployed in the Linux en-
vironment always lock a file when a process accesses it. To
replay a reasonable emulation environment, we group eight
records (8 K) into a file to provide a similar grain level with
database systems.

7.3 Results

PostMark: Figure 8 shows the overall performance of
five different file systems. This set of tests focus on evalu-
ating the I/O performance of file systems under small ran-
dom requests. Since Kero provides the consistency control
mechanism for the upper layer file systems, we are able to
buffer a large number of writes in memory such that file cre-
ates and deletes become asynchronous operations in Kero
enabled file systems. As expected, the asynchronous pat-
tern and the sequential writes of Kero yield superior per-
formance to other file systems for PostMark. By enforc-
ing a same level of consistency, Kero spent only46% ex-
ecution time of ext(f) to finish all the tests of postmark.
Ext3(o) guarantees less consistency than ext3(f) and ext2-
k, but ext2-k achieves a same performance as that of ext3(o)
in both create and delete phases, and spends30% less time
on the transaction phase. ReiserFS performs well for small
reads and writes. The current reiserFS version obtains com-
parable performance with our revised one with Kero com-
ponent. However, in the create and delete phases, Kero wins
by about40% performance improvement.

The transaction phase of PostMark consists of lots of
read and write operations. Figure 9 shows the read and write
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Figure 8. The graph displays the performance of the over-
all tests of PostMark. Kero performance dominates ext3
file systems series because the workload consists of oper-
ations on small files and Kero can make them sequential.
ReiserFS, compared with others, provides good transaction
performance because the high bandwidth of small read and
write. However reiserFS-k outperforms it in the create and
delete phases. The log-structured layout boosts I/O perfor-
mance.

bandwidths of different file systems. We can observe that if
we want to ensure consistency as that in a full journal model,
ext2-k outperforms ext3(f) on writes by nearly121%. On
the other hand it obtains a comparable read performance
to that of ext3(o). In the reiserFS series, the read perfor-
mance of reiserFS-k is close with that of original reiserFS.
Although reiserFS just provides logical logging service and
in some specific scenarios it only updates data once, the
write performance of reiserFS-k is still approximately16%
better than that of original reiserFS.

Bonnie++: Different from PostMark that focuses on test-
ing small files operations, Bonnie++ benchmark tests small
I/O operations on a large file. Figure 10 demonstrates three
different workloads in this environment. The first one is se-
quential output, which means the file systems create files us-
ing write. This is a file space allocation intensive workload.
In this case, all five file systems except ext3(f) obtain com-
parable performance. Ext2-k achieves94% better perfor-
mance than ext3(f) and nearly10% higher throughput than
reiserFS. In the rewrite test, three commands including read,
rewrite and lseek would be executed. File systems with ef-
ficient addressing function and high read/write throughput
often obtain good results in the test. The graph shows that
reiserFS’sB+ tree structure significantly promotes the per-
formance of a file system in this test. Given the same kind
of addressing function, ext2-k outperforms ext3(f) by about
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Figure 9. The graph displays the performance of read and
write tests of PostMark. The ext2-k write performance is
approximately25% better than ext(o) and121% better than
ext(f) resulting from the sequential writes property. Reis-
erFS obtains good read and write performance for small files
due to its fast addressing and efficient logical logging ser-
vice. ReiserFS-k still outperforms it in write performance.

73%, and reiserFS-k outperforms reiserFS by about31%.
This is because Kero writes data only once in a sequential
fashion. In the last case the read performance of Kero is a
little bit lower than other systems. The reason lies in that,
although some read operations are absorbed by in-memory
page cache, Kero still has to execute lots of read requests.
Its mapping layer introduces some overhead to the file sys-
tems and breaks logical locality with some data. However,
all other baseline systems execute the read requests in a se-
quential fashion.

CPU Utilization: Table 4 and Table 5 demonstrate the
results of CPU utilization rate for the last six tests of bon-
nie++ benchmark. Those workloads are CPU intensive due
to lots of metadata operations being executed. We want to
evaluate the overhead the new block layer addressing func-
tion would introduce, e.g., consuming CPU cycles. The ta-
bles imply that, first, Kero does not spend much CPU time
for all the workloads except read; second, the CPU uti-
lization percentage of Kero drops fast with an increasing
file size. For metadata intensive operations, such as create
and delete, Kero obtains better performance than ext3 with
an ordered journal model, since the ordered journal needs
to keep the write-before relationship between every pair of
data and metadata. This leads to lots of synchronous writes
that waste CPU cycles. For sequential read, Kero obtains
comparable performance with ext3(o). Under a random read
workload, Kero makes some negative impacts on system I/O
due to the loss of some logical locality. However the tables
show that when the file size is larger than 128 KB, the CPU
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Figure 10. This graph shows the Block I/O Performance
Results of Bonnie++. The main difference between sequen-
tial output and rewrite is that sequential output just creates
a file using write while rewrite needs to perform read and
lseek additionally. This experiment tests the effectiveness
of file system cache and the speed of data transfer. The
I/O performance of all file systems degrade dramatically
when comparing the sequential output workload run with
the rewrite workload run. Kero-k dominates in this test due
to the combination ofB+ tree based addressing function of
reiserFS and logging mechanism of Kero.

utilization rate of Kero is still very small. ReiserFS real-
izes The best read performance, although it does not work
very well under create and delete workloads. This results
from its complicated logical structure of reiserFS that ren-
der more CPU cycles.

Highly Concurrent Workloads: The last experiment
aims to evaluate the performance of file systems under
highly concurrent workload, which is a common case in
database applications. Four sets of results are shown in Fig-
ure 11. The performance of ext3 with a full journal model
is the worst because ext3 file system has to record lots of
random operations into the log partition. Hence I/O be-
comes the bottleneck and degrades the system performance
greatly. In reiserFS, compared with Kero and ext3 with
an ordered journal model, I/O is still a bottleneck. It im-
plements a higher level granularity concurrency than other
file systems in the experiments. Therefore reiserFS under-
performs Kero and ext3(o).

Kero beats ext3(o) if the number of concurrent threads is
lower than 300. This is because that given the light work-
load, space switching rarely occurs and Kero consolidates
many small I/Os into a large contiguous one. Given a heavy
workload, space switching occurs more often. In addition,
because the log partition is nearly full, synchronizing logi-
cal space needs to get executed. Both of above-mentioned
actions would degrade system performance to some extent.
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Table 4. CPU usage for sequential workloads
Sequential Create Sequential Read Sequential Delete

File Size ext3(o) ext3(f) reiserfs Kero ext3(o) ext3(f) reiserfs Kero ext3(o) ext3(f) reiserfs Kero
[2, 4] 63 22 26 25 100 99 1 100 46 97 4 29
[4, 8] 29 15 44 17 99 98 10 99 52 99 39 19
[8, 16] 27 11 58 11 95 98 5 99 96 98 33 9
[16, 32] 18 9 29 11 94 51 5 54 96 98 26 7
[32, 64] 11 6 48 10 2 2 3 2 2 2 15 2
[64, 128] 8 5 21 6 1 1 1 1 1 1 11 2
[128, ] 9 5 13 4 1 1 1 1 1 1 7 1

Table 5. CPU usage for random workloads
Random Create Random Read Random Delete

File Size ext3(o) ext3(f) reiserfs Kero ext3(o) ext3(f) reiserfs Kero ext3(o) ext3(f) reiserfs Kero
[2, 4] 59 22 26 27 99 99 1 100 40 100 3 31
[4, 8] 53 15 43 20 98 98 11 99 94 94 19 21
[8, 16] 27 11 53 12 100 100 6 100 79 100 19 18
[16, 32] 18 9 31 8 98 99 5 99 100 99 12 11
[32, 64] 11 6 50 4 5 99 3 9 6 85 10 6
[64, 128] 8 5 20 4 1 2 1 2 1 1 7 1
[128, ] 8 5 14 2 1 2 1 2 1 1 5 1
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Figure 11. This graph demonstrates the transaction
throughput of different file systems in the highly concur-
rent environment. ReiserFS obtains low concurrency be-
cause theB+ tree structure limits the lock granularity. Kero
achieves higher concurrency compared with ext3(o) and
ext3(f). However when the number of concurrent processes
becomes too large, the overhead of space switching and log-
ical space synchronization would diminish the return of I/O
performance gain and thus drag down the Kero system per-
formance to a comparable level as other file systems.

Hence the I/O performance of Kero drops to a comparable
level as other file systems when there are more than 300
threads.

8 Conclusion

In this paper, we develop a new data consistency scheme
Kero that takes advantage of two existing update mecha-
nisms, i.e. object update and coupled address update in file
systems. We identify certain limitations in current solutions
and discover one-to-one addressing function becomes one
of the major obstacles to performance improvement. Kero
attempts to manage data and its copies in a unified address
space by employing a one-to-two/many addressing func-
tion. This renders efficient and effective data consistency
maintenance and data management. By experimenting with
several representative file system benchmarks, we conclude
that Kero significantly improves I/O performance by upto
121% in comparison to several baseline systems—ext3 and
reiserFS with different journal models.
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