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Abstract
Clustered applications in storage area networks (SANs),
widely adopted in enterprise datacenters, have tradition-
ally relied on distributed locking protocols to coordinate
concurrent access to shared storage devices. We exam-
ine the semantics of traditional lock services for SAN en-
vironments and ask whether they are sufficient to guar-
antee data safety at the application level. We argue that
a traditional lock service design that enforces strictmu-
tual exclusionvia a globally-consistent view of locking
state is neither sufficient nor strictly necessary to en-
sure application-level correctness in the presence of asyn-
chrony and failures. We also argue that in many cases,
strongly-consistent locking imposes an additional and un-
necessary constraint on application availability. Armed
with these observations, we develop a set of novel concur-
rency control and recovery protocols for clustered SAN
applications that achieve safety and liveness in the face
of arbitrary asynchrony, crash failures, and network par-
titions. Finally, we present and evaluate Minuet- a new
synchronization primitive based on these protocols that
can serve as a foundational building block for safe and
highly-available SAN applications.

1 Introduction
In recent years, storage area networks (SANs) have been
gaining widespread adoption in enterprise datacenters [1]
and are proving effective in supporting a range of appli-
cations across a broad spectrum of industries. According
to a recent survey of IT professionals across a range of
corporations, government agencies, and universities, the
majority (80%) have deployed a storage-area network in
their organizations, and 26% of the respondents report
have deployed five or more SANs [2]. Some of the com-
mon applications include online transaction processing in
finance and e-commerce, digital media production, busi-
ness data analytics, and high-performance scientific com-
puting. A number of hardware and software vendors, in-
cluding companies such as EMC, HP, IBM, and NetApp,
offer SAN-oriented products to their customers [3–6].

A SAN architecture is a particularly attractive choice
for parallel clustered applications that demand high-speed
concurrent access to a scalable storage backend. Such ap-
plications commonly rely on a clustered middleware ser-
vice to provide a higher-level storage abstraction such as
a filesystem (GFS [7], OCFS [8], PanFS [9], GPFS [10],
Lustre [11], Xsan [12]) or a relational database (Oracle
RAC [13]) on top of raw disk blocks.

One of the primary design challenges for clustered

SAN applications and middleware is ensuring safe and
efficient coordination of access to application state and
metadata that resides on shared storage. The traditional
approach to concurrency control in shared-disk clusters
involves the use of a synchronization module called adis-
tributed lock manager(DLM) [7]. Traditional DLM ser-
vices aim to provide the guarantee ofstrict mutual exclu-
sion, ensuring that no two processes in the system can
simultaneously hold conflicting locks. In abstract terms,
providing such guarantees requires enforcing a globally-
consistent view of lock acquisition state and one could
argue that a traditional DLM design views such consis-
tency as an end in itself rather than a means to achieving
application-level correctness.

In this paper, we take a closer look at the semantics of
traditional lock services and ask whether the assurances of
full mutual exclusion and strongly-consistent locking are,
in fact, a prerequisite for correct application behavior. Our
main finding is that the standard semantics of mutual ex-
clusion provided by a DLM are neither strictly necessary
nor sufficient to guarantee safe coordination of access to
shared state on disk in the presence of process failures
and asynchrony. In particular, processing and queuing de-
lays in SAN switches and host bus adapters (HBAs) ex-
pose applications to out-of-order delivery of I/O requests
from presumed faulty processes which, in certain scenar-
ios, can incur catastrophic violations of safety and cause
permanent data loss.

We propose and evaluate a new technique for disk ac-
cess coordination in SAN environments. Our approach is
based on augmenting target storage devices with a tiny
piece of application-independent logic, called aguard,
that rejects inconsistent I/O requests and enables us to pro-
vide a property calledsession isolation. The guard logic
enables a noveloptimisticapproach to concurrency con-
trol in SANs and can be used to make existing protocols
safe in the face of arbitrarily delayed message delivery,
drifting clocks, crash process failures, and network par-
titions. In addition, session isolation provides a founda-
tional primitive for implementing more complex coordi-
nation semantics, such asserializable transactions, and
we demonstrate one such protocol.

We also describe the implementation of Minuet- a soft-
ware library that provides a novel synchronization prim-
itive for SAN applications based on the protocols we
present. Minuet assumes the presence of guard logic at
the target storage devices and provides applications with
locking and distributed transaction facilities, while guar-
anteeing liveness and data safety in the face of arbitrary
asynchrony, node failures, and network partitions.
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Unlike existing services for fault-tolerant distributed
coordination such as Chubby [14] and Zookeeper [15],
Minuet requires its lock managers to maintain only
loosely-consistent replicas of locking state and thus per-
mits applications to make progress with less than a ma-
jority of replicas. To demonstrate the practical feasibility
of our approach, we implemented two sample applications
— distributed chunkmap and B+-Tree — on top of Minuet
and evaluated them in a clustered environment supported
by an iSCSI-based SAN.

The benefits of optimistic concurrency control and the
associated tradeoffs have been explored extensively in the
context of database management systems (DBMS) and
are well-understood. In particular, techniques such as
callback locking, optimistic 2-phase locking, and adap-
tive callback locking [16–20] have been proposed to en-
able safe coordination and efficient client-side caching in
client-server databases. It is important to note, however,
that these approaches are not directly applicable to SANs
because they assume the existence of a central lock server,
typically co-located with the data block storage server.
This assumption does not hold in a SAN environment,
where the storage "servers" are application-agnostic disk
arrays that possess no knowledge of locking state or pro-
cess liveness status. Hence, a conservative DLM service
that enforces strict mutual exclusion has traditionally been
viewed as the only practical method for disk access coor-
dination for clustered SAN applications.

Our main insight is that a single nearly trivial extension
to the internal logic of a SAN storage device suffices to ad-
dress the data safely problems associated with traditional
DLMs and enables a very different approach to storage ac-
cess coordination. Crucially, we achieve this without in-
troducing application-level logic into storage devices and
without forfeiting the generality and simplicity of the tra-
ditional block-level interface to SAN-attached devices.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide the relevant background on SAN and
some representative examples of data safety problems. In
Section 3, we present our main contribution - the design of
Minuet, a novel safe and highly available synchronization
mechanism for SAN applications. Section 4 describes our
prototype implementation of Minuet and two sample clus-
tered applications. We evaluate our system in Section 5
and discuss practical aspects of our approach in Section 6.
Finally, we discuss related work in Section 7 and conclude
in Section 8.

2 Background

2.1 Storage area networks (SANs)
Storage area networks are becoming increasingly popu-
lar in enterprise datacenters and are commonly adopted to
support the storage needs of data-intensive clustered ap-

plications that require high-speed parallel access to shared
persistent state. In the SAN (orshared-disk) model, per-
sistent storage devices, typically disk drive arrays or spe-
cialized hardware appliances, are attached to a dedicated
storage networkand appear to members of the application
cluster as local disks. Most SANs utilize a combination of
SCSI and a low-level transport protocol such as TCP/IP
or FCP (Fibre Channel Protocol) for communication be-
tween application nodes and target storage devices.

The goal is to provide fully-decentralized access to
shared application state and in principle, any SAN-
attached application node can access any piece of data
without routing its requests to a dedicated server. While
in this model, all requests on a particular piece of data
are centrally serialized, the crucial distinction from the
traditional server-attachedstorage paradigm is that the
point of serialization is a hardware disk controller that
exposes an application-independent I/O interface on raw
disk blocks and is oblivious to application semantics and
data layout considerations.

Broadly, the SAN paradigm can be seen as advanta-
geous from the standpoint of availability because it of-
fers better redundancy and decouples node failures from
loss of persistent state. Incoming application requests can
be routed to any available node in the application cluster
and in the event of a node failure, subsequent requests can
be redirected to another processor with minimal interrup-
tion of service. In contrast, a node failure in the server-
attached model may render some portions of the dataset
temporarily or permanently unavailable.

One of the primary design challenges for clustered
SAN applications and middleware is ensuring safe and ef-
ficient coordination of access to shared state on disk and
commonly, a software service called aDistributed Lock
Manager(DLM) is employed to provide such coordina-
tion [7]. A typical lock service, such as OpenDLM [21],
exposes a generalized notion of aresource, an abstract
application-level entity that requires access coordination,
and attempts to provide the guarantee ofmutual exclu-
sion [22] - no two processes may simultaneously hold
conflicting locks on the same resource.

2.2 Safety and liveness problems in SANs

In principle, DLM-based mutual exclusion offers suffi-
cient mechanism to guarantee safe access to shared ap-
plication state on disk. In practice, however, guaranteeing
safe serialization of disk requests tends to be more diffi-
cult than the above discussion might suggest due to the
effects ofprocess failuresandasynchrony. The following
examples illustrate the nature of the problem.

Scenario 1: Consider two clients,C1 and C2, that
are concurrently accessing a data structureS residing on
a shared diskD in a contiguous array of blocks num-
bered [0-9]. SupposeC1 is updatingS under the pro-
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tection of an exclusive lock, whileC2 wants to read the
contents ofS into a local memory buffer and is waiting
for a shared lock onS. C1 submitsWRITE(o f f set=
3, length= 5,data) to D, but crashes before hearing a re-
sponse and the lock manager correctly detects the failure
(e.g., via a heartbeat mechanism) and reacts by reclaim-
ing the exclusive lock and granting it in shared mode to
C2. That client proceeds to readingS from disk and sub-
mits READ(o f f set= 0, length= 5) to D, which returns
old data. Next,C1’s delayedWRITErequest reaches the
disk and overwrites the data at offsets[3−7], after which
C2 issuesREAD(o f f set= 5, length= 5). Note that al-
though each individual I/O request is processed byD as an
atomic unit, this scenario would causeC2 to observe and
act upon apartial update fromC1, which can be viewed
as a violation of data safety.

As an alternative to heartbeat failure detection, a lease-
based mechanism [23] can be used to coordinate clients’
accesses in the above example, but precisely the same
problematic scenario would arise when clocks are not syn-
chronized. WhenC1 crashes and its lease expires, the
lease manager could grant it toC2 prior to the arrival of
the lastWRITE from C1 to the storage target. Since the
target has no way of coordinating with the lease manager,
it fails to establish the fact that an incoming request from
C1 is inconsistent with the current lease ownership state.

Scenario 2: Commonly, clustered applications and
middleware services need to enforce transactional seman-
tics on updates to application state and metadata. In
a shared-disk clustered environment, distributed transac-
tions have traditionally been supported via the use of
two-phase locking in conjunction with a distributed write-
ahead logging (WAL) protocol and we refer the reader to
D-ARIES [24] for a detailed exposition of transaction re-
covery in the context of a shared-disk parallel RDBMS.
In the abstract, the system maintains a snapshot of appli-
cation state along with a set of per-client logs (also on
shared disks) that record Redo and/or Undo information
for all updates and the commit status of every transaction.
During failure recovery, the system must examine the sus-
pected client’s log and restore consistency by rolling back
all uncommitted updates and replaying all updates associ-
ated with committed transactions that may not have been
flushed to the snapshot prior to failure. An essential un-
derlying assumption is that once a failure suspicion event
is delivered and the decision to initiate log recovery is
made, no additionalWRITErequests from the suspected
process will reach the snapshot or the log and data corrup-
tion may occur if this assumption is violated.

Ensuring data safety in a shared-disk environment has
traditionally required introducing a set ofpartial syn-
chrony assumptions, such as bounded network propaga-
tion delays and clock drift rates, that enable the use of
reliable heartbeat-driven failure detectors and leases. Fun-

damentally, these assumptions are probabilistic at best and
since application data integrity is predicated on the valid-
ity of these assumptions, failure timeouts must be tuned
to a very conservative value and account for worst-case
switch queuing delays and request buffering at the host.
Such (necessarily) pessimistic method of tuning timeouts
may have a profoundly negative impact on failure recov-
ery times - one of the common criticisms of SAN-oriented
applications [25].

Another serious limitation exhibited by today’s SAN
applications isliveness. The DLM (or lease manager)
represents an additional point of failure and while various
fault tolerance techniques can be applied to improve its
availability, the very nature of the semantics enforced by
the DLM places a fundamental constraint on the overall
system availability. For instance, multiple lock manager
replicas can be deployed in a cluster, but mutual exclu-
sion can be guaranteed only if clients’ requests are pre-
sented to them in a consistent order, which necessitates
mechanisms such as state machine replication [26] and
Paxos [27]. Alternatively, a single lock manager instance
may be elected dynamically [28–30] from a group of can-
didates and in this case, ensuring mutual exclusion neces-
sitates global agreement on the lock manager’s identity.
In both cases, reaching agreement fundamentally requires
access to an active primary component - typically a ma-
jority of nodes. As a result, a large-scale node failure or a
network partition that renders the primary component un-
available or unreachable may bring about a system-wide
outage and complete loss of service.

To summarize, today’s SAN applications and middle-
ware face significant limitations along the dimensions
of safety and liveness. At present, several hardware-
assisted techniques, such as out-of-band power manage-
ment (STOMITH) [31, 32], SAN fabric fencing [33], and
SCSI-3 PR [34] can be employed to mitigate some of
these issues. These mechanisms help reduce the likeli-
hood of data corruption under common failure scenarios,
but do not provide the desired assurances of safety in the
general case and, as we would argue, do not address the
underlying problem. We observe that the underlying prob-
lem may be a case ofcapability mismatchbetween "in-
telligent" application processes that possess full knowl-
edge of application’s data structures, physical disk layout,
and consistency semantics on the one hand and relatively
"dumb" storage devices on the other. The safety problems
illustrated above can be attributed to a disk controller’s
inability to identify and appropriately react to the various
application-level events such aslock release, failure sus-
picion, andfailure recovery action.

3 Minuet Design
At a high level, our approach reexamines the correctness
criteria that a cluster DLM service must provide to ap-
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plications. Traditionally, DLMs tend to treat shared ap-
plication resources as purely abstract entities enforce the
group mutual exclusionproperty: no two client processes
may simultaneously hold conflicting locks on the same
shared resource. We note, however, that the mutual ex-
clusion property as stated above is provably unattainable
in an asynchronous system that is subject to even a single
crash failure - a consequence of the impossibility of con-
sensus [35] in such an environment. Furthermore, as we
explain in the previous section, a hypothetical lock ser-
vice that does offer such guarantees would not by itself
suffice to guarantee data safety in such a setting due to the
possibility of out-of-order I/O request delivery.

Rather than restricting access to critical code sections,
our approach views the access coordination problem in
terms of I/O request ordering guarantees that the storage
system must provide to application processes. We refer to
this alternate notion of correctness using the termsession
isolation.

After defining this correctness property in formal terms,
we describe the protocol machinery for enforcing session
isolation on a single shared resource and then demonstrate
how more complex and useful application semantics, such
as distributed transactions, can be supported using session
isolation as a foundational building block. Lastly, we ad-
dress the issue of fault tolerance and present a mechanism
for loosely-consistent replication of locking state.

3.1 Session isolation
Throughout this paper, we will use the termresource
to denote the basic logical unit of concurrency control.
Each resourceR is identified by a unique and persis-
tent application-level identifier (denotedR.resID) and has
some physical representation on a SAN-attached stor-
age device, which we call itsowner (R.owner). More
concretely, a resource may represent a filesystem block,
a database table, or an individual tuple in a table.
An application process operates onR by (1) Issuing
READ/WRITE commands toR.owner; (2) Acquiring and
releasing locks onR.resID.

Definition 1. If a client processC requests aSharedlock
on R and the request is granted by the lock service, we
say thatC establishes aShared sessionto R. An exist-
ing Sharedsession is terminated whenC relinquishes the
shared lock (i.e., downgrades toNoLock). Analogously,
by acquiring anExcl lock, a process establishes anEx-
clusivesession toR that can subsequently be terminated
by downgrading toSharedor NoLock.

For a given pointt in a client’s local execution history,
we defineSessions(t, C, R)to be the set ofC’s active ses-
sions toR at time t, which is determined solely by the
sequence of prior upgrade and downgrade requests to the
lock service.Sessions(t, C, R)may contain aSharedor
anExclusivesession toR, or both, or none.

C1 

Shared 
session 

C2 

X 

Excl 
session 

 
UpgradeLock(X, Shared)  
R2.1(X) 
UpgradeLock(X, Excl) 
W2.1(X) 
W2.2(X)  
DowngradeLock(X, NoLock) 

Excl 
session 

Shared 
session 

 
UpgradeLock(X, Shared)  
R1.1(X) 
R1.2(X) 
UpgradeLock(X, Excl) 
W1.1(X) 
W1.2(X)  
DowngradeLock(X, Shared) 
R1.3(X) 
R1.4(X) 
DowngradeLock(X, NoLock) 

Figure 1: Concurrent request streams to a shared resource
X from two client processes,C1 and C2. Ri. j denotes thej-th
READoperation from client i and Wi. j represents aWRITE
operation, accordingly.

We say that aSharedsessionconflicts with everyEx-
clusive session to the same resource and anExclusive
session conflicts with every other session to the same re-
source.

Definition 2. If a client processC issues at timet a disk
requestr that operates onR, we say thatr belongs toa
sessionS if S∈ Sessions(t, C, R). For a given sessionS,
we additionally defineRequests(S)to be the set of all disk
requests that belong toS.

Definition 3. A given global execution history satisfies
session isolationwith respect toR if the sequence of disk
request messages M= 〈r1, r2, ...〉 observed and processed
in this history byR.ownersatisfies:

∀r i , r j ∈ M such that{r i , r j} ⊂ Requests(S) for some S:

6 ∃rk ∈ M such that i< k < j and rk ∈ Requests(S∗)

for some session S∗ from another client that conflicts with
S.

Informally, the above condition requiresR.ownerto ob-
serve the prefixes of all sessions toR in a strictly serial
order, ensuring that no two requests in a session are in-
terleaved by a conflicting request from another client. To
illustrate this definition, consider a pair of concurrent re-
quest sequences from two clients shown in Figure 1. In
this example,C1 first performs twoREADoperations on
X under the protection of aSharedlock, then upgrades to
an Excl lock and issues twoWRITEs and lastly, down-
grades toSharedand performs two moreREADs. Client
C2 acquires aSharedlock onX and submits aREADre-
quest, followed by an upgrade toExcl and twoWRITE
requests. In this scenario, the following two sequences of
request observations atX would satisfy session isolation:

E1 =〈R1.1, R1.2, W1.1, W1.2, R1.3, R1.4, R2.1, W2.1, W2.2〉

E2 =〈R1.1, R1.2, W1.1, R2.1, W2.1, W2.2〉
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An execution history that causesX to observe
〈R1.1, R2.1, R1.2, W1.1, W2.1〉 does not obey session
isolation because it permitsR2.1 and W2.1, two shared-
session requests fromC2, to be interleaved byW1.1, an
exclusive-session request fromC1.

Note that session isolation is more permissive than
strict mutual exclusion and in particular, permits execu-
tion histories in which two clients simultaneously hold
conflicting locks on the same shared resource. At the
same time, one could argue that these semantics meaning-
fully capture the essence of shared-disk locking, by which
we mean that the request ordering guarantees provided by
session isolation are precisely those that applications de-
velopers have come to expect from a traditional DLM. To
see this, observe that in the previous example, a conven-
tional lock service offering full mutual exclusion would
causeX to observeE1 by granting clients’ requests in
the order〈C1(Shared),C1(Excl),C2(Shared),C2(Excl)〉.
Likewise, E2 corresponds to a possible failure scenario
in whichC1 crashes after acquiring its locks, causing the
DLM to reclaim them and grant ownership toC2.

Our core approach is inspired by earlier work on bridg-
ing the intelligence gap between applications and block
storage devices. [36, 37]. We augment SAN-attached
disks with a small amount of application-independent
logic, which we call aguard, that enforces the session iso-
lation invariant on the stream of incoming I/O requests.
We associate asession identifier(SID) with every lock
granted to a client and modify the storage protocol stack
on application nodes to annotate all outgoing disk requests
with the currentSID for the respective resource. Below,
we refer to this annotation as arequest capsule.

The guard logic at target storage devices evaluates in-
coming requests based on the attachedSID and, for each
request, determines whether its acceptance would violate
session isolation. All such requests are dropped from the
input queue and the originating client process is notified
via a special error codeEREJECTED. From an applica-
tion developer’s point of view, session rejection appears
as a failed I/O request along with an exception notifica-
tion from the lock service indicating that a lock on the
respective resource is no longer valid.

The guard logic situated at the storage devices ad-
dresses the safety problems due to delayed messages
and inconsistent failure observations that plague asyn-
chronous distributed environments and enforcing safety at
the target device permits us to simplify the core function-
ality of the DLM module. In Minuet, the primary purpose
of the lock service is ensuring an efficient assignment of
session identifiers to clients that minimizes the aggregate
rate of session rejection for a given application workload.

Decoupling correctness from performance in this man-
ner enables substantial flexibility in the choice of mecha-
nism used to control the assignment of session identifiers.

At one extreme is a purely optimistic technique, whereby
every client selects itsSIDs via an independent local de-
cision without attempting to coordinate with the remain-
der of the cluster and this might be an entirely reasonable
strategy for applications and workloads characterized by
a consistently low rate of data contention. A traditional
DLM service that serializes all session requests at a cen-
tral lock server can be viewed as a design point at the other
extreme. Minuet tries to position itself in the continuum
between these endpoints and allow application develop-
ers to trade off lock service availability, synchronization
overhead, and I/O performance under heterogeneous data
access patterns.

3.2 Enforcing session isolation

Minuet uses a simple timestamp-based mechanism to en-
force session isolation on an individual shared resource.
A client’s session to a given resourceR is identified by
a value pair〈Ts,Tx〉 specifying asharedand anexclu-
sive timestamp, respectively. To acquire a lock onR,
the client proposesa session timestamp to the Minuet
lock manager. These proposals are globally unique - no
two clients propose an identical pair of values and no
client proposes the same value pair twice. Our current
design accomplishes this via the following timestamp for-
mat: 〈T.incNum.cliID〉, wherecliID uniquely identifies
the client andincNumis the client’sincarnation number-
a monotonic counter ensuring uniqueness across crashes.

The basic locking protocol proceeds as follows: ev-
ery client C maintains an estimate of the largest ses-
sion timestamp previously granted to any client, which
we denoteMaxTs(C,R) and MaxTx(C,R). To acquire
a Shared lock on R, C proposes a new session times-
tamp 〈ProposedTs,ProposedTx〉, where ProposedTx =
MaxTx(C,R) and ProposedTs is the smallest unique
timestamp greater thanMaxTs(C,R).

The client then sends anU pgradeLock request to
the Minuet lock manager, specifying the desired mode
(Shared) and the proposed timestamp pair. The lock
manager accepts and enqueues this request if no request
with a largerProposedTx value has been accepted. Oth-
erwise, the manager denies the request and responds
with U pgradeDenied, which includes the largest times-
tamp values observed by the manager. In the latter
case, the client updates its local estimatesMaxTs(C,R)
and MaxTx(C,R) and submits a new proposal. After
accepting and enqueuingC’s request, the lock manager
eventually grants it and responds with aLockGranted
message. The receipt of this message marks the start
of a shared session and the client initializes its session
identifier (denotedR.cliSID) as follows: R.cliSID :=
〈ProposedTs,ProposedTx〉. It also sets the current session
type (denotedR.cliSType) to Shared.

Acquisition of anExclusivelock (which includes up-
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grading fromSharedto Exclusive) proceeds analogously
except that clients increment theTx value in the pro-
posal and the lock manager checks bothProposedTs and
ProposedTx when determining whether to enqueue or
deny the request. After receiving aLockGrantedre-
sponse, the client setsR.cliSType:= Exclusive.

When a client issues a disk request operating on a re-
sourceR, it augments the request message with arequest
capsulethat identifies the affected resource and carries a
tuple of the form〈R.resID,R.cliSID,R.cliSType〉.

For each resourceR, its owner maintains a small
amount of metadata, which we call theowner session
identifier (R.ownSID), initially set to 〈Ts = 0,Tx = 0〉.
Upon receipt of an I/O request from a client, the owner
invokes the guard logic, which evaluates the request cap-
sule againstR.ownSIDto determine whether session iso-
lation would be preserved by accepting the request. Cap-
sule evaluation proceeds as follows: IfR.cliSTypespec-
ifies aSharedsession, the owneracceptsand enqueues
the request iffR.cliSID.Tx ≥ R.ownSID.Tx andrejects it
otherwise. Likewise, ifR.cliSTypespecifies anExclusive
session, the owner accepts the request iffR.cliSID.Ts ≥
R.ownSID.Ts andR.cliSID.Tx ≥ R.ownSID.Tx.

Upon acceptance, the owner updates its session iden-
tifier, setting R.ownSID.Ts to be the maximum of
R.ownSID.Ts andR.cliSID.Ts and settingR.ownSID.Tx to
the maximum ofR.ownSID.Tx and R.cliSID.Tx. Other-
wise, the request is discarded and anEREJECTEDre-
sponse is sent to the client, together with aresponse cap-
sulethat carries〈R.ownSID〉.

Upon receipt ofEREJECTED, the Minuet client ex-
amines the response capsule and notifies the application
process that its lock onR is no longer valid. AnExclusive-
mode lock is downgraded toShared if R.ownSID.Ts >
R.cliSID.Ts (since that indicates interruption of an ex-
clusive session) and aShared lock is further down-
graded toNoLock if R.ownSID.Tx > R.cliSID.Tx (since
in this case, a conflicting exclusive-session request has
been accepted). The client also updatesMaxTs(C,R) and
MaxTx(C,R) to reflect the most recent timestamp values
seen by the owner.

A diagram illustrating the basic locking protocol and a
formal correctness argument demonstrating that the pro-
tocol and the guard logic described above ensure ses-
sion isolation can be found in [38]. Informally, consider
two clientsC1 andC2 that compete for shared and exclu-
sive access toR, respectively, and suppose that a shared-
session request fromC1 got accepted with a session iden-
tifier 〈R.cliSID.T1

s ,R.cliSID.T1
x 〉. Observe that due to

global uniqueness of session proposals, the owner would
subsequently accept an exclusive-session request fromC2

with a session identifier〈R.cliSID.T2
s ,R.cliSID.T2

x 〉 only
if R.cliSID.T2

x is strictly greater thanR.cliSID.T1
x . In this

case, subsequent shared-session requests fromC1 would

get rejected and session isolation would be preserved.
A similar argument demonstrates that no two exclusive-
session requests can be interleaved by a conflicting re-
quest from another client.

3.3 Supporting transactional semantics

3.3.1 Overview and design requirements

Transactions are widely regarded as a useful program-
ming primitive and traditionally, SAN-oriented applica-
tions implement transactional semantics using two-phase
locking for isolation and a write-ahead logging (WAL) fa-
cility (sometimes referred to asjournaling) for atomicity
and durability. To commit a transaction, a client appends
to the log a sequence of Redo records that concisely de-
scribe its updates, after which a specialCommit record
is force-appended. Prior to releasing a lock on a dirty
resourceR, its holder flushes all committed updates to
the snapshot ofR, which ensures that the next reader ob-
serves the effects of every committed transaction. If a
client crashes during a transaction, the recovery process
examines its portion of the log and restores the affected
resource snapshots to a consistent state by replaying or
rolling back updates from the log.

To support transactions, Minuet relies on this well-
understood and widely-used mechanism, while extending
it with the use of the guard logic to address the safety
problems outlined in Section 2.2. Since the primary fo-
cus of this paper is feasibility of safe and highly-available
applications in SANs rather than performance, we pro-
vide only a subset of features typically found in a state-of-
the-art transaction service such as D-ARIES [24]. Below,
we present a design that implements redo-only logging to
support the "no force no steal" buffer policy and currently,
our design permits only one active transaction per process
at a time - after starting a transaction, a client must com-
mit or abort before initiating the next transaction. Finally,
we assume unbounded log space for each client. These
restrictions allow us to focus the discussion on the novel
aspects of our approach and we believe that additional op-
timizations, such as support for Undo logging, can be eas-
ily retrofitted onto our scheme if necessary. The following
set of requirements motivates our design:

(1) Avoid introducing assumptions of synchrony re-
quired by conventional transaction schemes for SAN
environments. We rely on the guard logic at target de-
vices to provide session isolation and protect the state on
disk from the effects of arbitrarily-delayed WRITEs oper-
ating on the application data and the log.

(2) Eliminate reliance on strongly-consistent lock-
ing. Rather than requiring clients to coordinate concur-
rent activity via a strongly-consistent DLM, the guard
logic at storage devices enables a limited form of isolation
and permits us to relax the degree of consistency required
from the lock service. Prior to committing a transaction,
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a client process in Minuet issues an extra disk request,
which verifies the validity of all locks acquired at the start
of the transaction. This mechanism allows us to identify
and resolve cases of conflicting access due to inconsis-
tent locking state at commit time and can be viewed as a
variant of optimistic concurrency control - a well-known
technique from the DBMS literature [39].

(3) Avoid enforcing a globally-consistent view of
process liveness.Rather than relying on a group mem-
bership service to detect client failures and initiate log re-
covery proactively in response to perceived failures, our
design explores alazy approach to transaction recovery
that postpones the recovery action until the affected data
is accessed. This enables Minuet to operate without global
agreement on group membership.

3.3.2 Basic transaction protocol

Minuet stores transaction redo information in a set of per-
client logs on shared disks. They appear to Minuet’s trans-
action module as regular lockable resources that can be
read and written to, while the guard logic is assumed to
enforce session isolation in the event of concurrent ac-
cess from multiple clients. The physical disk location of
a client’s log can be computed from its client identifier
(cliID ).

To support transactions, we extend the basic ses-
sion isolation machinery described in Section 3.2 with
an additional piece of state called acommit ses-
sion identifier (CSID), which has the following for-
mat: 〈cliID ,xactID〉. We also extend the request cap-
sule to carry two commit session identifiers with each
disk request, denotedcompareCSIDand setCSID, and
both are set toNIL unless specified otherwise. For
each shared resourceR, the owner device maintains
a commit session identifier (R.ownCSID) in addition
to R.ownSID. Upon receiving a disk request, the
guard logic examines the capsule and rejects the re-
quest if R.compareCSID.cliID 6= R.ownCSID.cliID or
if R.compareCSID.xactID < R.ownCSID.xactID. A
capsule is accepted only if itscompareCSID and
cliSID both pass verification and upon completing
the request, the owner device setsR.ownCSID :=
R.setCSID. If verification fails, the owner responds with
EREJECTEDand a response capsule carrying the tuple
〈R.ownSID,R.ownCSID〉.

In Minuet, transactions proceed in five stages:Begin,
Read, Update, Verify, andCommitand we illustrate them
using high-level pseudocode in [38]. During one-time ini-
tialization, Minuet’s transaction service at clientC locks
the client’s log inExclusivemode. To begin a new trans-
action T, the client selects a new transaction identifier
(curXactID) via a monotonically increasing local counter
and appends aBeginXactrecord to its log. Next, in the
Read phaseof a transaction, the application process ac-

quires aSharedlock on every resource read by the trans-
action (denotedT.ReadSet) and reads the corresponding
data from remote disks into local memory buffers. In the
Update phasethat follows, the process applies the desired
set of updates locally and communicates a description of
these updates to Minuet’s transaction service, which ap-
pends the corresponding set ofU pdaterecords to the log.
Each such record describes an atomic mutation on some
resource inT.WriteSetand essentially stores the parame-
ters of a single disk WRITE command.

The Verification phaseserves a dual purpose: to ver-
ify the validity of client’s sessions (and hence, the ac-
curacy of cached data) and to prepare the elements
of T.WriteSet for committing. For each resource in
T.ReadSet∪T.WriteSet, client sends a specialVERIFY
disk request1 to its owner, whose sole purpose is to trans-
port a capsule and invoke the guard logic at the de-
vice. VERIFY requests for elements ofT.WriteSetcarry
〈compareCSID= NIL,setCSID= 〈C,curXactID〉〉 in the
request capsule. If all resource sessions pass verifica-
tion, the transaction enters the finalCommit phase, during
which aCommitXactrecord is force-appended to the log.

The protocol outlined above ensures transaction iso-
lation, identifying cases of conflicting access during the
verification phase. Recall, however, that under the ses-
sion isolation semantics, any I/O command, including op-
erations on the log, may fail withEREJECTEDdue to
conflicting access from another client. This gives rise to
several exception cases at various stages of transaction ex-
ecution. For example, a client may receive an error while
forcing aCommitXactrecord to disk due to loss of session
to the log. This can happen only if another process has ini-
tiated log recovery onC and hence, the active transaction
must be aborted. Other failure cases and the correspond-
ing recovery logic are described in the report [38].

3.3.3 Syncing updates to disk

After committing a transaction, a clientC can flush
its locally-buffered updates toR simply by issuing
a sequence of correspondingWRITEs to R.owner.
Each such command carries the following param-
eters in the attached capsule:〈R.compareCSID=
〈C,syncXactID〉,R.setCSID= 〈C,syncXactID〉〉, where
syncXactIDdenotesC’s most recent committed trans-
action that modifiedR. After flushing all com-
mitted updates,C issues an additional zero-length
WRITE request, which specifies〈R.compareCSID=
〈C,syncXactID〉,R.setCSID= NIL〉 in the capsule. This
request causes the storage device to resetR.ownCSIDto
NIL, effectively marking the disk image ofR as "clean".
Lastly, C appends to its log anU pdateSyncedrecord of
the form〈R,syncXactID〉.

1Minuet implementsVERIFYrequests as zero-lengthWRITEs.
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3.3.4 Lazy transaction recovery

A client C can initiate transaction recovery when its disk
request on some resourceR fails with EREJECTEDand
a non-NIL R.ownCSIDvalue〈CF ,xactID〉 is returned in
the response capsule. This response indicates that the
disk image ofR may be missing updates from a trans-
action committed earlier by another clientCF . If C sus-
pects thatCF has failed, it invokes a local recovery pro-
cess that tries to repair the disk image. First,C ac-
quires exclusive locks onR and CF .Log and reads the
log from disk. Next,C searches the log for the most
recent transaction that has successfully flushed its up-
dates toR, from which it determines the list of subse-
quent committed updates that may be missing from the
disk image. The client then proceeds to repairing the
state ofR on disk by reapplying these updates and all
repair disk requests sent to the owner during this phase
specify 〈R.compareCSID= R.ownCSID,R.setCSID=
R.ownCSID〉 in the request capsule. Finally, after reap-
plying all missing updates,C completes recovery by send-
ing a zero-lengthWRITE request to the owner with
〈R.compareCSID= R.ownCSID,R.setCSID= NIL〉 in
the request capsule. A more detailed discussion of trans-
action recovery in Minuet can be found in [38].

3.4 Lock manager replication
Some lock services seek to achieve fault tolerance by
replicating lock managers. Since Minuet does not need to
provide assurances of mutual exclusion, it relies on a sim-
pler and more available replication scheme that permits
clients to retain progress in the face of extensive node and
connectivity failures. A lock can be acquired as long as at
least one of the manager instances is reachable2.

To support manager replication, we extend the ba-
sic locking protocol presented in Section 3.2 as follows:
When acquiring or upgrading a lock, a client selects a sub-
set of managers, which we call itsvoter set, and sends an
U pgradeLockrequest to all members of this set. The lock
is considered granted onceU pgradeGrantedvotes are
collected from all members. If any of the voters respond
with U pgradeDenieddue to an outdated timestamp, the
client downgrades the lock on all members that have re-
sponded withU pgradeGranted, updates itsMaxTs and
MaxTx values, and resubmits the upgrade request with a
new timestamp proposal3.

4 Implementation
We have implemented a proof-of-concept prototype of
Minuet based on the design presented in the preceding

2In an extreme case, that instance can be the local Minuet client itself,
which would simply grant its own proposals without coordinating with
other processes.

3As a performance optimization, we allowU pgradeLockrequests to
specify animplicit downgradefor an earlier timestamp.

section. The prototype has been implemented on the
Linux platform using C/C++ and consists of a client-side
library, a lock manager process, an iSCSI protocol stack
extension, and two sample clustered applications.

4.1 Core Minuet modules

Client-side library (5440 LoC): The client-side com-
ponent is implemented as a statically-linked library and
provides an event-driven interface to Minuet’s core ser-
vices, which include locking, remote disk I/O, and trans-
action execution. When requesting a lock, a client can
optionally specify the desired size of the voter set, which
enables application developers to tune the degree of lock-
ing consistency, enabling a choice between optimism and
strict coordination. A small voter set works well for low-
contention resources; it helps keep the lock message over-
head low and permits clients to make progress in a par-
titioned network. Conversely, a large voter set requires
connectivity to more manager replicas, but reduces the
rate of I/O rejection under high contention. All outgo-
ing disk commands are augmented with the appropriate
request capsules and in the event of rejection by the target
device, aForcedDowngradeevent is posted to inform the
application that the corresponding lock has been down-
graded to some weaker mode.

Minuet lock manager (4285 LoC): The lock manager
process grants and revokes locks using the timestamp
mechanism of Section 3.2 and several manager replicas
can be deployed for fault tolerance. For each lockable re-
source, the manager maintains the current lock mode, the
list of current holders, the queue of blocked upgrade re-
quests, and the largest observed timestamp proposal.

SAN protocols and guard logic: To demonstrate the
practicality of our approach, we implemented the guard
logic and capsule propagation within the framework of
iSCSI [40], a widely-used protocol for IP-based SANs,
and our prototype extends an existing software-based
implementation of the iSCSI standard. On application
client nodes, we modified the top and the bottom lev-
els of the 3-tier Linux SCSI driver model. The top-level
driver (linux/drivers/scsi/sd.c) presents the abstraction of
a generic block device to the kernel and converts incom-
ing block requests into SCSI commands. We extended
sd with a newioctl command, which enables the Minuet
client library to specify request capsules for outgoing disk
requests and to retrieve response capsules.

The bottom-level driver implements TCP encapsulation
of SCSI commands and our current prototype builds upon
the Open-iSCSI Initiator driver [41] v2.0-869.2. We used
the Additional Header Segment AHS) feature of iSCSI
to attach Minuet capsules to SCSI command PDUs and
defined a new AHS type for this purpose.

Our storage backend is based on the iSCSI Enterprise
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Target driver [42] v0.4.16, which exposes a local block
device to remote clients via iSCSI. We extended it with the
guard logic, which examines incoming command PDUs
and makes an accept/reject decision based on the capsule
content. Command rejection is signaled to the initiator via
the REJECT PDU defined by the iSCSI standard.

The addition of guard logic represents the most sub-
stantial functionality extension to the SAN protocol stack,
but incurs only a modest increase in the overall complex-
ity. The initial implementation of the Enterprise Target
driver contained 14341 lines of code and augmenting it
with Minuet guard logic required adding 348 lines.

4.2 Sample applications

Distributed chunkmap (342 LoC): Our first applica-
tion implements a read-modify-write operation on a dis-
tributed data structure comprised of a set of fixed-length
data chunks. It mimics atomic mutations to a distributed
chunkmap - a common scenario in clustered middleware
such as filesystems and databases. The chunkmap could
represent a bitmap of free disk blocks, an array of i-node
structures, or an array of directory file slots. In each itera-
tion, the application selects a random chunk, reads it from
shared disk, modifies a random chunk region, and writes it
back to disk. To ensure update atomicity, the application
acquires an exclusive lock on the respective block from
Minuet prior to reading it from disk and releases the lock
after writing the modified version.

Distributed B-Tree (3345 LoC): To demonstrate the
feasibility of serializable transactions, we implementeda
distributedB-link tree [43] (a variant ofB+-tree) on top
of Minuet. Our implementation providesInsert, Delete,
Update, andSearchoperations based on the transaction
protocol presented in Section 3.3.2. For each operation,
the application initiates a transaction and fetches the chain
of tree blocks necessary for the operation (Read phase).
Next, it upgrades the locks on the modified blocks to ex-
clusive mode and logs the updates (Update phase). Lastly,
the client verifies the sessions on all blocks in the chain
(Verification phase) and commits the transaction only if
all sessions are valid. If a transaction aborts due to loss
of session to a B-tree block or the client’s log, the ap-
plication reacquires the corresponding lock and retries
(without backoff) until it commits successfully. For ef-
ficiency, clients retain locks (and the content of cache
buffers) across transactions and stale cache entires are de-
tected and invalidated during the verification phase.

5 Evaluation
In the previous sections, we have shown how Minuet pro-
vides safety by adding guard logic to SAN target devices.
In this section, we evaluate the performance of the sam-
ple applications atop Minuet and provide comparison with

Storage servers Lock managers Clients
# Nodes 4 5 32

CPU 3GHz Xeon 850Mhz Pentium III
RAM 2GB 512MB
DISK 10K RPM SCSI 7200 RPM IDE

Table 1: Hardware specification of the cluster

traditional strongly-consistent locking.

5.1 Experimental setup
For our experiments, we emulated a SAN environment
with 41 Emulab [44] nodes, interconnected via 100Mbps
links. Detailed hardware specification is given in Table 1.

We allocated four storage nodes that provided 2GB
of logical disk space, equally striped across the nodes.
The remaining machines were assigned to client processes
and Minuet lock manager processes. Client instances ran
across 32 nodes and they saturated neither CPU nor RAM.

In our experiments, we measured application operation
goodput, the number of successful application-level op-
erations per second, varying the number of clients (i.e.
offered load) under the following two locking scenarios4:

strong(x): A strongly-consistent locking protocol. Each
client must get permissions from a majority (x) of lock
manager processes. 2x− 1 nodes were dedicated to run
2x−1 lock manager processes.

weak-own: An extreme form of weakly-consistent lock-
ing. Each client has its own lock manager and does not
coordinate with other clients.

We also considered two forms of workload:

uniform: In the chunkmap application, each operation
selects the block to modify uniformly at random. In the
B+-tree application, each operation chooses a key to ac-
cess uniformly at random.

skewed(x/y): This is a hotspot workload.y% operations
touchx% of the entire blocks or entire key space.

5.2 Distributed chunkmap
We configured the block size to 4 KB and ran experiments
in which each client modified blocks for five minutes.

Figure 2 shows the aggregate operation goodput un-
der theuniform workload. Since there are a large num-
ber of blocks (500K blocks) in the storage node, this re-
sult represents a low-contention scenario. We observe that
the weakly-consistent locking scheme shows slightly bet-
ter performance, up to 32 clients, than the strong lock-
ing scheme with five lock managers. This result suggests
that our approach has a potential in improving application
goodput in scenarios while guaranteeing safety where the
overall load is high, but contention for a single resource is

4Note that in our experiments, applications rely on Minuet to provide
both modes of locking (i.e.,strong(x) andweak−own) and do not make
use of any other synchronization facilities.
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Figure 2: Goodput of the distributed
chunkmap under theuniform workload
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Figure 3: Goodput (left) and the rate of rejected I/O requests (right) observed
by 32 clients varying the skewness of the workload. The fact that the reject I/O
request rate is 0.1 means 10% of I/O requests are rejected.
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Figure 4: Goodput of the distributed chunkmap (left), the rate of denied lock requests (center), and the rate of rejected
I/O requests (right) under the skewed(5/95)workload.

relatively rare. Moreover, even skewed workload scenario
shows the weakly-consistent locking provides compara-
ble performance to the strong locking scheme. (Figure 4
(left)) This is because clients in theweak-ownscenario do
not incur locking overhead (Figure 4 (center)), despite re-
jected I/O requests (mostlyREADrequests) at the storage
nodes (Figure 4 (right)).

The rate of I/O rejection increases when a system has
resource hotspots (Figure 3). However, in our experi-
ments, weakly-consistent locking can still provide rea-
sonable performance in such scenarios, since traditional
strong locking also face increasing lock synchronization
overhead.

We also ran experiments of a partitioined network sce-
nario, where each client can communicate with only a
subset of replicas. A strongly-consistent locking protocol
demands a well-connected primary component containing
at least a majority of manager replicas - a condition that
our partitioned scenario fails to satisfy. As a result, no
client can make progress with traditional strong locking
and the overall application throughput is zero. In contrast,
under Minuet’s weak locking, clients can still make good
progress. This experiment demonstrates the availability
benefits that our approach gains over a traditional DLM
design by loosening the consistency of locking state.
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Figure 5: Goodput of the distributed B+-tree under
the uniform workload

5.3 Distributed B-tree
We configured each tree node to 8KB to hold 150 keys
and satellite values (e.g., a pointer to other nodes) in a
single block. We pre-populated B-tree in our experiments;
we inserted 200K keys a priori so that the tree height is
three. After creating the distributed tree, we randomly
issued insertion operations and search operations at the
80% probability and 20% probability, respectively. Target
keys were chosen randomly.

Figure 5 shows the goodput of the distributed B-tree
application withstrong(1). Both locking schemes are safe
to use thanks to Minuet. Withstrong(1), the application’s
goodput scales as the client workload increases. However,
with weak-own, the goodput does not scale. From our de-
bugging, it turns out that the problem happened because
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only one client keeps sending transactions successfully
since clients are greedy (i.e., send requests as fast as they
can). This problem is a general problem in any optimistic
concurrency control scheme. Due to time constraints, we
were unable to perform a full-scale performance analysis
and resolve this problem but we plan to address these is-
sues in the future by exploring some arbitration between
clients or by locally introducing some randomised delays
between transactions.

6 Discussion
In this section, we discuss several issues pertaining to the
practical feasibility of our approach and the implications
of Minuet’s programming model.

Practical feasibility: Our approach rests on the basic
idea of extending network-attached storage arrays with
a small amount of guard logic that enables them to de-
tect and filter out inconsistent I/O requests. Fundamen-
tally, this requires extending disk hardware or firmware
and modifying existing storage protocols to carry some
additional state, which may raise concerns about the fea-
sibility of our approach.

We acknowledge that Minuet assumes functionality
that does not presently exist in standard disk hardware
and, consequently, faces a non-trivial barrier to deploy-
ment. However, we observe that the proposed changes
are very incremental in their nature and can be easily im-
plemented within the confines of a traditional SAN access
protocol such as iSCSI. The guard logic is amenable to ef-
ficient implementation in hardware or firmware, requiring
only a few table lookups and comparison operations.

As we argue above, the benefits of implementing such
an extension can be substantial. In addition to lifting
the safety and liveness limitations that have traditionally
characterized shared-disk applications and middleware,
our approach establishes a new degree of freedom in the
design space of SAN concurrency protocols, enabling a
choice between optimism and strict coordination.

Metadata storage overhead: In our prototype imple-
mentation, target storage devices maintain 16 bytes of per-
resource metadata. For a typical middleware service such
as a database or a filesystem, a resource would correspond
to a single fixed-length block containing application data
or metadata and taking a clustered filesystem as an exam-
ple, block sizes in the range 128KB - 1MB are considered
common [45]. Assuming 128KB application block size,
our design incurs a storage overhead of 0.01%.

Perhaps more alarmingly, Minuet metadata must be
stored in random-access memory for efficient lookup on
the data path. We envision the use of flash memory or
battery-backed RAM for this purpose and observe that to-
day, high-performance storage arrays make extensive use
of NVRAM for asynchronous write caching [46,47].

Different programming model: Another concern is
that Minuet introduces an alternative programming
model, exposing application developers to additional ex-
ception cases that do not naturally arise under strong lock-
ing. When a traditional DLM service grants a lock to an
application process, the lock is assumed to be valid and
the client can proceed to accessing the disk without wor-
rying about conflicting access from other clients. In con-
trast, Minuet gives out locks in a more permissive manner,
but provides machinery for detecting and resolving incon-
sistent access at the storage device. As a result, applica-
tions that rely on Minuet for concurrency control must be
programmed with the assumption that any I/O request can
fail with EREJECTEDdue to inconsistent lock state.

We observe that while I/O rejection does not occur un-
der strongly-consistent locking, the protocols employed
by traditional DLMs for ensuring system-wide consis-
tency of locking state inevitably expose application de-
velopers to analogous exception cases. For instance, a
network connectivity problem causing some application
node to lose connectivity to a majority of lock managers
would typically cause that node to observe a DLM-related
exception event. More concretely, the application pro-
cess would be informed that due to lack of connectivity,
some of its locks may no longer be valid - these are pre-
cisely the semantics of Minuet’sForcedDowngradenoti-
fication. Hence, both models demand exception-handling
for dealing with forced lock revocation.

With Minuet, a node that finds itself partitioned from
the rest of the cluster need not immediately give up its
locks and instead, can perform a more granular recov-
ery action. For example, it can switch to the optimistic
method and resume disk access without coordinating with
other application processes and this would permit it to
make progress in the absence of conflicting access.

Our experience with developing and deploying sample
applications on top of Minuet suggests that the availabil-
ity benefits enabled by the use of such fine-grained re-
covery actions are certainly worth the extra implementa-
tion effort, which we believe to be relatively small. The
chunkmap application was initially implemented on top
of conventional locking using 327 lines of C code and
extending the implementation to operate on top of Min-
uet required adding only 15 lines of code to handle the
EREJECTEDandForcedDowngradenotifications.

7 Related Work
Concurrency control has been extensively studied in the
operating systems, distributed systems, and database com-
munities. VMS [48] was among the first widely-available
operating systems to provide application developers with
the abstraction of a general-purpose DLM. Since then,
DLMs have been widely adopted for various purposes and
today, they are viewed as a useful general-purpose build-
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ing block for distributed applications and middleware.
Clustered filesystems (GFS [7], OCFS [8], PanFS [9],

GPFS [10], Lustre [11], Xsan [12]) and relational
databases (Oracle RAC [13]) rely on a distributed
lock manager to coordinate parallel access to appli-
cation data, metadata, and logs residing on shared
disks. OpenDLM [21] is a widely-adopted general-
purpose DLM implementation for Linux, currently used
by GFS [7] and other clustered filesystems.

In web service data centers, distributed locking ser-
vices such as Chubby [14] and Zookeeper [15] have also
become popular. These services are intended primarily
for coarse-grainedsynchronization - a typical use case
might be to elect a master among a set of Bigtable [49]
servers. Although the intended use of Minuet is to pro-
videfine-grainedsynchronization in a shared-disk cluster,
our system can also support such use cases by transition-
ing to strongly-consistent locking, whereby each lock is
acquired with a majority voter set. Unlike our system,
Chubby provides a hierarchical resource namespace and
the ability to store small pieces of data, in effect offering
a filesystem-like abstraction, but these features are largely
orthogonal to our approach. Chubby’slock sequencer
mechanism allows servers to detect out-of-order requests
submitted under the protection of an outdated lock and our
timestamp-basedsessionsgeneralize this idea to support
shared-exclusive locking. We also develop this notion fur-
ther and observe that once we have the ability to reject in-
consistent requests at the destination, very little is gained
by enforcing strong consistency on replicated lock man-
agement state and specifically, the use of an agreement
protocol (e.g., Paxos [27]) may be more than necessary.

Concurrency control and transaction mechanisms have
been extensively studied in databases. In addition to
database locking protocols mentioned in Section 1, we
discuss other relevant database systems. ARIES [50] is a
state-of-the-art transaction recovery algorithm for a cen-
tralized database, supporting fine-granularity locking and
partial rollbacks of transactions, while D-ARIES [24] ex-
tends this work to be usable in distributed shared-disk
databases. Implementing these mechanisms on top of
Minuet’s locking and I/O facilities would ensure that they
retain their safety properties in the face of arbitrary asyn-
chrony. Minuet’s basic transaction service presented in
Section 3.3 incorporates elements of write-ahead logging,
timestamp ordering, and two-phase commit, all of which
are standard and well-known techniques in database de-
sign. Finally, database researchers have explored hybrid
approaches to concurrency control [51] that enable trade-
offs between optimism and strict coordination and our
work enables similar tradeoffs for applications deployed
in a SAN environment, where data resides on application-
agnostic block storage devices.

There have been several research projects tackling

intelligence/information gap between operating systems
and storage systems [36, 37, 52–55]. The projects aim
to achieve more expressive storage interfaces by expos-
ing more information or adding more intelligence to stor-
age devices. Object-based storage introduces objects as
storage resources [52]. Active disks execute downloaded
generic code [37,53]. ExRAID exposes performance and
failure information and I-LFS extends a log structured
file system by utilizing the information for better per-
formance, flexibility, and reliability [55]. Track-aligned
extents explores the benefits of exposing disk character-
istics [54]. Our approach is in line with these research
projects. In our work, we identified and tackled safety
problems in SANs by narrowing the intelligence gap be-
tween clustered applications and SAN storage devices.

Similar in spirit to this work, SCSI-3 Persistent Re-
serve [34] tries to address the safety problems caused by
inconsistent requests by extending the storage protocol
and target devices. Typically, revoking a suspected node’s
reservation necessitates a global decision on declaring the
respective process faulty, which, in turn, requires major-
ity agreement. Hence, SCSI-3 PR offers safety but not
liveness in the presence of network partitions and massive
node failures, while our approach provides both.

8 Conclusion
This paper investigates a novel approach to concurrency
control in SANs. Today, clustered SAN applications co-
ordinate access to shared state on disks using strongly-
consistent locking protocols, but they are subject to safety
and liveness problems in the presence of asynchrony and
failures; strict mutual exclusion guarantees are neither
sufficient nor necessary for application-level correctness.

To solve safety problems, we augment SAN target de-
vices with a small amount of logic called a guard, which
enables us to provide a property called session isolation
and a relaxed model of locking. These, in turn, provide a
foundational building block for more complex and useful
application semantics such as transactions. We also show
that this block enables us to loosen the consistency se-
mantics of a distributed lock service, thus providing high
availability despite failures and network partitions.

We have designed, implemented, and evaluated Minuet,
a DLM-like synchronization and transaction module for
SAN applications based on the techniques and protocols
we presented. Our evaluation suggests that distributed ap-
plications built atop Minuet enjoy good performance and
availability, while guaranteeing safety.
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