Minuet: Rethinking Concurrency Control in Storage Area Networks

Abstract SAN applications and middleware is ensuring safe and
o . efficient coordination of access to application state and
Clustered applications in storage area networks (SANgjetadata that resides on shared storage. The traditional
widely adopted in enterprise datacenters, have traditi%{bproach to concurrency control in shared-disk clusters
ally relied on distributed locking protocols to coordinatg,olves the use of a synchronization module calletisa
concurrent access to shared storage devices. We exg{Bgted lock manage(DLM) [7]. Traditional DLM ser-
ine the semantics of traditional lock services for SAN etices aim to provide the guaranteestfict mutual exclu-
vironments and ask whether they are sufficient to guafpn, ensuring that no two processes in the system can
antee data safety at the application level. We argue tQghytaneously hold conflicting locks. In abstract terms,
a traditional lock service design that enforces stnitt- providing such guarantees requires enforcing a globally-
tual exclusionvia a globally-consistent view of lockingconsistent view of lock acquisition state and one could
state is neither sufficient nor strictly necessary to €Mrgue that a traditional DLM design views such consis-
sure application-level correctness in the presence of-asbghcy as an end in itself rather than a means to achieving
chrony and failures. We also argue that in many casgplication-level correctness.
strongly-consistent locking imposes an additional and un-, tnis paper, we take a closer look at the semantics of

necessary constraint on application availability. Armeg, yiional lock services and ask whether the assurances of
with these observations, we develop a set of novel CONCH mtal exclusion and strongly-consistent locking,are
rency cqntrol and recovery protocols for clustgred S fact, a prerequisite for correct application behavianr O
applications that achieve safety and liveness in the 1368, finding is that the standard semantics of mutual ex-
of arbitrary asynchrony, crash failures, and network pPaifysion provided by a DLM are neither strictly necessary
titions. Finally, we present and evaluate Minuet- a néy, s fficient to guarantee safe coordination of access to
synchronization primitive based on these protocols thgfs e state on disk in the presence of process failures
can serve as a foundatlonal 'bundlng block for safe agﬂd asynchrony. In particular, processing and queuing de-
highly-available SAN applications. lays in SAN switches and host bus adapters (HBAs) ex-
: pose applications to out-of-order delivery of I/O requests
1 Introduction from presumed faulty processes which, in certain scenar-
In recent years, storage area networks (SANS) have bésh can incur catastrophic violations of safety and cause
gaining widespread adoption in enterprise datacenterspgmanent data loss.
and are proving effective in supporting a range of appli- We propose and evaluate a new technique for disk ac-
cations across a broad spectrum of industries. Accordicgss coordination in SAN environments. Our approach is
to a recent survey of IT professionals across a rangebafsed on augmenting target storage devices with a tiny
corporations, government agencies, and universities, fliece of application-independent logic, calledyaard,
majority (80%) have deployed a storage-area networkthmat rejects inconsistent I/0 requests and enables us+o pro
their organizations, and 26% of the respondents repeide a property calledession isolationThe guard logic
have deployed five or more SANs [2]. Some of the corenables a novabptimisticapproach to concurrency con-
mon applications include online transaction processingtiol in SANs and can be used to make existing protocols
finance and e-commerce, digital media production, busafe in the face of arbitrarily delayed message delivery,
ness data analytics, and high-performance scientific camnifting clocks, crash process failures, and network par-
puting. A number of hardware and software vendors, itiions. In addition, session isolation provides a founda-
cluding companies such as EMC, HP, IBM, and NetAppipnal primitive for implementing more complex coordi-
offer SAN-oriented products to their customers [3-6]. nation semantics, such aegrializable transactionsand
A SAN architecture is a particularly attractive choiceve demonstrate one such protocol.
for parallel clustered applications that demand high-dpee We also describe the implementation of Minuet- a soft-
concurrent access to a scalable storage backend. Suctwape library that provides a novel synchronization prim-
plications commonly rely on a clustered middleware setive for SAN applications based on the protocols we
vice to provide a higher-level storage abstraction such@gsent. Minuet assumes the presence of guard logic at
a filesystem (GFS [7], OCFS [8], PanFS [9], GPFS [10he target storage devices and provides applications with
Lustre [11], Xsan [12]) or a relational database (Oradlecking and distributed transaction facilities, while gua
RAC [13]) on top of raw disk blocks. anteeing liveness and data safety in the face of arbitrary
One of the primary design challenges for clusteregynchrony, node failures, and network partitions.



Unlike existing services for fault-tolerant distributegblications that require high-speed parallel access tashar
coordination such as Chubby [14] and Zookeeper [1®ersistent state. In the SAN (shared-disk model, per-
Minuet requires its lock managers to maintain onlyistent storage devices, typically disk drive arrays or spe
loosely-consistent replicas of locking state and thus peralized hardware appliances, are attached to a dedicated
mits applications to make progress with less than a nserage networlkand appear to members of the application
jority of replicas. To demonstrate the practical feadipili cluster as local disks. Most SANs utilize a combination of
of our approach, we implemented two sample applicatioBESI and a low-level transport protocol such as TCP/IP
— distributed chunkmap and B+-Tree — on top of Minueir FCP (Fibre Channel Protocol) for communication be-
and evaluated them in a clustered environment supportegen application nodes and target storage devices.
by an iSCSI-based SAN. The goal is to provide fully-decentralized access to

The benefits of optimistic concurrency control and thehared application state and in principle, any SAN-
associated tradeoffs have been explored extensively indtiached application node can access any piece of data
context of database management systems (DBMS) avithout routing its requests to a dedicated server. While
are well-understood. In particular, techniques such iasthis model, all requests on a particular piece of data
callback locking, optimistic 2-phase locking, and adapre centrally serialized, the crucial distinction from the
tive callback locking [16—20] have been proposed to etmaditional server-attachedstorage paradigm is that the
able safe coordination and efficient client-side cachingpoint of serialization is a hardware disk controller that
client-server databases. It is important to note, howevexposes an application-independent 1/O interface on raw
that these approaches are not directly applicable to SANsk blocks and is oblivious to application semantics and
because they assume the existence of a central lock sen@ta layout considerations.
typically co-located with the data block storage server.Broadly, the SAN paradigm can be seen as advanta-
This assumption does not hold in a SAN environmenjeous from the standpoint of availability because it of-
where the storage "servers" are application-agnostic digks better redundancy and decouples node failures from
arrays that possess no knowledge of locking state or plgss of persistent state. Incoming application requests ca
cess liveness status. Hence, a conservative DLM servigerouted to any available node in the application cluster
that enforces strict mutual exclusion has traditionallgrbeand in the event of a node failure, subsequent requests can
viewed as the only practical method for disk access cooe redirected to another processor with minimal interrup-
dination for clustered SAN applications. tion of service. In contrast, a node failure in the server-

Our main insight is that a single nearly trivial extensioattached model may render some portions of the dataset
to the internal logic of a SAN storage device suffices to agtmporarily or permanently unavailable.
dress the data safely problems associated with traditionabne of the primary design challenges for clustered
DLMs and enables a very different approach to storage N applications and middleware is ensuring safe and ef-
cess coordination. Crucially, we achieve this without irficient coordination of access to shared state on disk and
troducing application-level logic into storage devices amommonly, a software service calledDastributed Lock
without forfeiting the generality and simplicity of the fraManager(DLM) is employed to provide such coordina-
ditional block-level interface to SAN-attached devices. tion [7]. A typical lock service, such as OpenDLM [21],

The rest of this paper is organized as follows. In Seexposes a generalized notion ofesource an abstract
tion 2, we provide the relevant background on SAN arapplication-level entity that requires access coordamati
some representative examples of data safety problemsaral attempts to provide the guaranteenuftual exclu-
Section 3, we present our main contribution - the designgibn [22] - no two processes may simultaneously hold
Minuet, a novel safe and highly available synchronizati@onflicting locks on the same resource.
mechanism for SAN applications. Section 4 describes our. . .
prototype implementafi)gn of Minuet and two sample cluéi2 Safety and liveness problems in SANs
tered applications. We evaluate our system in Sectionrbprinciple, DLM-based mutual exclusion offers suffi-
and discuss practical aspects of our approach in Sectiogiént mechanism to guarantee safe access to shared ap-
Finally, we discuss related work in Section 7 and COﬂC|Uéﬁcati0n state on disk. In practice, however, guaranggein

in Section 8. safe serialization of disk requests tends to be more diffi-
cult than the above discussion might suggest due to the
2 Background effects ofprocess failuresndasynchrony The following

examples illustrate the nature of the problem.

2.1 Storage area networks (SANs) Scenario 1: Consider two clientsC; and Cy, that
Storage area networks are becoming increasingly pojpwe concurrently accessing a data structiresiding on
lar in enterprise datacenters and are commonly adopted tehared diskD in a contiguous array of blocks num-
support the storage needs of data-intensive clustered lagred [0-9]. Suppos€; is updatingS under the pro-



tection of an exclusive lock, whil€, wants to read the damentally, these assumptions are probabilistic at bélst an
contents ofS into a local memory buffer and is waitingsince application data integrity is predicated on the valid
for a shared lock or8. C; submitsWRITEof fset= ity of these assumptions, failure timeouts must be tuned
3,length=5,data) to D, but crashes before hearing a re¢o a very conservative value and account for worst-case
sponse and the lock manager correctly detects the failavdtch queuing delays and request buffering at the host.
(e.g., via a heartbeat mechanism) and reacts by reclaach (necessarily) pessimistic method of tuning timeouts
ing the exclusive lock and granting it in shared mode toay have a profoundly negative impact on failure recov-
Cy. That client proceeds to readii®from disk and sub- ery times - one of the common criticisms of SAN-oriented
mits READ(of fset= 0,length=5) to D, which returns applications [25].
old data. NextC;'s delayedW RIT Erequest reaches the Another serious limitation exhibited by today’'s SAN
disk and overwrites the data at offs¢3s- 7], after which applications isliveness The DLM (or lease manager)
C, issuesREAD(of fset= 5,length=5). Note that al- represents an additional point of failure and while various
though each individual I/0 request is processe®tas an fault tolerance techniques can be applied to improve its
atomic unit, this scenario would cauSe to observe and availability, the very nature of the semantics enforced by
act upon gpartial update fromCy, which can be viewed the DLM places a fundamental constraint on the overall
as a violation of data safety. system availability. For instance, multiple lock manager
As an alternative to heartbeat failure detection, a leageplicas can be deployed in a cluster, but mutual exclu-
based mechanism [23] can be used to coordinate clierign can be guaranteed only if clients’ requests are pre-
accesses in the above example, but precisely the s@aeeted to them in a consistent order, which necessitates
problematic scenario would arise when clocks are not syRechanisms such as state machine replication [26] and
chronized. WherC; crashes and its lease expires, tHeaxos [27]. Alternatively, a single lock manager instance
lease manager could grant it@ prior to the arrival of may be elected dynamically [28-30] from a group of can-
the lastW RIT Efrom C; to the storage target. Since thélidates and in this case, ensuring mutual exclusion neces-
target has no way of coordinating with the lease managgitates global agreement on the lock manager’s identity.
it fails to establish the fact that an incoming request frol both cases, reaching agreement fundamentally requires
C; is inconsistent with the current lease ownership stat@ccess to an active primary component - typically a ma-
Scenario 2: Commonly, clustered applications andPrity of nodes. As a result, a large-scale node failure or a
middleware services need to enforce transactional sem@@Work partition that renders the primary component un-
tics on updates to application state and metadata. iffilable or unreachable may bring about a system-wide
a shared-disk clustered environment, distributed trans@gtage and complete loss of service.
tions have traditionally been supported via the use of 0 summarize, today's SAN applications and middle-
two-phase locking in conjunction with a distributed writevare face significant limitations along the dimensions
ahead logging (WAL) protocol and we refer the reader & Safety and liveness. At present, several hardware-
D-ARIES [24] for a detailed exposition of transaction reassisted techniques, such as out-of-band power manage-
covery in the context of a shared-disk parallel RDBM&eNt (STOMITH) [31, 32], SAN fabric fencing [33], and
In the abstract, the system maintains a snapshot of appf=S!-3 PR [34] can be employed to mitigate some of
cation state along with a set of per-client logs (also dhese issues. These mechanisms help reduce the likeli-
shared disks) that record Redo and/or Undo informatiffod of data corruption under common failure scenarios,
for all updates and the commit status of every transactiéit do not provide the desired assurances of safety in the
During failure recovery, the system must examine the sig&neral case and, as we would argue, do not address the
pected client's log and restore consistency by rolling babRderlying problem. \We observe that the underlying prob-
all uncommitted updates and replaying all updates assd@m may be a case afapability mismatctbetween "in-
ated with committed transactions that may not have beléHigent” application processes that possess full knowl-
flushed to the snapshot prior to failure. An essential uddge of application’s data structures, physical disk layou
derlying assumption is that once a failure suspicion eveHtd consistency semantics on the one hand and relatively
is delivered and the decision to initiate log recovery i§lumb" storage devices on the other. The safety problems
made, no additionalVRIT Erequests from the Suspectealustrated above can be attributed to a disk controller’s

process will reach the snapshot or the log and data corrlfitbility to identify and appropriately react to the varsou
tion may occur if this assumption is violated. application-level events such bk releasefailure sus-

Ensuring data safety in a shared-disk environment Hi§io andfailure recovery action
traditionally required introducing a set @artial syn- : ;
chrony assumptionsuch as bounded network propagr§ Minuet DeSIgn
tion delays and clock drift rates, that enable the use Af a high level, our approach reexamines the correctness
reliable heartbeat-driven failure detectors and leasas- Fcriteria that a cluster DLM service must provide to ap-



plications. Traditionally, DLMs tend to treat shared ap- Cy C2

plication resources as purely abstract entities enforee thypgradeLock(x, shared) UpgradeLock(X, Shared)

group mutual exclusioproperty: no two client processes 5130 oL ock(x, Excl)

may simultaneously hold conflicting locks on the same@pgradeLock(X, Excl) w2.1(x) Excl

shared resource. We note, however, that the mutual e1z60 Jsco D Lot NoLock

clusion property as stated above is provably unattainab%_“;’gg;adem“k(x’ Shared) e

in an asynchronous system that is subject to even a sin%ezt(X)
. . L owngradeLock(X, NoLock)

crash failure - a consequence of the impossibility of con-= |

sensus [35] in such an environment. Furthermore, as we session

explain in the previous section, a hypothetical lock ser- —

vice that does offer such guarantees would not by itself

suffice to guarantee data safety in such a setting due to the

possibility of out-of-.or('ier /O request ‘?'?"Very- __Figure 1: Concurrent request streams to a shared resource
Rather than restricting access to critical code sectioRSyom two client processesC; and Cy. R denotes thej-th

our approach views the access coordination problemdg Apoperation from client i and W j represents aWRITE
terms of 1/O request ordering guarantees that the storageration, accordingly.

system must provide to application processes. We refer to
this alternate notion of correctness using the teassion ~ We say that &haredsessiorconflicts with everyEx-
isolation clusive session to the same resource and EBxclusive
After defining this correctness property in formal term§’eSSi0n conflicts with every other session to the same re-
we describe the protocol machinery for enforcing sessig@urce.
isolation on a single shared resource and then demonSt@éﬂnition 2

2 : If a client proces<C issues at timé a disk
how more complex and useful application semantics, S“r‘é,'(}uestr that operates ofR, we say that belongs toa

as distributed transactions, can be supported using sesgiQ.cio s if S € Sessions(t, C, RYFor a given sessios,

isolation as a foundational building block. Lastly, we aqﬂe additionally defin®equests(Sip be the set of all disk

dress the issue of fault tolerance and present a mecharyéawuests that belong .

for loosely-consistent replication of locking state.

. . Definition 3. A given global execution history satisfies
3.1 Session isolation session isolatiorwith respect tR if the sequence of disk
Throughout this paper, we will use the temasource request messagesM(ri,r,...) observed and processed
to denote the basic logical unit of concurrency controh this history byR.ownersatisfies:
Each resourcer is identified by a unique and persis-
tent application-level identifier (denot&iresID) and has 'i-fi € M such that{ri,rj} C RequestsS) for some S

some physical representation on a SAN-attached stor-/ﬂrk € M such that i< k < j and r, € Request(S')
age device, which we call itewner (R.ownern. More

concretely, a resource may represent a filesystem bmf@g,some session*3rom another client that conflicts with

a database table, or an individual tuple in a table:

An application process operates @hby (1) Issuing  |nformally, the above condition requir&sownerto ob-
READ/WRITE commands t& owner, (2) Acquiring and  serve the prefixes of all sessionsRdn a strictly serial
releasing locks oR res|D. order, ensuring that no two requests in a session are in-

Definition 1. If a client proces< requests Sharedlock terleaved by a conflicting request from another client. To
on R and the request is granted by the lock service, lsistrate this definition, consider a pair of concurrent re
say thatC establishes &hared sessiorto R. An exist- quest sequences from two clients shown in Figure 1. In
ing Sharedsession is terminated whéhrelinquishes the this example(, first performs twoREAD operations on
shared lock (i.e., downgrades dolLock). Analogously, X under the protection of &haredlock, then upgrades to
by acquiring anExcl lock, a process establishes &x- anExcllock and issues tweVRITEs and lastly, down-
clusivesession taR that can subsequently be terminate@lifades tdSharedand performs two morREADs. Client
by downgrading t&haredor NoLock C, acquires &haredlock on X and submits &EADre-

For a given point in a client’s local execution history, duest, followed by an upgrade Excl and twoWRITE
we defineSessions(t, C, Rip be the set of’s active ses- requests. In this scenario, the following two sequences of
sions toR at timet, which is determined solely by thdequest observations Atwould satisfy session isolation:
sequence of prior upgrade and downgrade requests to the
lock service.Sessions(t, C, Rjnay contain aSharedor hl:el =(Ri1, Riz Wap, Woz, Rig, Rug, Roa, Wo, Wa2)
an Exclusivesession tdr, or both, or none. E2 =(Ri1, Rz, Wi1, Ro1, Wo1, Wa2)



An execution history that causeX to observe Atone extreme is a purely optimistic technique, whereby
(Ri1, Ro1, Ri2, Wi1,Wo1) does not obey sessiorevery client selects itSIDs via an independent local de-
isolation because it permit®,;; andW, 1, two shared- cision without attempting to coordinate with the remain-
session requests froy, to be interleaved by\y 1, an der of the cluster and this might be an entirely reasonable
exclusive-session request fraby. strategy for applications and workloads characterized by
Note that session isolation is more permissive thanconsistently low rate of data contention. A traditional
strict mutual exclusion and in particular, permits execlLM service that serializes all session requests at a cen-
tion histories in which two clients simultaneously holtral lock server can be viewed as a design point at the other
conflicting locks on the same shared resource. At thstreme. Minuet tries to position itself in the continuum
same time, one could argue that these semantics meanfirgjween these endpoints and allow application develop-
fully capture the essence of shared-disk locking, by whiefs to trade off lock service availability, synchronizatio
we mean that the request ordering guarantees providedkgrhead, and I/O performance under heterogeneous data
session isolation are precisely those that applications decess patterns.
velopers have come to expect from a traditional DLM. T; . L .
see this, observe that in the previous example, a convgn2 Enforcing session isolation
tional lock service offering full mutual exclusion wouldviinuet uses a simple timestamp-based mechanism to en-
causeX to observeE; by granting clients’ requests inforce session isolation on an individual shared resource.
the order(Cyi(Shared,Cy(Excl),Co(Shared,Cy(Excl)). A client’s session to a given resourgeis identified by
Likewise, E, corresponds to a possible failure scenar value pair(Ts, Tx) specifying asharedand anexclu-
in which C; crashes after acquiring its locks, causing thve timestamp, respectively. To acquire a lock Bn
DLM to reclaim them and grant ownership@. the client proposesa session timestamp to the Minuet
Our core approach is inspired by earlier work on briddpck manager. These proposals are globally unique - no
ing the intelligence gap between applications and blotko clients propose an identical pair of values and no
storage devices. [36, 37]. We augment SAN-attachelient proposes the same value pair twice. Our current
disks with a small amount of application-independedesign accomplishes this via the following timestamp for-
logic, which we call gguard, that enforces the session isomat: (T.incNumclilD), whereclilD uniquely identifies
lation invariant on the stream of incoming I/O requestthe client andncNumis the client'sincarnation number
We associate aession identifie(SID) with every lock a monotonic counter ensuring uniqueness across crashes.
granted to a client and modify the storage protocol stackThe basic locking protocol proceeds as follows: ev-
on application nodes to annotate all outgoing disk requesty client C maintains an estimate of the largest ses-
with the currentSID for the respective resource. Belowsion timestamp previously granted to any client, which
we refer to this annotation asequest capsule we denoteMaxTs(C,R) and MaxTx(C,R). To acquire
The guard logic at target storage devices evaluates anSharedlock on R, C proposes a new session times-
coming requests based on the attacB#d and, for each tamp (Proposed{; Proposedy), where Proposed] =
request, determines whether its acceptance would violktexT(C,R) and Proposedd is the smallest unique
session isolation. All such requests are dropped from tirmestamp greater thaviaxTs(C, R).
input queue and the originating client process is notifiedThe client then sends ab pgradelLockrequest to
via a special error codEREJECTED From an applica- the Minuet lock manager, specifying the desired mode
tion developer’s point of view, session rejection appegiShared and the proposed timestamp pair. The lock
as a failed 1/0 request along with an exception notificeranager accepts and enqueues this request if no request
tion from the lock service indicating that a lock on theith a largerProposedy value has been accepted. Oth-
respective resource is no longer valid. erwise, the manager denies the request and responds
The guard logic situated at the storage devices awith U pgradeDeniedwhich includes the largest times-
dresses the safety problems due to delayed messdge®p values observed by the manager. In the latter
and inconsistent failure observations that plague asyase, the client updates its local estimaiaxT(C, R)
chronous distributed environments and enforcing safetyeaitd MaxTx(C,R) and submits a new proposal. After
the target device permits us to simplify the core functioaccepting and enqueuin@s request, the lock manager
ality of the DLM module. In Minuet, the primary purposeventually grants it and responds withLackGranted
of the lock service is ensuring an efficient assignment wfessage. The receipt of this message marks the start
session identifiers to clients that minimizes the aggregafea shared session and the client initializes its session
rate of session rejection for a given application workloadlentifier (denotedR.cliSID) as follows: R.cliSID :=
Decoupling correctness from performance in this mafRProposedd; Proposed). It also sets the current session
ner enables substantial flexibility in the choice of mechtype (denotedr.cliSTyp¢ to Shared
nism used to control the assignment of session identifiersAcquisition of anExclusivelock (which includes up-



grading fromSharedto Exclusivé proceeds analogouslyget rejected and session isolation would be preserved.
except that clients increment thk value in the pro- A similar argument demonstrates that no two exclusive-
posal and the lock manager checks bBthposeddand session requests can be interleaved by a conflicting re-
Proposed] when determining whether to enqueue auest from another client.
deny the request. After receiving lcockGrantedre- . . .
sponse, the client seRcliSTy pe— Exclusive 3.3 Supporting transactional semantics

When a client issues a disk request operating on a 3.1 Overview and design requirements

sourceR, it augments the request message WitBquest Transactions are widely regarded as a useful program-
capsulethat identifies the affe_cted resource and carmesfing primitive and traditionally, SAN-oriented applica-
tuple of the form(R resID,R.cliSID, R cliSType. tions implement transactional semantics using two-phase
For each resourc®, its owner maintains a smalljgcking for isolation and a write-ahead logging (WAL) fa-
amount of metadata, which we call thwsvner session cjjity (sometimes referred to geurnaling) for atomicity
identifier (RownSID), initially set to (Ts = 0,Tx = 0). and durability. To commit a transaction, a client appends
Upon receipt of an I/O request from a client, the owngg the log a sequence of Redo records that concisely de-
invokes the guard logic, which evaluates the request capripe its updates, after which a sped@dmmitrecord
sule againsR.ownSIDto determine whether session isopg force-appended. Prior to releasing a lock on a dirty
lation would be preserved by accepting the request. CagsourceR, its holder flushes all committed updates to
sule evaluation proceeds as follows:RficliSTypespec- the snapshot aR, which ensures that the next reader ob-
ifies aSharedsession, the owneacceptsand enqueuesseryves the effects of every committed transaction. If a
the request ifR.cliSID.T, > RownSIDTy andrejectsit  client crashes during a transaction, the recovery process
otherwise. Likewise, iR.cliSTypespecifies afExclusive examines its portion of the log and restores the affected
session, the owner accepts the requesRIfiiSID.Ts >  resource snapshots to a consistent state by replaying or
R.ownSIDTs and RC“S'DTX > R.ownSIDTy. ro”ing back updates from the |Og
Upon acceptance, the owner updates its session idenfo support transactions, Minuet relies on this well-
tifier, setting RownSIDTs to be the maximum of understood and widely-used mechanism, while extending
R.ownSIDTs andR.cliSID.Ts and settindR ownSIDTx to jt with the use of the guard logic to address the safety
the maximum ofR.ownSIDTy and R.cliSID.Tx. Other- problems outlined in Section 2.2. Since the primary fo-
wise, the request is discarded andEBREJECTEDre- cus of this paper is feasibility of safe and highly-avaitabl
sponse is sent to the client, together wittesponse cap- applications in SANs rather than performance, we pro-
sulethat carriegR.ownSID. vide only a subset of features typically found in a state-of-
Upon receipt ofEREJECT ED the Minuet client ex- the-art transaction service such as D-ARIES [24]. Below,
amines the response capsule and notifies the applicati@present a design that implements redo-only logging to
process that its lock oRis no longer valid. ArExclusive support the "no force no steal" buffer policy and currently,
mode lock is downgraded tBharedif RownSIDTs > our design permits only one active transaction per process
R.cliSID.Ts (since that indicates interruption of an exat a time - after starting a transaction, a client must com-
clusive session) and &hared lock is further down- mit or abort before initiating the next transaction. Figall
graded toNoLockif RownSIDTy > R.cliSID.Ty (since we assume unbounded log space for each client. These
in this case, a conflicting exclusive-session request hastrictions allow us to focus the discussion on the novel
been accepted). The client also updaites<Ts(C,R) and aspects of our approach and we believe that additional op-
MaxTx(C,R) to reflect the most recent timestamp valua#nizations, such as support for Undo logging, can be eas-
seen by the owner. ily retrofitted onto our scheme if necessary. The following
A diagram illustrating the basic locking protocol and set of requirements motivates our design:
formal correctness argument demonstrating that the pro{1) Avoid introducing assumptions of synchrony re-
tocol and the guard logic described above ensure sgsired by conventional transaction schemes for SAN
sion isolation can be found in [38]. Informally, consideenvironments. We rely on the guard logic at target de-
two clientsC; andC, that compete for shared and excluvices to provide session isolation and protect the state on
sive access t®, respectively, and suppose that a sharedisk from the effects of arbitrarily-delayed WRITESs oper-
session request fro@y got accepted with a session idenating on the application data and the log.
tifier (R.cliSID.TL,R.cliSID.T}). Observe that due to (2) Eliminate reliance on strongly-consistent lock-
global uniqueness of session proposals, the owner wourld. Rather than requiring clients to coordinate concur-
subsequently accept an exclusive-session requestd@gonrent activity via a strongly-consistent DLM, the guard
with a session identifiefR.cliSID.T2,R.cliSID.T?) only logic at storage devices enables a limited form of isolation
if R.cliSID.T2 is strictly greater tharR.cliSID.T,l. In this and permits us to relax the degree of consistency required
case, subsequent shared-session requestsGromould from the lock service. Prior to committing a transaction,



a client process in Minuet issues an extra disk requegtijres aSharedlock on every resource read by the trans-
which verifies the validity of all locks acquired at the stagction (denoted.ReadSétand reads the corresponding
of the transaction. This mechanism allows us to identiflata from remote disks into local memory buffers. In the
and resolve cases of conflicting access due to inconsipdate phaséhat follows, the process applies the desired
tent locking state at commit time and can be viewed aset of updates locally and communicates a description of
variant of optimistic concurrency control - a well-knowrnhese updates to Minuet's transaction service, which ap-
technique from the DBMS literature [39]. pends the corresponding setlbpdaterecords to the log.

(3) Avoid enforcing a globally-consistent view of Each such record describes an atomic mutation on some
process liveness Rather than relying on a group memresource il WriteSetand essentially stores the parame-
bership service to detect client failures and initiate leg rters of a single disk WRITE command.
covery proactively in response to perceived failures, ourThe Verification phaseserves a dual purpose: to ver-
design explores #azy approach to transaction recoveryfy the validity of client’s sessions (and hence, the ac-
that postpones the recovery action until the affected dataacy of cached data) and to prepare the elements
is accessed. This enables Minuet to operate without glob&IT.WriteSet for committing. For each resource in
agreement on group membership. T.ReadSet) T.WriteSet client sends a specislERIFY
disk requestto its owner, whose sole purpose is to trans-
port a capsule and invoke the guard logic at the de-
Minuet stores transaction redo information in a set of petice. VERIFY requests for elements @fW riteSetcarry
client logs on shared disks. They appear to Minuet's trarisompareCSID= NIL, setCSID= (C, curXactID)) in the
action module as regular lockable resources that canrbguest capsule. If all resource sessions pass verifica-
read and written to, while the guard logic is assumed tion, the transaction enters the fif@mmit phaseduring
enforce session isolation in the event of concurrent aghich aCommitXactecord is force-appended to the log.
cess from multiple clients. The physical disk location of The protocol outlined above ensures transaction iso-
a client’s log can be computed from its client identifiation, identifying cases of conflicting access during the
(clilD). verification phase. Recall, however, that under the ses-

To support transactions, we extend the basic se#n isolation semantics, any I/O command, including op-
sion isolation machinery described in Section 3.2 wittrations on the log, may fail witt REJECT EDdue to
an additional piece of state called eommit ses- conflicting access from another client. This gives rise to
sion identifier (CSID) which has the following for- several exception cases at various stages of transaction ex
mat: (clilD,xactID). We also extend the request capecution. For example, a client may receive an error while
sule to carry two commit session identifiers with eadhrcing aCommitXactecord to disk due to loss of session
disk request, denotedompareCSIDand setCSID and tothe log. This can happen only if another process has ini-
both are set toNIL unless specified otherwise. Fotiated log recovery o@ and hence, the active transaction
each shared resourdg, the owner device maintainsmust be aborted. Other failure cases and the correspond-
a commit session identifierRlownCSID in addition ing recovery logic are described in the report [38].
to RownSID  Upon receiving a disk request, th
guard logic examines the capsule and rejects the
quest if RcompareCSIxliID # RownCSIDclilD or After committing a transaction, a clier®@ can flush
if RcompareCSIxactID < RownCSIDxactID. A its locally-buffered updates tdR simply by issuing
capsule is accepted only if itkompareCSIDand a sequence of corresponding/ RITES to Rowner
cliSID both pass verification and upon completingach such command carries the following param-
the request, the owner device se®ownCSID:= eters in the attached capsule{R.compareCSID=
RsetCSID If verification fails, the owner responds with(C, syncXactID, R setCSID= (C,syncXactlD), where
EREJECTEDand a response capsule carrying the tupdgncXactiDdenotesC’s most recent committed trans-
(RownSIDR.ownCSID. action that modifiedR.  After flushing all com-

In Minuet, transactions proceed in five stag8ggin mitted updates,C issues an additional zero-length
Read Update Verify, andCommitand we illustrate them WRITE request, which specifie$R.compareCSID=
using high-level pseudocode in [38]. During one-time in{C, syncXactlD,R.setCSID= NIL) in the capsule. This
tialization, Minuet’s transaction service at cligbtiocks request causes the storage device to resawnCSIDto
the client’s log inExclusivemode. To begin a new trans-NIL, effectively marking the disk image & as "clean".
action T, the client selects a new transaction identifieérastly, C appends to its log ab pdateSyncedecord of
(curXactlD) via a monotonically increasing local countethe form(R syncXactID.
and appends BeginXactrecord to its log. Next, in the
Read phas®f a transaction, the application process ac- Minuet implement&/ ERIFY requests as zero-lengtiRIT Es.

3.3.2 Basic transaction protocol

%61_3.3 Syncing updates to disk




3.3.4 Lazy transaction recovery section. The prototype has been implemented on the

A client C can initiate transaction recovery when its diskinUX Platform using C/C++ and consists of a client-side
request on some resourBdails with EREJECT EDand I|brary,_a lock manager process, an |SCS_I prptocol stack
a nonNIL R.ownCSIDvalue (Cr,xactID) is returned in extension, and two sample clustered applications.

the response capsule. This_response indicates that4h¢  Core Minuet modules

disk image ofR may be missing updates from a trans- o _ .

action committed earlier by another clieBt. If C sus- Client-side library (5440 LoC):  The client-side com-
pects thaCr has failed, it invokes a local recovery proPonent is implemented as a statically-linked library and
cess that tries to repair the disk image. FiGtac- provides an event-driven interface to Minuet's core ser-
quires exclusive locks ofR and Cr.Log and reads the vices, which include locking, remote disk I/O, and trans-
log from disk. Next,C searches the log for the mos@ction execution. When requesting a lock, a client can
recent transaction that has successfully flushed its @gtionally specify the desired size of the voter set, which
dates toR, from which it determines the list of subse€nables application developers to tune the degree of lock-
quent committed updates that may be missing from tti§ consistency, enabling a choice between optimism and
disk image. The client then proceeds to repairing tglrict coordination. A small voter set works well for low-
state ofR on disk by reapplying these updates and fpntention resources; it helps keep the lock message over-
repair disk requests sent to the owner during this phéfs%ad low and permits clients to make progress in a par-
specify (RcompareCSID= RownCSIDR setCSID= titioned network. Conversely, a large voter set requires
RownCSID in the request capsule. Finally, after reagonnectivity to more manager replicas, but reduces the
plying all missing update€ completes recovery by sendfate of I/O rejection under high contention. All outgo-
ing a zero-lengthWRITE request to the owner withing disk commands are augmented with the appropriate
(RcompareCSID= RownCSIDRsetCSID= NIL) in request capsules and in the event of rejection by the target
the request capsule. A more detailed discussion of trafgvice, a~orcedDowngradevent is posted to inform the

action recovery in Minuet can be found in [38]. application that the corresponding lock has been down-
graded to some weaker mode.

3.4 Lock manager replication _
Minuet lock manager (4285 LoC): The lock manager

SO”.‘e Ip ck services seek tq achpve fault tolerance Pocess grants and revokes locks using the timestamp
replicating lock managers. Since Minuet does not nee

: SRR ‘m&chanism of Section 3.2 and several manager replicas
provide assurances of mutual exclusion, it relies on a S|eg

- L n be deployed for fault tolerance. For each lockable re-
pler and more available replication scheme that permété#rce, the manager maintains the current lock mode, the

clients to retain progress in the face of extensive node A of current holders, the queue of blocked upgrade re-

connectivity failures. A lock can be acquired as long as(?ﬁests and the largest observed timestamp proposal.
least one of the manager instances is reactfable '

To support manager replication, we extend the bSAN protocols and guard logic: To demonstrate the
sic locking protocol presented in Section 3.2 as followpracticality of our approach, we implemented the guard
When acquiring or upgrading a lock, a client selects a subgic and capsule propagation within the framework of
set of managers, which we call itster sefand sends aniSCSI [40], a widely-used protocol for IP-based SANs,
U pgradeLockequest to all members of this set. The locand our prototype extends an existing software-based
is considered granted on¢épgradeGrantedvotes are implementation of the iSCSI standard. On application
collected from all members. If any of the voters resporadient nodes, we modified the top and the bottom lev-
with U pgradeDeniecddue to an outdated timestamp, thels of the 3-tier Linux SCSI driver model. The top-level
client downgrades the lock on all members that have diver (inux/drivers/scsi/sd)cpresents the abstraction of
sponded withU pgradeGranted updates itdMaxTs and a generic block device to the kernel and converts incom-
MaxTy values, and resubmits the upgrade request withng block requests into SCSI commands. We extended

new timestamp proposal sdwith a newioctl command, which enables the Minuet
. client library to specify request capsules for outgoingdkdis
4 Implementatlon requests and to retrieve response capsules.

We have implemented a proof-of-concept prototype of The bottom-level driver implements TCP encapsulation
Minuet based on the design presented in the precedftig?CS! commands and our current prototype builds upon
thé Open-iSCSI Initiator driver [41] v2.0-869.2. We used
ZIn an extreme case, that instance can be the local Minuet ieif, the Additional Header Segment AHS) feature of iSCSI
which would simply grant its own proposals without coordingtwith to attach Minuet capsules to SCSI command PDUs and

other processes. . .
3As a performance optimization, we alldwpgradeLockeequests to defined a new AHS type for this purpose.

specify animplicit downgradefor an earlier timestamp. Our storage backend is based on the iSCSI Enterprise




Target driver [42] v0.4.16, which exposes a local block Storage serverg Lock managers Clients
device to remote clients via iISCSI. We extended it with t#eNodes 4 5 32
guard logic, which examines incoming command PDUsCPU 3GHz Xeon 850Mhz Pentium IlI
and makes an accept/reject decision based on the caps®RAM 2GB 512MB

content. Command rejection is signaled to the initiator vidDISK 10K RPM SCsSiI 7200 RPM IDE

the REJECT PDU defined by the iSCSI standard.

The addition of guard logic represents the most sub- . )
stantial functionality extension to the SAN protocol stackaditional strongly-consistent locking.
but incurs only a modest increase in the overall complex-1 Experimental setup

ity. The initial implementation of the Enterprise Target

driver contained 14341 lines of code and augmentingipf OUr experiments, we emulated a SAN environment
with Minuet guard logic required adding 348 lines. with 41 Emulab [44] nodes, interconnected via 100Mbps
links. Detailed hardware specification is given in Table 1.
4.2 Sample applications We allocated four storage nodes that provided 2GB
Distributed chunkmap (342 LoC): Our first applica- of Iogicalld'isk space, equally stri.ped across the nodes.
tion implements a read-modify-write operation on a disT—he remaining machines were assigned to client processes

tributed data structure comprised of a set of fixed—lengz‘rqI d Minuet lock manager processes. Client instances ran

- . . - icross 32 nodes and they saturated neither CPU nor RAM.

data chunks. It mimics atomic mutations to a distribute : o .
I . In our experiments, we measured application operation
chunkmap - a common scenario in clustered middleware o
. oR put, the number of successful application-level op-

such as filesystems and databases. The chunkmap cqafet . . .
: . . rations per second, varying the number of clients (i.e.

represent a bitmap of free disk blocks, an array of i-no % . . :

. : . offered load) under the following two locking scenafios
structures, or an array of directory file slots. In each itera
tion, the application selects a random chunk, reads it fr@#fong): A strongly-consistent locking protocol. Each

shared disk, modifies a random chunk region, and writeslient must get permissions from a majority) ©f lock
back to disk. To ensure update atomicity, the applicatiohanager processesx2 1 nodes were dedicated to run

acquires an exclusive lock on the respective block fro#— 1 lock manager processes.

Minuet prior to reading it from disk and releases the l0Gkeak-own  An extreme form of weakly-consistent lock-
after writing the modified version. ing. Each client has its own lock manager and does not

Distributed B-Tree (3345 LoC): To demonstrate thecoordinate with other clients.
feasibility of serializable transactions, we implemerged e also considered two forms of workload:

distributedB-link tree[43] (a variant ofB+-tree) on top uniform: In the chunkmap application, each operation
of Minuet. Our implementation providdssert Delete selects the block to modify uniformly at random. In the

Update and Searchoperations based on the transactioB+-tree application, each operation chooses a key to ac-
protocol presented in Section 3.3.2. For each operatigass uniformly at random.

the application initiates a transaction and fetches th'mchak . :
. skewedx/y): This is a hotspot workload/®s operations
of tree blocks necessary for the operatigteqd phase touchx% of the entire blocks or entire key space.

Next, it upgrades the locks on the modified blocks to eX-
clusive mode and logs the updatep(late phasg Lastly, 5.2 Distributed chunkmap
the client verifies the sessions on all blocks in the chzwe

o ) ) .We configured the block size to 4 KB and ran experiments
(Verification phaspand commits the transaction only Ifin which each client modified blocks for five minutes.

all sessions are valid. If a transaction aborts due to los igure 2 shows the aggregate operation goodput un-

of session to a B-tree block or the client's log, the ape o niform workload. Since there are a large num-

plication reacquires the corresponding lock and retriBSr of blocks (500K blocks) in the storage node, this re-

(without backoff) until it commits successfully. For ef'sult represents a low-contention scenario. We observe that

e e e e o g weaky-consstent kg scheme shos ighty bet.

tected and invalidated during the verification phase e performance, up to 32 clients, than the strong lock-

9 P " ing scheme with five lock managers. This result suggests

: that our approach has a potential in improving application

5 Evaluation goodput in scenarios while guaranteeing safety where the

In the previous sections, we have shown how Minuet preverall load is high, but contention for a single resource is
vides safety by adding guard logic to SAN target devices: “Note that in our experiments, applications rely on Minuetravjrle

In this s_ecti_on, we eva!uate the perfqrmance Of_the S8Bth modes of locking (i.estrongx) andweak— owr) and do not make
ple applications atop Minuet and provide comparison witlse of any other synchronization facilities.

Table 1: Hardware specification of the cluster
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chunkmap under the uniform workload by 32 clients varying the skewness of the workload. The fact thate reject 1/0
request rate is 0.1 means 10% of I/O requests are rejected.

=~ 140000 = o ——— X g 0.5 weak—-own—— 5 -5 Mweak-own——
% 120000f  strong(3) -~ g 04r strong(3) -« e @ 0.4 Strong(3) e e
= 100000} s e S B O E
B ennnA L S i [e)) [}
§ 80000 o g 0.2k - T % 0.2 b 1
§ 60000 """" P U 7 % 01 X ] g 0.1 b
g 40000 777777 \ 77777 L L L L 1 3 0 - . L L Loy Q 0 L L |

5 10 15 20 25 30 = 5 10 15 20 25 30 ¢ 5 10 15 20 25 30 ¢

The number of clients The number of clients The number of clients

Figure 4: Goodput of the distributed chunkmap (left), the rate of denied lok requests (center), and the rate of rejected
1/0 requests (right) under the skewed(5/95)vorkload.

relatively rare. Moreover, even skewed workload scenario 8
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The rate of 1/O rejection increases when a system has ) -
resource hotspots (Figure 3). However, in our expe ﬁgure_ 5: Goodput of the distributed B+-tree under
ments, weakly-consistent locking can still provide red’® uniform workload
sonable performance in such scenarios, since traditional
strong locking also face increasing lock synchronizatie\3  Distributed B-tree

overhead. i
We configured each tree node to 8KB to hold 150 keys

and satellite values (e.g., a pointer to other nodes) in a

We also ran experiments of a partitioined network sceingle block. We pre-populated B-tree in our experiments;
nario, where each client can communicate with onlyvee inserted 200K keys a priori so that the tree height is
subset of replicas. A strongly-consistent locking protocthree. After creating the distributed tree, we randomly
demands a well-connected primary component containisgued insertion operations and search operations at the
at least a majority of manager replicas - a condition tha®% probability and 20% probability, respectively. Target
our partitioned scenario fails to satisfy. As a result, rkeys were chosen randomly.
client can make progress with traditional strong locking Figure 5 shows the goodput of the distributed B-tree
and the overall application throughput is zero. In confraspplication withstrong(1) Both locking schemes are safe
under Minuet's weak locking, clients can still make gootb use thanks to Minuet. Witktrong(1) the application’s
progress. This experiment demonstrates the availabilifgodput scales as the client workload increases. However,
benefits that our approach gains over a traditional DLWith weak-ownthe goodput does not scale. From our de-
design by loosening the consistency of locking state. bugging, it turns out that the problem happened because
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only one client keeps sending transactions successfiijferent programming model: Another concern is
since clients are greedy (i.e., send requests as fast as thay Minuet introduces an alternative programming
can). This problem is a general problem in any optimistinodel, exposing application developers to additional ex-
concurrency control scheme. Due to time constraints, weption cases that do not naturally arise under strong lock-
were unable to perform a full-scale performance analysig. When a traditional DLM service grants a lock to an
and resolve this problem but we plan to address theseapplication process, the lock is assumed to be valid and
sues in the future by exploring some arbitration betweére client can proceed to accessing the disk without wor-
clients or by locally introducing some randomised delayging about conflicting access from other clients. In con-

between transactions. trast, Minuet gives out locks in a more permissive manner,
. . but provides machinery for detecting and resolving incon-
6 Discussion sistent access at the storage device. As a result, applica-

In this section, we discuss several issues pertaining to tios that rely on Minuet for cohcurrency control must be
practical feasibility of our approach and the implicatior#%r.O grgmmed with the assumptlon thg tany /O request can
of Minuet's programming model. ail with EREJ ECTE[}iue to |npon_5|stent lock state.

We observe that while 1/0O rejection does not occur un-
Practical feasibility: Our approach rests on the basiger strongly-consistent locking, the protocols employed
idea of extending network-attached storage arrays Wi traditional DLMs for ensuring system-wide consis-
a small amount of guard logic that enables them to dency of locking state inevitably expose application de-
tect and filter out inconsistent I/O requests. Fundamejiopers to analogous exception cases. For instance, a
tally, this requires extending disk hardware or firmwaigetwork connectivity problem causing some application
and modifying existing storage protocols to carry somgde to lose connectivity to a majority of lock managers
additional state, which may raise concerns about the fe@uld typically cause that node to observe a DLM-related
sibility of our approach. exception event. More concretely, the application pro-

We acknowledge that Minuet assumes functionaliess would be informed that due to lack of connectivity,

that does not presently exist in standard disk hardwaeme of its locks may no longer be valid - these are pre-
and, consequently, faces a non-trivial barrier to deplaysely the semantics of Minuetorced Downgradeoti-
ment. However, we observe that the proposed changgsation. Hence, both models demand exception-handling
are very incremental in their nature and can be easily ifer dealing with forced lock revocation.

plemented within the confines of a traditional SAN accesswith Minuet, a node that finds itself partitioned from
protocol such as iISCSI. The guard logic is amenable to gfe rest of the cluster need not immediately give up its
ficient implementation in hardware or firmware, requiringycks and instead, can perform a more granular recov-
only a few table lookups and comparison operations. ery action. For example, it can switch to the optimistic
As we argue above, the benefits of implementing sugtethod and resume disk access without coordinating with
an extension can be substantial. In addition to liftingther application processes and this would permit it to
the safety and liveness limitations that have traditignalinake progress in the absence of conflicting access.
characterized shared-disk applications and middlewareQur experience with developing and deploying sample
our approach establishes a new degree of freedom in #pplications on top of Minuet suggests that the availabil-
design space of SAN concurrency protocols, enablingty benefits enabled by the use of such fine-grained re-
choice between optimism and strict coordination. covery actions are certainly worth the extra implementa-

Metadata storage overhead: In our prototype imple- tion effort, Which we believe' tp_ be rfalatively small. The
mentation, target storage devices maintain 16 bytes of gapinkmap application was initially implemented on top
resource metadata. For a typical middleware service s@HFonventional locking using 327 lines of C code and
as a database or a filesystem, a resource would corresggfinding the implementation to operate on top of Min-
to a single fixed-length block containing application datit required adding only 15 lines of code to handle the
or metadata and taking a clustered filesystem as an ex&REJECT EDandForced Downgradenotifications.
ple, block sizes in the range 128KB - 1MB are consider
common [45]. Assuming 128KB application block siz:},ld Related Work
our design incurs a storage overhead 6f10%6. Concurrency control has been extensively studied in the
Perhaps more alarmingly, Minuet metadata must bperating systems, distributed systems, and database com-
stored in random-access memory for efficient lookup omunities. VMS [48] was among the first widely-available
the data path. We envision the use of flash memory aperating systems to provide application developers with
battery-backed RAM for this purpose and observe that the abstraction of a general-purpose DLM. Since then,
day, high-performance storage arrays make extensive DédMs have been widely adopted for various purposes and
of NVRAM for asynchronous write caching [46,47].  today, they are viewed as a useful general-purpose build-
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ing block for distributed applications and middleware. intelligence/information gap between operating systems

Clustered filesystems (GFS [7], OCFS [8], PanFS [gjnd storage systems [36, 37, 52-55]. The projects aim
GPFS [10], Lustre [11], Xsan [12]) and relationalo achieve more expressive storage interfaces by expos-
databases (Oracle RAC [13]) rely on a distributdtlg more information or adding more intelligence to stor-
lock manager to coordinate parallel access to applige devices. Object-based storage introduces objects as
cation data, metadata, and logs residing on shas$drage resources [52]. Active disks execute downloaded
disks. OpenDLM [21] is a widely-adopted generageneric code [37,53]. EXRAID exposes performance and
purpose DLM implementation for Linux, currently usedgilure information and I-LFS extends a log structured
by GFS [7] and other clustered filesystems. file system by utilizing the information for better per-

In web service data centers, distributed locking sdfrmance, flexibility, and reliability [55]. Track-aligue
vices such as Chubby [14] and Zookeeper [15] have aRgents explores the benefits of exposing disk character-
become popular. These services are intended primaifitjcs [54]. Our approach is in line with these research
for coarse-grainedsynchronization - a typical use cas®rojects. In our work, we identified and tackled safety
might be to elect a master among a set of Bigtable [40]oblems in SANs by narrowing the intelligence gap be-
servers. Although the intended use of Minuet is to préveen clustered applications and SAN storage devices.
videfine-grainedsynchronization in a shared-disk cluster, Similar in spirit to this work, SCSI-3 Persistent Re-
our system can also support such use cases by transitkgive [34] tries to address the safety problems caused by
ing to strongly-consistent locking, whereby each lock igconsistent requests by extending the storage protocol
acquired with a majority voter set. Unlike our systengnd target devices. Typically, revoking a suspected node’s
Chubby provides a hierarchical resource namespace &@gervation necessitates a global decision on declaréng th
the ability to store small pieces of data, in effect offeringgspective process faulty, which, in turn, requires major-
a filesystem-like abstraction, but these features areliargéy agreement. Hence, SCSI-3 PR offers safety but not
orthogonal to our approach. Chubbyisck sequencer liveness in the presence of network partitions and massive
mechanism allows servers to detect out-of-order requedgsle failures, while our approach provides both.
submitted under the protection of an outdated lock and our )
timestamp-basesessiongeneralize this idea to suppor8 Conclusion
shared-exclusive locking. We also develop this notion fuy-

ther and observe that once we have the ability to reject i -'St p;’:l_p erSllar\ll\\/Iestl_?aées a InO\t/eI ?jpgfs(:h tol_cotncurrency
consistent requests at the destination, very little isgﬁincon rotin s. loday, clustere N applications co-
rdinate access to shared state on disks using strongly-

by enforcing strong consistency on replicated lock mafc " ) .
y g g y P sistent locking protocols, but they are subject to gafet

agement state and specifically, the use of an agreemce . .
protocol (e.g., Paxos [27]) may be more than necessar)?%ﬂ liveness problems in the presence of asynchrony and

. . ailures; strict mutual exclusion guarantees are neither
Concurrency control and transaction mechanisms havqur : .2

. o ... _sufficient nor necessary for application-level correctnes
been extensively studied in databases. In addition to

database locking protocols mentioned in Section 1, WeTO solve safety problems, we augment SAN target de-

discuss other relevant database systems. ARIES [50] i IGFs with a small a_lmount of logic called a gu_ard,_ Wh'c.h
nables us to provide a property called session isolation

state-of-the-art transaction recovery algorithm for a-ce . . .
y a9 nd a relaxed model of locking. These, in turn, provide a

tralized database, supporting fine-granularity locking aﬁoundational building block for more complex and useful

partial rollbacks of transactions, while D-ARIES [24] ex- licati i hast i We al h
tends this work to be usable in distributed shared-digRP'caton semantics such as transactions. YVe aiso show
that this block enables us to loosen the consistency se-

databases. Implementing these mechanisms on top

Minuet’s locking and 1/O facilities would ensure that theg'ar_'tics_ _Of a disFribut_ed lock service, thus pf‘?"iding high
retain their safety properties in the face of arbitrary asy vailability deSP'te fall.ures and network partitions. ,
chrony. Minuet's basic transaction service presented in'/e have designed, implemented, and evaluated Minuet,

Section 3.3 incorporates elements of write-ahead loggifigP-M-like synchronization and transaction module for
timestamp ordering, and two-phase commit, all of whick*\ @pplications based on the techniques and protocols
are standard and well-known techniques in database Yg-Presented. Our evaluation suggests that distributed ap-

sign. Finally, database researchers have explored hy#{igations built atop Minuet enjoy good performance and
approaches to concurrency control [51] that enable trad¥@ilability,

offs between optimism and strict coordination and o

work enables similar tradeoffs for applications deploygéeferences

ina SAN environment, where data resides on application) 1. asaro. ESG analysis the state of iSCSI-based

agnostic block storage devices. IP SAN 2006. ht t p: / / www. net el | i gent gr oup.
There have been several research projects tackling comf articl es/ esgi scsi . pdf.

while guaranteeing safety.
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