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Abstract— Journaling has been widely used in many file
systems to speedup the recovery after a system crash. At running
time, updates are saved in journals temporally and later these
updates are written to target locations. This journaling process
generates write-twice overhead and significantly degrades system
performance. This paper proposes an active journaling scheme
that exploits the journal to improve the I/O performance and
increase the reliability and availability. While the journals in
conventional systems are only used during the crash recovery, our
active journaling uses log-structures and free-write techniques
to make the journals accessible during running time. The
experiments based on trace simulations shows that our scheme
can reduces average response time 14-39% for random access
workloads and 0-14% for sequential access workloads.

I. INTRODUCTION

Journaling file systems have been widely used in most
modern operating systems. Journaling originates from database
logging techniques developed for ensuring atomic commits of
transactions. Essentially, journaling is a write-ahead log for
improving the speed of recovering a file system to a consistent
state. Since the system only need to scan from the last check-
point recorded through journaling, a crash recovery typically
takes a few minutes. Without journaling, crash recovery might
take hours, days or even weeks to scan all the metadata on
disks. For example, the main server of kernel.org suffered a
file system corruption and the recovery took over a week to
run fsck [1].

Journaling, however, provides fast crash recovery with con-
siderable cost. A basic implementation of journaling consists
of a transaction manager which wraps updates into an atomic
unit, and a circular log buffer which records updates before
actual modifications reach disks. Consequently, an extra disk
write is associated with update operations like write, rmdir,
and even read that updates the last access time. We call this
as write-twice overhead.

To reduce this write-twice overhead, modern file systems
such as SGI’s XFS [2][3], IBM’s JFS [4][5], Windows
NTFS [6][7], and Solaris UFS [8] only log updates on meta-
data. Linux ext3/4 [9][10] and ReiserFS [11] file systems
provide journal mode which performs both data and metadata
logging but the default mode is ordered which only logs
metadata updates and ensures data were written to disk before
metadata. Even though, metadata logging is still heavy in
consideration that (1) in many cases metadata operations take
more than 50% of total [12][13], and (2) metadata operations
are write intensive. To further alleviate journaling overhead,
efforts have been made on logging to a separate device, merg-
ing transactions [9], ignoring less important metadata updates,

designing lightweight transaction manager [14], wandering
logs [11], etc. A comparison between Linux ext2 and ext3
file system serves a good example to show the journaling
overhead because ext3 directly derived from ext2 with the
journaling feature. The results in [12] shows that ext3 (ordered
mode) is 4.36 times slower than ext2 on metadata write micro-
benchmark. It is reported that ext3 (ordered mode) takes
90% more time to complete the PostMark benchmark [15].
Our evaluation shows further tricky performance impacts of
journaling in ext3 (Section IV).

All the journaling file systems discussed above have one
common characteristics - the journal is “write-only” until the
systems crash. We define this journaling category as passive
journaling which improves system availability and reliability
in the sense of fast crash recovery with the cost of twice-write
overhead.

This paper aims to design a new journaling scheme which
turns the journaling overhead into a performance gain. Specif-
ically, instead of journaling as just a log, consistently paying
write-twice overhead, waiting and awaiting to be summoned
for system crash, could we release the leash, activate journal-
ing in normal operations, and make journaling an active force
instead of a drag? To answer this question, we first analyze the
fundamental traits of journaling (based on ext3 file system),
and the opportunities to make the prestige:

1) Up-to-date Data: We write file system changes to the
journal before in-place updating. Therefore, the data in
the journal are the latest and “readable”.

2) Free Copies: After in-place updating (checkpointing),
replicas are made for “free”. This allows I/O scheduler
to read data from replica copies that are physically closer
to the current disk arm position.

3) Sequential Writes: We always journal sequentially which
is much faster than updating the blocks to their original
locations separately. However, if we loose the constraint
of journaling on the fixed circular log buffer on disk,
we could further speed up journaling by writing to the
closest free space. (Section III-A)

4) Non-Sequential Reads: Fundamentally, most modern file
systems handle sequential workloads well because the
layout is designed based on logic and spatial locality.
However, non-sequential workloads typically suffer. As
temporal locality of writes is recorded during journaling,
we have an opportunity to record non-sequential reads
in the journaling disk write operations with negligible
overhead based on “freeblock scheduling” [16][17]. This
obsevation motivates us to extend the role of journaling



from a “logger” to a “learner”. Specifically, not only
logging the file system updates, the journaling pro-
cess could also record what current file systems have
unfavorably handled, i.e. the mismatch between user
requests and current disk layout. This paper proposes an
automatic analysisscheme to better match disk layouts
and workload patterns. The reconstruction process could
be done along with journaling writes or using system
idle time. (Section III-B)

This paper presents a new journaling category as active
journaling. We propose to change the fundamental role of
journaling from a “logger” to a “learner” and a “constructor”.
A “learner” means to record what the current file system
has adversely handled on runtime. A “constructor” means
to analyze and adapt. This new journaling scheme will not
only provide performance gain, but also improves system
reliability and availability. Conventional passive journaling
improves system reliability and availability in the sense of fast
crash recovery. However, we could obtain higher reliability
from active journaling with the ability to be self-healing from
silent data corruptions. (Section III-F)

The rest of the paper is organized as follows. Section II
describes the background of file system journaling. Then, we
present our active Journaling design in section III. Section IV
presents our evaluation methodology and simulation results.
Section V discusses prior related work. Section VI concludes
the paper and gives future work.

II. PASSIVE JOURNALING
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Fig. 1. A conventional journaling file system first writes updates to on-
disk journal (transaction committing), then modifies the target locations
(transaction checkpointing), and reuses the space as a circular buffer.

This section describes how a conventional journaling file
system works. The basic journaling procedure in most modern
file systems, such as ext3, ReiserFS, XFS, JFS, and NTFS,
are similar. Figure 1 and 3 show a conventional journaling file
system and its on-disk layout. To simplify our discussion, we
define several terms below.

• log, journal, and log-structured: We use log and journal
interchangeable in this paper. They both mean that a
record of changes is made on disk before actually in-
place updating. For the approach of using logs as an
on-disk structure to store file content (log-structured file
system (LFS) [18][19]), we use the term log-structured
or journal-structured.

• original file systems: Typically journaling as a feature
that can be enabled or disabled. In this paper, original
file system is intended to describe a file system with
journaling disabled, or the other parts of a file system
except journaling itself as shown in Figure 1.
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Fig. 2. A logic view of journal which shows four stages of a transaction:
a running transaction (stage 1) handles new updates; a committing
transaction (stage 2) writes atomic file system modifications to the on-
disk journal; a checkpointing transaction (stage 3) moves committed
updates to actual locations; a checkpointed transaction (stage 4) is a
transaction finished checkpointing, dead, and the on-disk space related
to this transaction is reusable.

Transaction: In a journaling file system, we use transaction
to group related updates and make sure either all or none
of these updates are written to the disk. This guarantees
the atomicity of a transaction. For example, a file deletion
generates a series of disk updates. First of all, its inode
and directory entries are removed. Second, the disk blocks
occupied by this file are released by updating related allocation
table or bitmap. If only part of these updates are written to
the disk, the disk is then in an inconsistent state. A journaling
file system aims to minimize the chance such an inconsistency
occurs. Specifically, all related updates are recorded in the on-
disk journal. After the transaction is committed successfully,
we can then safely write these updates to their actual locations.
If the system crashes, there are two possible cases. The
first case is that the system fails before the transaction is
committed. Then no actual updates are written to disks and
the file system is still consistent. The second is that the system
after after committing to the journal. Then we need to redo
this transaction based on what recorded and make the system
consistent.

This procedure causes a write-twice overhead. A common
optimization is compound transaction used in ext3. Instead of
considering each operation as an individual transaction, we
could contain a batch of operations into one transaction. This
has advantages over fine-grained transactions both in clustered
I/O and in frequently updated data in a short period of time
(write it once instead of multiple times). Note compound
transaction could only combine operations occurred in a short
period of time (e.g. 5 second). This is limited by the commit
policy.

Commit Policy: Journaling does not guarantee durability of
modification, which means that only the committed transaction
can be recovered after a system crash. To ensure a reasonable



guarantee of durability, a timer is generally used to enforce
transaction committing. However, if the timer is too short, file
system would act as FFS [20] synchronous metadata write that
has severe performance penalty. In practical, the default timer
is 5 seconds for metadata updates in NTFS [7] and ext3 file
systems.

Checkpointing: The process of flushing journal updates
into their actual locations in original file system is known as
checkpointing. Normally, this is triggered immediately after
transaction committing (immediate checkpointing), or by on-
disk journal space shortage. In practical, the on-disk journal
size is around a few dozens of MB. For example, the default
maximum on-disk journaling size is 32MB in JFS, 64MB in
SolarisOS UFS, and 102400 file system blocks in Linux ext3.
After checkpointing, the space occupied by this transaction is
reused. Thus, if the usable space left in the on-disk journal
is below some threshold, checkpointing is then triggered. In
the latest Linux kernel 2.6.20.4, whenever a single atomic
update to ext4fs starts, the Journaling Block Device Layer 2
(JBD2) checks and ensures 1/4 of the total journal size plus
current update size available. Figure 2 shows a logic view of
the journaling process.

Journaling Mode: File system needs to update both data
and metadata. The safest but slowest mode is to journal all
data and metadata updates. This approach is called journal
or data mode which works unfavorably with write intensive
workload.

Since file system consistency is mainly maintained by file
metadata and file system metadata, journaling only metadata
is another approach that is more widely used. The fastest
journaling mode is writeback mode. SGI’s XFS [2] acts in this
mode. However, this mode is not safe if the system crashes
when the metadata has been journaled but related data have
not been saved to disks. For example, we append data to a file
and the system crashes after the corresponding meatadata are
journaled. In system recovery, the information recorded in the
on-disk journal shows the transaction is correctly committed.
As a result, we can potentially see blank, or even worse,
random data at the end of this file.

To overcome this issue, file systems like JFS and ext3
adopt ordered mode as the default. It demands that all the
data change must be updated to actual disk locations before
corresponding transaction commits.

On-disk Layout: Figure 3 shows a typical disk layout of
a journaling file system. Followed by the reserved blocks
for boot loader, a disk partition is divided into equal-sized
groups (except the last group) named as Cylinder Group (CG)
in Berkley Fast File System, Block Group (BG) in Linux
extended file systems and Allocation Group (AG) in SGI XFS.
In this paper, we prefer the term Allocation Group. Each group
places related file data, inode and directory entries physically
together. In addition, concurrent accesses to different groups
are allowed to improve the degree of I/O concurrency. The first
AG (AG0) stores the superblock, including critical system-
wide information. Each AG maintains a allocation table or
bitmap for both inode and blocks.

Usually a reserved inode is used to index the on-disk
journal, such as, aggregate inode #3 in IBM’s JFS [5], system
file #2 in Windows NTFS [7], and a special file .journal in
Linux ext3. The on-disk journal can be simply viewed as a
regular file. On-disk journal is a write-ahead log that can be
located in a separate device. But most file systems normally
allocate consecutive blocks at the beginning of a file system
for the journal (i.e., AG0). The rationale behind this is that
both on-disk journal and the superblock are both frequently
updated and thus they should be stored physically together to
avoid long disk seeks.

The on-disk journal consists of a journal superblock and a
series of transactions. The critical fields in the superblock are
the last checkpointed transaction ID and the first unfinished
transaction offset. During a crash recovery, this checkpoint
is used to locate where we start to scan the journal. Each
transaction is composed of a description block, a series of
updated blocks and a commit block. The description block
keeps the location mapping of the updated blocks. The commit
block is used to mark the successful commit of a transaction.
The transaction ID in it is the same as its corresponding
description block.
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Fig. 3. A Typical Journaling File System On-disk Layout

Crash Recovery: With the help of transaction and on-
disk journal, crash recovery is straightforward in journaling
file system. We first check if the file system was safely
unmounted (a flag in superblock). If not, we find the journal
superblock, start from the first unfinished transaction offset,
and sequentially scan the unfinished transactions. For the
transactions missing commit block, we simply ignore them.
For committed transactions, we redo the transaction: write the
journaled blocks inside into their original locations. If several
journaled blocks point to the same disk location, the latest will



be written.

III. ACTIVE JOURNALING

The constant effort of journaling on twice-write was ob-
served as an overhead. However, we notice free replicas have
been made along with this “overhead”. The only active usage
of the journal in system crash is an apparent waste. Figure
4 illustrates a common case we can potentially benefit from
reading the journal in normal operations. The rationale is,
when we have more than one identical blocks in the disk,
we choose to access it from the closest location.
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Fig. 4. The upcoming requests read block x, y, z in a sequence. In
conventional journaling file systems, disk head seeks to the original
locations of x, y, z respectively instead of directly fetching x, y, z from
the journal within one sequential read.

This section details our active journaling design. We first
describe the on-disk layout. Then we introduce how we capture
the access patterns current file systems poorly handled, where
we store them, and how we improve system performance
from reconstructing the disk layout. In addition, this work
introduces opportunities to enhance sequential prefetching
efficiency on non-sequential workloads. Here an important
note is the extra resources active journaling uses to improve
system performance is just free disk space, thus boosting
system without an extra penny. Then the corresponding issue
is how we release the free space when needed. Being elegant,
active journaling can adaptively grow and smoothly shrink
without mentionable cleaning overhead. In the extreme case of
no free space available, our design can shrink and work in the
same way as passive journaling. But we suggest a little more
space should be saved for the stable and reused non-sequential
access patterns we captured and stored. Crash recovery is
the basic motivation of journaling. Active journaling provides
mechanism to self-heal from silent data corruption and better
guarantees data reliability and durability.

Figure 5 depicts the on-disk layout of our active journaling
design. Compared with passive journaling, there are two
notable differences: extra group-journals and a virtual map
(vmap) file. Note that we keep the original file system mainly
untouched. Therefore, our design is well compatible with
current journaling file systems. We can easily upgrade a file
system from passive to active journaling or vice versa.
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Fig. 5. Active Journaling File System On-disk Layout

A. Journaling “Anywhere”

The location and size of the super-journal is described in the
file system superblock which is the same as passive journaling.
Inside the journal superblock, we add a magic number field
to identify the journaling type. Another important new field
is the state which marks the super-journal itself as clean or
dirty. When all the transactions including the transactions in
the group-journals are checkpointed, we mark this field in the
super-journal as all clean.

The difference lies in the group-journals. The header of each
group-journal is indexed in the AG descriptor and located in
the fixed location of each allocation group. The contents of
group-journals are not fixed in each AG. We add extent list
field in each group-journal header to track the space used by
each group-journal.

As we introduced, we can improve journaling speed and
reducing interference with other file system operations by
commiting transactions to a close available place instead of
seeking back to AG0. The group-journals serve this purpose.
Each time we need disk space to commit a transaction, we
start from the closest group-journal. If the space for the
group-journal is full, we reused the checkpointed space or
allocate new space. Thus, we boost system performance by
journaling “anywhere”, which has two apparent advantages
on both journaling itself and normal write operations. First,
writing to a close place largely decreases the seek time of
the journaling itself. Second, journaling “anywhere” decreases
the interference of journaling writes with user demanding
operations. The place to commit transactions is followed by
how read and other operations move the disk head. From the
point of a user or application, read is more important because
in general read is synchronous and blocking intended while
write is asynchronous and delayable. The user does not care



when a write actually finishes in disk. They only need the
system to make sure the durability of the data. Therefore,
checkpointing is not enforced by the tiny free on-disk journal
space in passive journaling, but by the entire free disk space.
If we have enough free space, journaling would cache the
writes in disk and postpone checkpointing until the system
workload is light. Thus, we overcome the shortcoming of
passive journaling which enforces checkpointing even if the
system is very busy and we have plenty of free disk space to
buffer and delay checkpointing operations.

Note that journaling serves the original file system as a
crash-resistant safeguard. We need to guard internal incon-
sistency of the journals. We also use transactions to manage
the operations modifying important journal structures. For
example, the operation to allocate free space for a group-
journal is critical. We make sure these operations are journaled
in already allocated journal space.

The adaptable active journaling structure boosts write speed,
aggregates write operations into sequential workload, and
exploits disk free space to avoid contention between check-
pointing (low priority) and requests from users (high priority).
Moving further, the major motivation of this active journaling
structure is to turn journaling from a performance overhead
into a gain by exploiting the free replicas.

B. Durable Temporal Locality

Temporal locality is the major principle of cache replace-
ment algorithm design. Least Recently Used (LRU) algorithm
is commonly used in file and database systems. Normally,
temporal locality or a special access pattern could take effect
before it is replaced out of the main memory. A definition to
temporal locality is: in a given cache architecture, a particular
data word exhibits useful temporal locality if it will be
accessed again before it is replaced from the cache[21]. In our
design, the life cycle of the useful temporal locality is extended
to disk level by storing the poorly handled access patterns in
the journaling processing. We define this as Durable Temporal
Locality. Specifically, three steps of action are required to
make this work: find, record, and retrieve.

First, to find the poorly handled access patterns, we simply
need to distinguish them form sequential access patterns. We
adopt two views to differentiate sequential accesses from the
non-sequential. The first view is the logic view on semantic
level in consideration that the organization of the original
file system is based on spatial(logic) locality. Access patterns
match this logic locality should be viewed as sequential. For
example, a request to read a big file from the start to the end is
considered as sequential even if the file might be fragmented
as pieces on disk. We assume this would be handled by
background defragmentation tools. Similarly, operations like
ls -l are sequential from the logic view. The second view is
the physical view. We consider read requests temporally close
while physically distant as the targets which could degrade
system performance. In our design, we consider the size of
a single allocation group as the threshold, i.e. if the physical
block distance between two consecutive reads is smaller than a

single allocation group, we consider them as “sequential” and
gather them in a sequence; otherwise, we separate them into
different groups. We also call this threshold as “zero” seek
distance. Based on this simple rule, we filter the read requests
into sequence groups.

Remember we are trying to find non-sequential access
patterns based on the principle of temporal locality. If there is
a time gap (0.1s in our evaluation) between two consecutive
sequence groups, we consider the temporal connection be-
tween them weak. Consequently, sequence groups are further
separated as batches of sequence groups. We call each batch
of sequence groups as a sequence window.

Now we focus on each sequence window. Simply, if the
group size is small, we deem it as a mismatch between
current disk layout and user access patterns. This mismatch
would cost considerable disk positioning time. What if these
small-sized sequence groups are located close to the big-sized
sequence groups on disk, we could process these requests
much faster. In our evaluation, the sequence groups with
size larger than 15 blocks are called the docks. We keep a
block preference location table to track those sequence groups
having a preference to locate close to their temporally previous
dock. This is a primitive learning algorithm.

Second, to record the non-sequential access patterns, we
write it down along with transaction committing as freeblock
scheduling [16][17] or use system idle time. We simply check
the block preference location table for the blocks with the
preference locations close to current transaction committing
place. The transaction structure itself is mainly unchanged as
depicted in Figure 5. The difference lies between the descriptor
block and commit block. Originally, only modified blocks are
recorded. Now we need to store replicas and track them, which
requires a new data structure called vmap.

Third, to retrieve the recorded data, we use a B+ tree called
vmap to trace the blocks. Figure 6 depicts the details of vmap.
It is keyed by physical block number. When we commit a
transaction, we also record information to track these blocks
in vmap. If a block is updated, then the original blocks are
out-of-date, we use a version field to identify them. Here we
use the transaction ID as the version number. The benefits of
this is we can trace how the blocks were updated based on the
transaction ID. Because we also write down some unmodified
blocks, a physical block may have multiple replicas in the disk.
As a matter of fact, the vmap provides a block virtualization
mechanism.

With the vmap to track the blocks, we need to make a slight
improvement in I/O scheduler to benefit from the replicas. The
basic elevator scheduling algorithm is unchanged. We always
choose the closest request to schedule based on last issued
request location and the elevator direction. Here when we add
a read request to the I/O scheduler, we add all the replicas
and let the elevator sort them based on physical locations.
When a certain block is chosen based on the original elevator
algorithm, we need to do two extra steps. First, check if we
have a closer replica in the opposite direction. If so, we issue
the closer one and keep the elevator direction unchanged.



Second, we need to erase all the replicas related to a request
in the elevator after issuing it.

The memory cost of vmap is considered. First, assuming
the file system block size is 4KB, 5MB memory suffices for
tracking 1GB blocks. Considering most of today’s computer
systems equip with 1 Gigabytes or larger memory, it is usually
not a problem to keep the vmap in the memory. Second, the
purpose of vmap is to filter out repeatable durable temporal
locality mismatched from spatial locality. The sequential bulk
workloads are not traced. Third, we mainly just need to keep
the indexes to frequently referenced and newly updated blocks
in memory.
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Fig. 6. A detail view of the vmap B+ tree structure keyed by physical
block number. vmap is crucial in active journaling with three roles:
(1)block virtualization, (2)repeatable non-sequential access patterns filter,
and (3) silent data corruption guard.

C. Journaling - a “logger” or a “constructor”?

File systems could be generally categorized as in-place and
out-of-place updating file systems. For example, ext2 is a
complete in-place updating file system. On the contrary, log-
structured file system is a complete out-of-place updating file
system [18]. The benefits of out-of-place updating is write
speed since we do not need to seek to the original places
and all the updates are written in sequential. The problems
of out-of-place updating file systems are (1) disarrangement
of logic locality, (2) cleaning overhead, and (3) sensitivity
to available free space. These three problems are connected.
Because sequential access patterns complying with logic lo-
cality are common in file systems, the read performance is
degraded. A generally used method is background defragmen-
tation. Journaling file systems are a combination of in-place
and out-of-place updating. We first do out-of-place updating
and then in-place updating by checkpointing. Comparing a
journaling file system with a LFS or WAFL with background
defragmentation, we could observe the similarity of out-of-
place update first and then in-place update (checkpointing or
background defragmentation). These file systems actually both
involve twice-writes.

However, do we need to write twice all the time?
From the performance perspective, the only reason we

write blocks back to original locations is to preserve the
spatial locality. If the data have no such locality, we have no
reason to do. Looking back to passive journaling file system,
journaling acts as a “logger” to the file system. The original

file system’s structure is faithfully untouched. We always
write twice without considering the performance degradation.
This overhead severely degrades system performance in many
cases.

Two reasons motivate us to turn the role of journaling from
a “logger” to a “constructor”. First, journaling has been set up
as default in large. If merge journaling into file system could
make it work more efficiently, we should do it. It’s a historical
factor that journaling is treated as a optional mode. For
example, Solaris OS 2.4 UFS implemented metadata logging
option in 1994. Solaris OS 7 integrated metadata logging into
base UFS. In 2004, Solaris OS 10 turns on logging by default.

Second, modifications go through journaling before actually
updating the file system. We view all the updates and accesses
as stimuli showing us in certain cases the file system poorly
performs or acts well. In our active journaling design, we
expect to extend the function of journaling: let it learn from
the stimuli, let it re-construct the file system based on the
designated workloads, and let it improve system performance
and reliability.

Here we describe how we merges journaling with the
original file system and produces the synergy of in-place and
out-of-place updating. We consider if certain file system data
or metadata (1) have no strong spatial locality to preserve,
(2) have high priority to stay in memory, or (3) highly write
intensive, we should adopt the write “anywhere” policy and
save the overhead by always doing an extra in-place updating.

We take the file system superblock as an example, which
conceptually represent the file system. Because it’s important,
it’s always cached in memory. Also it is write intensive
in consideration of recording system-wide changes like free
blocks and inodes left. From the view of performance, instead
of writing it in the journal first and then checkpointing it back
to the original place, we should write it “anywhere” and record
the new locations. This is much faster and more efficient than
twice-writes all the time. From the view of reliability, it’s
better to keep a track of different versions of updates. This
also eliminates the chance of silent data corruption by in-
place writing many times. Therefore, both performance and
reliability are improved. This analysis also apply to other
system metadata like AG descriptors.

To support write “anywhere” in our design, vmap introduces
a block virtualization layer. We could simply view it as
an indirection map. For example, physical block i is the
superblock’s original location. Now we need to update the
superblock and we journaled it in a new physical block j
along with transaction committing. In the same transaction,
we also update the leaf entry keyed by i in the vmap as a
out-of-date version. Block j is recorded in this entry as a new
version of block i. we call block j as a virtual block. All of
this information are written in the same transaction so that we
could track the updates to the superblock. Note we could have
multiple virtual blocks to the same physical block. For system
critical data, we track more versions. For normal blocks, we
only track two versions which is enough for general reliability
requirements.



In summary, active journaling synergizes in-place and out-
of-place updating. We keep this discussion in next subsection
on merging allocation tables into the journal.

D. Journal-structured Block Allocation Table

Three reasons drives our design to merge block allocation
table into the journal. First, all free space in each allocation
group is viewed as potential journal space. The journal could
grow for tracking modifications to the file system, and shrink
for space shortage. Thus, the functionality of journaling and
block allocation table is overlapped. Second, updates to the
block allocation table are recorded into journal first and then
write back. This is inefficient and unnecessary. Third, the
most important reason is the concern of performance and how
we effectively allocate and reclaim free space. There are two
common ways to manage disk free space - bitmap and extent.

Bitmap is the common and simple way to represent disk
block usage. We could simply treat bitmap as an array of bits
and the Nth bit indicating whether the Nth block is allocated
or free. The first problem of bitmap is spatial overhead. If the
file system block size is 4K, we need 32M to represent 1T disk
space. The capacity overhead on disk is not considerable, but
the cost of keeping this in memory is a waste. The fundamental
problem of bitmap happens when we free blocks. To allocate
free space, we normally get a sequence of blocks close to
each other. We only need to change consecutive bitmap blocks
to mark these blocks as taken. But, when we free blocks, a
operation like “rm -rf *.log” forces the file system to update
a series of non-consecutive bitmap blocks.

Extent is an improvement to bitmap which has been gener-
ally used in modern file systems. An extent could effectively
express a contiguous region of free space using the starting
address and length. This solves the problem of spatial overhead
for expressing large consecutive free spaces. Extent is usually
organized by B tree keyed by the starting address. Thus
contiguous block allocation is efficient. However, we still need
to update a lot of extents when users randomly delete files.

In passive journaling, we first write these updates to the
journal and then checkpoint them back to the original lo-
cations. Here, we use the journal itself to handle the block
allocation table. Each allocation group has its group-journal
(super-journal for AG0) and the free space are managed by
the extent list. Each time we allocate or free disk space, we
keep the updated extent in the journal and indexed using the
vmap for simplicity. By doing this, runtime allocation and free
are largely speed up even if we free a series of random blocks.
Only one sequential write along with transaction committing
is necessary for managing free space changes in a period of
time.

Note that in the active journaling structure, we still keep
the space for the superblock, AG descriptors, allocation tables
as the original file system. We do this for simplicity and
compatibility. We can free these blocks and let the journal su-
perblock and group-journal header index the location of these
data structures. Here we keep the original locations of these
data structures and let vmap handle the block virtualization.

Then we can put the blocks inside the journal. Besides this
system-wide metadata, we can also apply block virtualization
to the small files which normally have weak spatial locality.

E. Checkpointing Policy

In passive journaling, we initialize checkpointing immedi-
ately after a transaction is successfully committed. This opera-
tion has a performance penalty in consideration that metadata
are usually dispersed. A committed compound transaction
may contain hundreds of scattered metadata blocks . As we
discussed, writing twice is unnecessary if the data have no
spatial locality to preserve. Metadata are such candidates [12].
In our design, vmap tracks the new locations of metadata.
Therefore, we only need to checkpoint the updates to vmap.
This is similar to the idea called wandering log in Reiser4 [11].
Basically, we update the pointers to the data instead of writing
to the original locations. The advantage of this optimization
is that pointers are normally much smaller and denser. We
call this as virtual checkpointing which has another benefit on
recovery from users unintentional operations.

Note that this optimization turns vmap to be the most critical
data structure by which the system and file level metadata are
tracked. The changes to vmap are always tracked along with
transaction committing. We also make backup of it.

F. Self-healing from Silent Data Corruption

With the increasing of disk capacity, the occurrence rate
of data corruption becomes non-negligible. Based on recent
evaluation [22], the probability of data corruption is 0.86% on
nearline disks and 0.065% on enterprise-level disks. Therefore,
we not only need to improve performance but also reliability
of the file system. A passive journaling file system could
recover from a system crash. However, for disk level silent
data corruption, passive journaling is impotent. For the case
that some sectors are inaccessible, the file system could mark
them as bad. But for some latent errors responding corrupted
data, a passive journaling file system is unware of it and returns
corrupted data to the users.

In our active journaling design, vmap tracks the updates
to file system. Nearly all updated blocks have at least two
versions or copies. To make file system self-healing from data
corruption, we keep checksums for the versions of blocks.
Each time we read a block from the disk, we also check the
integrity by verifying the checksum. If the checksum does not
match, we could recover the block from a copy or a older
version.

Note that data corruption often occurs during write process
somewhere in the IO path [23]. Therefore, the benefit of
active journaling on reliability is two-fold. First, the vmap
block virtualization diminishes in-place repeating writes, thus
decreasing the chance of data corruption rate. Second, multiple
versions of data tracked by vmap provide a mechanism for
system self-healing from silent data corruption. Based on the
IRON Recovery Taxonomy in [24], this is the highest level
reliability guarantee.



Therefore, not only boosted performance from active jour-
naling, we also improved system reliability to a higher self-
healing level.

G. Cleaner

Sensitivity to available free space is an issue to active
journaling. In fact, all the out-of-place update file systems like
LFS [18], WAFL [25][26], and ZFS [27] have the same issue.
If the free space is limited, the advantage of write “anywhere”
turns out to be write “nowhere”. A common way to solve this
issue is to run a background defragmentation process. The
blocks are read again into memory, pick up the live data, sort
and write them back to disk. This could be a considerable
overhead.

In active journaling design, cleaning is much easy and
efficient because we provide a block virtualization for out-of-
place updating. The original places are preserved. Note that
we may write down many replicas but only a fair percentage
are useful. To filter out the useful, we include a reference
count and a last read time field in each leaf entry of vmap.
In the cleaning process, we keep highly re-referenced and
newly updated blocks if possible. The process of cleaning is
as follows:

1) Scan vmap. Sort and group virtual blocks into each
AG. Mark virtual blocks whose corresponding physical
blocks are not the latest version.

2) Identify AGs without out-of-date physical block. Update
physical blocks if necessary.

3) Check identified AG’s group-journal header. The journal
space taken by transactions previous to last checkpoint
in this AG is ready to reclaim.

4) Update vmap. Keep the highly re-referenced and newly
updated blocks if possible, or pack and relocate them.

5) Execute these updates as a system transaction.

H. Crash Recovery

Active journaling is basically the same as passive journaling
in crash recovery. We scan from the checkpoint, redo the
committed transaction, and discard the unfinished transactions.
However, there are two notable differences. First, we have
multiple pieces of on-disk journals. Unless the state field in
the super-journal is all clean, we need to check the journal
state field in each allocation group. If it is clean, we skip it.
If it is dirty, we scan from the checkpoint and recover the file
system to a consistent state.

The second difference is more fundamental. Because we
track updates with vmap. Then the crash recovery process
is to redo the updates to vmap recorded in the committed
transactions instead of all the block updates. After we have
a consistent vmap, the file system is consistent and ready to
work.

IV. EXPERIMENTAL EVALUATION

In this section we first describe our methodology of sim-
ulation and experimental configuration. Then we present our
evaluation results on traces [28] representing sequential access

workloads, random access workloads, and concurrent applica-
tions workloads.
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A. Simulator

Our simulator is approximately 16,000 lines of C++ code,
built upon C++ STL and Boost Libraries [29]. The simulator
structure is depicted in Figure 7. Our simulator is trace-
driven and the requests from traces are processed on open
model, i.e. the request arrival time is fixed and we use
average response time to measure the sytem performance. The
simulator consists of five components: trace, page cache, I/O
scheduler, transaction management, and disk component.

The disk component consist of the Disksim 4.0 [30] vali-
dated disk simulator and our disk layout modules. We also
simulate the behavior of DMA to disk. Any disk request
need to acquire the DMA channel resource before issuing
to disksim. In our evaluation, we simulate ext2, ext3, LFS,
DualFS [12], hFS [31], and our active journaling (AJ) disk
layout. All the disk layouts are inherited from a single C++
class. We could easily expand the code and simulate more
disk layouts. The disk layout are built from all the traces [28]
used in our evaluation. The process of building disk layout
is as follows. First, we format the block group or segment,
i.e. reserve the space for system level metadata. Second, we
add file system specific system level files such as on-disk
journal file and LFS checkpointing region. Third, we start
from the directory with the smallest inode number, and add
the directory and the files recursively. Files are placed to their
parent directories as close as possible.

Transaction Management component is vital because our
major simulation target is journaling file systems. We faithfully
emulate the details of ext3 compound transaction processing
model and three journaling mode based on vast available
documents [9][10][32] and latest Linux kernel code 2.6.20.4.
We extend this module to our active journaling transaction
processing module.

In consideration that I/O scheduler has a profound impact on
file system performance, we wrote a I/O scheduler to simulate
the behavior of FIFO, elevator, deadline, and anticipatory
scheduler. It also simulates the subtleties of logging behaviors
in LFS, DualFS, and hFS.



The page cache component includes page cache, kernel
prefetcher and the slab layer module. These modules actually
preform different functions. We view them together here just
because they are highly related to each other. The page
cache and kernel prefetcher modules are modified from ac-
cuSim [28]. The purpose of the slab layer module is to manage
objects smaller than one block like inodes and dentries.

The trace component performs the function of interpreting
different trace formats to our internal simulator request format.
In our simulation, file level metadata including directory,
inode and indirect blocks accesses are simulated. System level
metadata accesses like block allocation are ignored. A tricky
issue is the update on the last access time while reading a file.
In our simulation, we mark the block containing this inode
as minor dirty. We perform normal transaction processing
or writeback for this block but it is still “readable” by user
requests.

B. Experimental Setup

Our simulator allows a multitude of parameters to be varied.
To guarantee the fairness of the performance comparison, we
fix most of the parameters. The differences between target file
systems are mostly confined in disk layout and write strate-
gies: in-place writeback (ext2), transaction processing (ext3,
aj), or log-structured writeback (LFS, DualFS, hFS). Unless
explicitly explained, the parameters are listed in Table I:

TABLE I

EVALUATION CONFIGURATION

Common Configuration
Replacement Alg. LRU Kernel Prefetch off
Read Expire 0.5s Write Expire 5s
Disk Model atlas10k DMA Channel 2
Inode 128 bytes DEntry 256 bytes
Block 4096 bytes Warm Up off

ext2 LFS
Data&Metadata in-place Data&Metadata log-stru
Writeback Timer 5s Writeback Timer 5s
Block Group 32768 blocks Segment 1024 blocks

DualFS hFS
Log Partition 10% Log Partition 10%
Metadata log-stru Metadata log-stru
File≤1 block in-place File≤1 block log-stru
File>1 block in-place File>1 block in-place
Writeback Timer 5s Writeback Timer 5s
Group 32768 blocks Allocation Group 32768 blocks
Segment 512 blocks Segment 512 blocks

ext3 aj
Journal Size 8192 blocks Journal Size free space
Journal Mode ordered Journal Mode ordered
Metadata transaction Metadata transaction
Data in-place Data in-place
Commit Timer 5s Commit Timer 5s
Checkpointing immediate Checkpointing immediate
Block Group 32768 blocks Allocation Group 32768 blocks

Active journaling design improves from traditional passive
journaling in many aspects. To focus on the performance
improvement coming from learning and re-constructing the
file system layout, we use the same immediate checkpointing
policy as ext3 instead of vitrual checkpointing. This eliminates

the performance gain from less writes. In addition, the exper-
imental results are tested with zero overhead of writing the
replicas to the preferred locations captured by our primitive
algorithm discussed in Section III-B.

Note that our focus is to faithfully simulate journaling file
systems. For LFS, DualFS and hFS, our simulation is limited.
First, the disk layout are initialized based on directory affinity.
Then the disarrangement of spatial locality is generally negli-
gible because we did not test on write-intensive traces. Also,
the overhead of background cleaner is not simulated. Second,
many optimization strategies such as online relocation [12]
and dynamic segment size [31] are not simulated. But we
do simulate the hole-plugging [19] logging strategies in our
simulator. Third, DualFS and hFS have a separate log partition.
Because we did not find specific size recommendation in [12]
and [31], We simply choose 10% as the log partition size. This
can result notable performance degradation. We shall discuss
this issue based on our evaluation results. In a word, our
evaluation on LFS, DualFS and hFS is limited on disk layout
and write strategies. This may vary from these file systems’
actual performance.

TABLE II

DISK SEEK DISTRIBUTION

time distribution (ms) cscope cache size 160 MB
0 <2 <4 <6 <7 <8 >8

ext3 0 7769 3441 29 3 210 656
aj 0 7150 3382 6 1 8 560

distance distribution (cyl.) cscope cache size 160 MB
0 <21 <81 <321 <641 <1281 >1281

ext3 7096 647 293 601 882 1000 894
aj 6550 514 296 496 797 986 584

C. Sequential Access Workloads

We choose three traces [28] to represent the category of
sequential access workloads in our evaluation: (1) cscope
(examining the Linux kernel 2.4.20 code), (2) gcc (building
Linux kernel 2.4.20), and (3)viewperf (a SPEC benchmark
which measures the performance of a graphic station.). In
these traces, files are mostly read entirely and sequentially.
Figure 8 shows our evaluation results on which the following
observations can be made.

First and the most important, non-sequential access patterns
on file level is common even though we access each individual
file sequentially. For example, user applications often interact
with system and library files. Applications frequently access
files located in different directories. Being specific in cscope
trace, we observed that 98.9% requests are gathered in two
portions of ext2/3, LFS and aj disk layouts. The first portion
is nearby the AG0. The other one is in AG[48-57]. Therefore,
seeking back and forth is inevitable. Our primitive learning
algorithm in Section III-B shows 0.25s was saved for each
request response time in average. For example, Table II
compares the disk seek distribution between ext3 and aj based
on the output from disksim, which confirms this performance
improvement. However, our algorithm is not smart enough to
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(b) gcc Trace
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(c) viewperf Trace

Fig. 8. Sequential Access Workloads Simulation Results
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(b) multi1 Trace
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Fig. 9. Random and Concurrent Applications Workloads Simulation Results

directly make copies of the files in the first portion to the
second. There is great potential for further improvements.

Second, the performance of DualFS and hFS is lower than
other targets in general. A possible reason is DualFS and
hFS separate data and metadata in different partitions on disk.
This separation is against the cylinder group design originated
from Berkeley Fast File System (FFS) [20], and followed by
many modern file systems including ext3, XFS, JFS, etc. The
basic principle is spatial locality. File system read and write
operation to a file usually need the metadata to access the data.
Therefore, separating the metadata and data of the same file
could cause a long distance seek for each operation.

Third, ext3 performs slightly faster than ext2 in cscope
trace. This happens for three reasons: (1) metadata updates
only account a tiny amount of all the requests. (2) the on-disk
journal is located close to the first requests gathering portion of
this trace. Therefore, transaction committing mostly does not
introduce extra seeking overhead. (3) Transaction committing
interval is 5s. Checkpointing traffic does not interfere with
requests in the beginning and ending of the trace. The holding
and delaying of metadata updating accelerates the demanding
requests.

Finally, LFS performs extremely fast in viewperf by a
coincidence. The requests of this trace is 99% composed

of references to consecutive blocks within a few large files.
Therefore, there is no chance of finding non-sequential access
patterns. All other targets file systems perform similarly. The
key point here is the write traffic which interferes the bulk
reads between whiles. However, only for LFS can it gather
all metadata and data updates and write to a new place. The
coincidence in our evaluation is the available segments exactly
follow the area where read requests gather. Consequently, all
reads and writes aggregate in a small area in disk, which
eliminates almost all the seek time as a ideal disk layout
for this workload. This coincidence also demonstrates our
efforts of finding non-sequential access patterns and rebuilding
suitable disk layouts are worthwhile.

D. Random Access Workloads

The tpc-r trace [28] was collected by running TPC-R
benchmark [33] on MySQL database system. Only 3% of
references are issued to consecutive blocks - serving as a
good condidate for random access workloads. Note that the
workload is much heavier compared with the traces we used in
sequential access workloads. We use the Seagate Cheetah15k5
disk model in disksim 4.0 only for this trace.

Figure 9(a) shows the performance improvement by active
journaling is distinct. For example, the average response time



of 15,982,481 requests is decreased from 3.7882s to 2.5012s
with page cache size 384MB in comparison with ext3. This
demonstrates how random access workloads are inefficiently
handled in conventional file systems, and how improvement
can be made from learning and capturing block level non-
sequential access patterns.

E. Concurrent Applications Workloads

Two traces [28] we used in this section were collected
by concurrent executions of previous applications: (1) multi1
(cscope, gcc), and (2) multi2 (cscope, gcc, viewperf ).

Figure 9(b) 9(c) presents our evaluation results on these
traces. Our primitive learning algorithm works less effective on
concurrent applications in comparison to previous evaluation
results. A possible reason is our algorithm does not differenti-
ate requests from different processes. Therefore, the captured
patterns are less accurate.

V. RELATED WORK

A. Journaling File Systems

Currently available journaling file systems passively use
journaling. Section II describes how Linux ext3 file system
works [9]. In the newest upgrade to ext4 file system, jour-
naling has no major change [10]. Two minor changes include
upgrading Journaling Block Layer (JDB) to JDB2 for handling
64bit block numbers, and adding metadata checksum to ensure
better reliability with the proof of IRON file system paper [24].

ReiserFS [11][32] journaling differs from ext3 in minor
ways. However, Reiser4 [11] largely optimizes journaling
overhead by introducing wandering log. Because the whole
file system on-disk structure is organized as a big B+ tree,
we can journal the modified blocks first, and update the
block pointers instead of checkpointing the blocks back to
their original locations. The benefits of wandering log are
twofold. First, the pointers are small and highly concentrated.
Therefore, the update overhead is low. Second, the locations of
logged blocks disperse which can result in multiple seeks for
normal checkpointing. However, wandering log might causes
disarrangement of spatial locality. Reiser4 uses repacker to
handle this issue which is the same approach as the cleaner in
LFS [18] and background defragmentation in WAFL [25][26].
Note that the foundation of applying wandering log lies in
the special B+ tree on-disk structure of Reiser4. Compared
with our active journaling design, vmap performs the same
functionality. The difference is wandering log is used only for
reducing the overhead, our design aims at turning the overhead
as an performance and reliability gain.

Journaled File System(JFS) is the first journaling file system
released by IBM in 1990. The notable difference between JFS
and ext3 is JFS’s journal record is on semantic level instead
of block level [4][34]. Updates to different types of metadata
(inode, directory map, allocation map, etc.) are recorded
differently and handled with different routines. The effect of
this fine-grained journaling is twofold. First, it reduces the
size of on-disk journal because we only need to record what
exactly changed. Meanwhile, the complexity of locking and

transaction processing increases. Instead of using compound
transaction, JFS adopts group commit for records on the same
log page. The reliability guarantee of Journaling in JFS is
similar to ext3 ordered mode.

NTFS [7][6] is the default file system used in most Windows
Operating Systems. The journaling in NTFS is performed by
the Log File Service (LFS) inside NTFS system file driver.
Similar to JFS, NTFS adopt ordered journaling mode and
semantic level record. Different from JFS, NTFS includes
not just redo log but also undo information in each on-disk
transaction record. NTFS also groups transaction commits by
“batching of log records”.

Journaling in other file systems like SGI’s XFS [2][3] and
Solaris OS UFS [8] vary in their specific design. But the
features are included in our previous descriptions.

B. Out-of-Place Updating File Systems

LFS [18][19] buffers a sequence of file system changes and
then write them to disk sequentially in a single disk write
operation for the purpose of write speedup. This simple change
profoundly impacts the design of modern file systems.

In WAFL [25], metadata live in files. File system snapshot
can be easily made by duplicating the root inode. Write
allocation can be done anywhere in the file system by simply
change the metadata in files. Recent improvement in WAFL
is the FlexVol Architecture [26]. An extra level of indirection
or virtualization between logical and spatial storage space is
introduced to support new features like volume mirroring and
cloning.

ZFS [27] is a 128-bits file systems which support similar
functionality as FlexVol with lower overhead by using stor-
age pool address instead of the two-level block addressing
in WAFL. ZFS ensures data integrity by the copy-on-write
transactional model. ZFS can self-heal data in a mirrored or
RAID configuration. This differs from our design by self-
healing from replicas tracked in a single disk.

C. Multi-structured File Systems

In the pursuit of a synergy of the in-place and out-of-
place updating file systems, hFS [31] implemented a comple-
mentary disk layout with separated log and data partitions.
DualFS [12] proposed a similar disk layout based on the
rationales that metadata are write intensive and mostly ac-
cessed non-sequentially. DualFS put only metadata in the log
partition. By considering small files’ weak spatial locality, hFS
also place them into the log partition. Besides, hFS locates the
log partition in the middle whereas DualFS organize the log
and data partition side by side.

Because the contents inside the journal are indexed, our
active journaling design can also be viewed as a multi-
structured file system with a same purpose of synergizing the
in-place and out-of-place updating. Differing from DualFS and
hFS, our design has no separated log partition. Therefore, the
performance penalty of separating the data and metadata of
same files are eliminated.



The hybrid file system layout, HyLog [35], was proposed
from the angle of differentiating hot and cold pages. Hot pages
are written in place whereas cold pages out of place.

D. Utilization of Free Disk Space

FS2 [36] exploits free disk space for both improving system
performance and saving energy consumption. Motivated from
the angle on journaling, we share the view on using free
disk space, and further exploit higher system reliability from
duplication. Besides, our design has notable difference on file
system layout and metadata management.

VI. CONCLUSION

Read world workloads are diverse. However, a large ma-
jority of modern file systems are organized based on spatial
locality. Therefore, non-sequential access patterns are poorly
coped with. We expect an adaptive file system applicable to
the diversities of workloads. After deploying to a specific
environment for a period of time, we presume the file system
could perform better with the recognition of the workloads
and access patterns in the environment. One approach to
this objective is to learn from past workloads and adaptively
reorganize the file system. With the help of journaling, the
overhead involved in the process of learning and reorgani-
zation is diminished as “freeblock scheduling” [16][17]. By
extending the role of journaling from a “logger” to a “learner”
and a “constructor”, we can turn the journaling twice-write
overhead inside out as a gain on system performance and
adaptivity. Even though the algorithms used in this paper are
still primitive, our evaluation results exhibit great potential
for this active journaling approach, which reduces average
response time 14-39% for random access workloads and 0-
14% for sequential access workloads based on the evaluation
results from a wide range of workloads.

Beyond performance enhancement and system adaptivity,
our active journaling design upgrades system reliability on a
higher level: self-healing from silent data corruption.

Besides, we made a series of optimizations on active jour-
naling file system layout in the pursuit of a synergy between
in-place updating and out-of-place updating. A notable en-
hancement is our journal-structured block allocation design.

Furthmore, We refine the journaling transactional model
from committing transactions to fixed circular locations to
journaling “anywhere”. We also exploit the benefit of block
virtualization on virtual checkpointing.

In our future work, we plan to refine the learning algorithm,
and implement a prototype of active journaling file system in
Linux kernel.We hope our work could plant a seed for the
revolution to next generation journaling file systems.
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