CLIC: CLient-Informed Caching for Storage Servers

Abstract

Traditional caching policies are known to perform poorly
for storage server caches. One promising approach to
solving this problem is to use hints from the storage
clients to manage the storage server cache. Previous
hinting approaches are ad hoc, in that a predefined re-
action to specific types of hints is hard-coded into the
caching policy. With ad hoc approaches, it is difficult to
ensure that the best hints are being used, and it is diffi-
cult to accommodate multiple types of hints and multiple
client applications. In this paper, we propose CLient-
Informed Caching (CLIC), a generic hint-based policy
for managing storage server caches. CLIC automatically
interprets hints generated by storage clients and trans-
lates them into a server caching policy. It does this with-
out explicit knowledge of the application-specific hint
semantics. We demonstrate using trace-based simula-
tion of database workloads that CLIC outperforms hint-
oblivious and state-of-the-art hint-aware caching poli-
cies, and that it scales well and effectively limits the cost
of cache management.

1 Introduction

Multi-tier block caches arise in many situations. For ex-
ample, running a database management system (DBMS)
on top of a storage server results in at least two caches,
one in the DBMS and one in the storage system. The
challenges of making effective use of caches below the
first tier are well known [14, 17, 20]. Poor temporal lo-
cality in the request streams experienced by the second-
tier caches reduces the effectiveness of recency-based re-
placement polices [20], and failure to maintain exclusiv-
ity among the contents of the caches in each tier leads to
wasted cache space [17].

Many techniques have been proposed for improving
the performance of second-tier caches. Section 7 pro-
vides a brief survey. One promising class of techniques
relies on hinting: the application that manages the first-

tier cache generates hints and attaches them to the I/O
requests that it directs to the second tier. The cache at the
second tier then attempts to exploit these hints to improve
its performance. For example, an importance hint [5] in-
dicates the priority of a particular page to the buffer cache
manager in the first-tier application. Given such hints,
the second-tier cache can infer that pages that have high
priority in the first tier are likely to be retained there, and
can thus give them low priority in the second tier. As
another example, a write hint [10] indicates whether the
first tier is writing a page to ensure recoverability of the
page, or to facilitate replacement of the page in the first-
tier cache. The second tier may infer that replacement
writes are better caching candidates than recovery writes,
since they indicate pages that are eviction candidates in
the first tier.

Hinting is valuable because it is a way of making
application-specific information available to the second
(or lower) tier, which needs a good basis on which to
make its caching decisions. However, previous work has
taken an ad hoc approach to hinting. The general ap-
proach is to identify a specific type of hint that can be
generated from an application (e.g., a DBMS) in the first
tier. A replacement policy that knows how to take advan-
tage of this particular type of hint is then designed for the
second tier cache. For example, the TQ algorithm [10] is
designed specifically to exploit write hints. The desired
response to each possible hint is hard-coded into such an
algorithm.

Ad hoc algorithms can significantly improve the per-
formance of the second-tier cache when the necessary
type of hint is available. However ad hoc algorithms also
have some significant drawbacks. First, because the re-
sponse to hints is hard-coded into an algorithm at the sec-
ond tier, any change to the hints requires changes to the
cache management policy at the second-tier server. Sec-
ond, even if change is possible at the server, it is difficult
to generalize ad hoc algorithms to account for new situ-
ations. For example, suppose that applications can gen-



erate both write hints and importance hints. Clearly, a
low-priority (to the first tier) replacement write is proba-
bly a good caching candidate for the second tier, but what
about a low-priority recovery write? A related problem
arises when multiple first-tier applications are served by
a single cache in the second tier. If different applications
generate hints, how is the second tier cache to compare
them? Is a write hint from one application more or less
significant than an importance hint from another?

In this paper, we propose CLient-Informed Caching
(CLIC), a generic technique for exploiting application
hints to manage a second-tier cache, such as a storage
server cache. Unlike ad hoc techniques, CLIC does not
hard-code responses to any particular type of hint. In-
stead, it is an adaptive approach that attempts to learn to
exploit any type of hint that is supplied to it. Applica-
tions in the first tier are free to supply any hints that they
believe may be of value to the second tier. CLIC analyzes
the available hints and determines which can be exploited
to improve second-tier cache performance. Conversely,
it learns to ignore hints that do not help. Unlike ad hoc
approaches, CLIC decouples the task of generating hints
(done by applications in the first tier) from the task of
interpreting and exploiting them. CLIC naturally accom-
modates applications that generate more than one type of
hint, as well as scenarios in which multiple applications
share a second-tier cache.

The contributions of this paper are as follows. First,
we define an on-line cost/benefit analysis of I/O request
hints that can be used to determine which hints provide
potentially valuable information to the second-tier cache.
Second, we define an adaptive, priority-based cache re-
placement policy for the second-tier cache. This policy
exploits the results of the hint analysis to improve the hit
ratio of the second-tier cache. Third, we use trace-based
simulation to provide a performance analysis of CLIC.
Our results show that CLIC outperforms ad hoc hinting
techniques and that its adaptivity can be achieved with
low overhead, even when the number of hints is large.

2 Generic Framework for Hints

We assume a system in which multiple storage server
client applications generate requests to a storage server,
as shown in Figure 1. We are particularly interested in
client applications that cache data, since it is such appli-
cations that give rise to multi-tier caching.

The storage server’s workload is a sequence of block
I/O requests from the various clients. When a client
sends an I/O request (read or write) to the server, it may
attach hints to the request. Specifically, each storage
client may define one or more hint types and, for each
such hint type, a hint value domain. When the client is-
sues an I/O request, it attaches a hint set to the request.
Each hint set consists of one hint value from the domain
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Figure 1: System Architecture

of each of the hint types defined by that client. For exam-
ple, we used IBM DB2 Universal Database! as a storage
client application, and we instrumented DB2 so that it
would generate five types of hints, as described in Fig-
ure 2. Thus, each I/O request issued by DB2 will have
an attached hint set consisting of 5 hint values: a pool
ID, an object ID, an object type ID, a request type, and a
DB2 buffer priority.

CLIC does not require these specific hint types. We
chose these particular types of hints because they could
be generated easily from DB2, and because we believed
that they might prove useful to the underlying storage
system. Each application can generate its own types of
hints. CLIC itself only assumes that the hint value do-
mains are categorical. It neither assumes nor exploits
any ordering on the values in a hint value domain. Each
storage client application may have its own hint types. In
fact, even if two storage clients are instances of the same
application (e.g., two instances of DB2) and use the same
hint types, CLIC treats each client’s hint types as distinct
from the hint types of all other clients.

3 Hint Analysis

Every I/0 request, read or write, represents a caching op-
portunity for the storage server. The storage server must
decide whether to take advantage of each such opportu-
nity by caching the requested page. Our approach is to
base these caching decisions on the hint sets supplied by
the client applications with each 1/O request. CLIC as-
sociates each possible hint set H with a numeric priority,
Pr(H). When an I/O request (read or write) for page p
with attached hint set H arrives at the server, the server
uses Pr(H) to decide whether to cache p. Cache man-
agement at the server will be described in more detail
in Section 4, but the essential idea is simple: the server
caches p if there is some page p’ in the cache that was re-
quested with a hint set H' for which Pr(H') < Pr(H).

We expect that some hint sets may signal pages that are
likely to be re-used quickly, and thus are good caching

IDB2 Universal Database is a registered trademark of IBM.



Hint Value Domain
Type Cardinality Description
pool ID 2 Identifies which DB2 buffer pool generated the I/O request.
object ID 21 Identifies a group of related database objects, such as a table and its associated
indices.
object type ID 6 Distinguishes among the objects with a given object ID. Together, a pool ID,
object ID and object type ID uniquely identify a database object, such as a table
or index.
request type 5 For read requests, distinguishes regular reads from prefetch reads. For writes,
provides write hints ([10]), which distinguish between recovery writes, replace-
ment writes, and synchronous writes. Synchronous writes are replacement
writes that are not performed by an asynchronous page cleaning thread.
buffer priority 4 Identifies the priority of the page in its DB2 buffer cache.

Figure 2: Types of Hints in the DB2 I/O Request Traces

candidates. Other hint sets may signal the opposite. In-
tuitively, we want the priority of each hint set to reflect
these signals. But how should priorities be chosen for
each hint set? One possibility is to assign these priorities,
in advance, based on knowledge of the client applica-
tion that generates the hint sets. Most existing hint-based
caching techniques use this approach. For example, the
TQ algorithm [10], which exploits write hints, under-
stands that replacement writes likely indicate evictions in
the client application’s cache, and so it gives them high
priority.

CLIC takes a different approach to this problem. In-
stead of predefining hint priorities based on knowledge
of the storage client applications, CLIC assigns a prior-
ity to each hint set by monitoring and analyzing 1I/O re-
quests that arrive with that hint set. Next, we describe
how CLIC performs its analysis. To simplify the pre-
sentation, we will ignore, for now, the cost (in time and
space) of performing the analysis. We will address the
issue of efficient analysis in Section 5.

We will assume that each request that arrives at the
server is tagged (by the server) with a sequence number.
Suppose that the server gets a request (p, H), meaning
a request (read or a write) for a page p with an attached
hint set H, and suppose that this request is assigned se-
quence number s;. CLIC is interested in whether and
when page p will be requested again after s;. There are
three possibilities to consider:

write re-reference: The first possibility is that the next
request for p in the request stream is a write request
occurring with sequence number S (s3 > s1). In
this case, there would have been no benefit what-
soever to caching p at time s;. A cached copy of
p would not help the server handle the subsequent
write request any more efficiently. A cached copy
of p may be of benefit for requests for p that occur
after so, but in that case the server would be bet-

ter off caching p at so rather than at s;. Thus, the
server’s caching opportunity at s is best ignored.

read re-reference: The second possibility is that the
next request for p in the request stream is read re-
quest at time s5. If the server caches p at time s;
and keeps p in the cache until s, it will benefit by
being able to serve the read request at so from its
cache. For the server to obtain this benefit, it must
allow p to occupy one page “slot” in its cache during
the interval so — s7.

no re-reference: The third possibility is that p is never
requested again after s;. In this case, there is clearly
no benefit to caching p at s;.

Of course, the server cannot determine which of these
three possibilities will occur for any particular request,
as that would require advance knowledge of the future
request stream. Instead, we propose that the server base
its caching decision for the request (p, H) on an analysis
of previous requests with hint set H. Specifically, CLIC
tracks three statistics for each hint set H:

N(H): the total number of requests with hint set H.

N, (H): the total number requests with hint set H that
result in a read re-reference (rather than a write re-
reference or no re-reference).

D(H): for those requests (p, H) that result in read re-
references, the average number of requests that oc-
cur between the request and the read re-reference.

Using these three statistics, CLIC performs a simple
benefit/cost analysis for each hint set H, and assigns
higher priorities to hint sets with higher benefit/cost ra-
tios. Suppose that the server receives a request (p, H)
and that it elects to cache p. If a read re-reference sub-
sequently occurs while p is cached, the server will have



obtained a benefit from caching p. We arbitrarily assign
a value of 1 to this benefit (the value we use does not af-
fect the relative priorities of pages). Among all previous
requests with hint set H, a fraction

frit(H

eventually resulted in read re-references, and would have
provided a benefit if cached. We call f,;.(H) the read hit
rate of hint set H. Since the value of a read re-reference
is 1, frit(H) can be interpreted as the expected benefit
of caching and holding pages that are requested with hint
set H. Conversely, D(H) can be interpreted as the ex-
pected cost of caching such pages, as it measures how
long such pages must occupy space in the cache before
the benefit is obtained. We define the caching priority of
hint set H as:

) = N-(H)/N(H) (D

_ Ju(H)

Pr(H) D(H)

2
which is the ratio of the expected benefit to the expected
cost.

Figure 3 illustrates the results of this analysis for a
trace of I/O requests made by DB2 during a run of the
TPC-C benchmark. Our DB2 traces will be described in
more detail in Section 6. Each point in Figure 3 repre-
sents a distinct hint set that is present in the trace, and
describes the hint set’s caching priority and frequency of
occurrence. All hint sets with non-zero caching prior-
ity are shown. Clearly, some hint sets have much higher
priorities, and thus much higher benefit/cost ratios, than
others. For illustrative purposes, we have indicated par-
tial interpretations of two of the hint sets in the figure.
For example, the most frequently occurring hint set rep-
resents replacement writes to the STOCK table in the
TPC-C database instance that was being managed by the
DB2 client. We emphasize that CLIC does not need to
understand that this hint represents the STOCK table,
nor does it need to understand the difference between a
replacement write and a recovery write. Its interpreta-
tion of hints is based entirely on the hint statistics that it
tracks, and it can automatically determine that the shown
STOCK table hint set is a better caching opportunity than
the shown ORDERLINE table hint set.

To implement its hint set analysis, CLIC maintains two
tables, called the hint table and the page table. The hint
table contains one entry for each distinct hint set H that
has been observed by the storage server. The hint table
entry for H records the current values of the statistics
N(H), N.(H) and D(H). The page table contains one
entry for each distinct page that has appeared in the I/O
request stream. The entry for page p contains two pieces
of information: seq(p), which is the sequence number
most recent request for p, and H(p), which is the hint set
attached to the most recent request for p.
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Figure 3: Hint Set Priorities for the 60400 Trace
Each point represents a distinct hint set. All hint sets are shown.

CLIC updates the page table and hint table each time
an I/O request is received. Suppose that the server re-
ceives a request (p, H) with sequence number s. If
the request is a read, CLIC first checks whether the re-
quest is a read re-reference of p. If there is an entry
(sea(p), H(p)) for p in the page table, then the cur-
rent request is a read re-reference and CLIC increments
N,.(H(p)) and updates D(H(p)) in the hint table based
on the re-reference distance for this request, s — seq(p).
After checking for a read re-reference, the server updates
the entry for p in the page table, setting seg(p) = s and
H(p) = H, and increments N (H) in the hint table.

4 Cache Management

In the previous section, we described how CLIC assigns
a caching priority to each hint set H. In this section, we
describe how the server uses these priorities to manage
the contents of its cache.

Figure 4 describes CLIC’s priority-based replacement
policy. This policy evicts a lowest priority page from
the cache if the newly requested page has higher prior-
ity. The priority of a page is determined by the priority
Pr(H) of the hint set H with which that page was last
requested. Note that if a page that is cached after being
requested with hint set H is subsequently requested with
hint set H', its priority changes from Pr(H) to Pr(H’).
The most recent request for each cached page, which is
tracked in the page table, always determines its caching
priority.

The policy described in Figure 4 can be implemented
to run in constant expected time. To do this, CLIC main-
tains a heap-based priority queue of the hint sets. For
each hint set H in the heap, all pages with H(p) = H are
recorded in a doubly-linked list that is sorted by seq(p).



if p is not cached then
if the cache is not full then
cache p
else

let m be the minimum priority
of all pages in the cache
let v be the page with the minimum
sequence number seg(v) among
all pages with priority m
if Pr(H)>m then
evict v from the cache
cache p
else do not cache p
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Figure 4: Hint-Based Server Cache Replacement Policy
This pseudo-code describes how the server handles a request
for page p, with associated hint set H and request sequence
number s.

This allows the victim page to be identified (Figure 4,
lines 5-9) in constant time. CLIC also maintains a hash
table of all cached pages so that it can tell which pages
are cached (line 1). Finally, CLIC implements the hint ta-
ble as a hash table so that it can look up Pr(H) (line 10)
in constant expected time.

As it monitors each I/O request, CLIC updates its hint
set statistics as described in Section 3. Since the priority
Pr(H) of a each hint set H depends on these statistics,
hint set priorities are effectively changing continuously
as I/O requests are monitored. Rather than continuously
adjusting the hint set priority queue to account for these
changes, CLIC applies the changes lazily. Our imple-
mentation periodically recalculates Pr(H) for all hint
sets H and then rebuilds the hint set priority queue based
on the newly calculated priorities. Hint set priorities then
remain unchanged until the next recalculation. Our im-
plementation currently recalculates priorities after every
one million I/O requests.

5 Efficient Hint Analysis

In Section 3, we ignored the cost of tracking the statistics
required by CLIC. We return to this topic now. There are
two potential threats to the efficiency of the analysis de-
scribed in Section 3. The first threat comes from the page
table, which is used to track information about the most
recent reference for each page. In the worst case, the
size of this table will be proportional to the total number
of pages stored at the server. Thus, the space require-
ments of the page table could substantially reduce the
amount of space available for caching, and in fact could
overwhelm the cache completely.

We take a simple approach to handle this problem. In-
stead of tracking the most recent request for every page,
we track the most recent request for each page that is
currently in the cache, and for a fixed number (No,4) of

additional pages. Information (seq(p) and H(p)) about
the additional pages is stored in a data structure called
the outqueue. Ngyiq is a CLIC parameter that can be
used to bound the amount of space required for tracking
re-reference distances.

When a page p is evicted from the cache, an entry for
p is inserted into the outqueue. An entry is also placed in
the outqueue for any requested page that CLIC elects not
to cache (line 13 in Figure 4). If the outqueue is full when
a new entry is to be inserted, the least-recently inserted
entry is evicted from the outqueue to make room for the
new entry.

Whenever an I/O request (p, H) occurs, CLIC checks
both the cache and the outqueue to see if there is informa-
tion about a previous request for p. If so, then the analy-
sis proceeds as described in Section 3. If not, CLIC up-
dates N (H) as usual, but is unable to determine whether
the current request is a read re-reference of page p. As a
result, some error may be introduced into CLIC’s read hit
rate and read re-reference distance estimates. The Ny
parameter controls a tradeoff between space consump-
tion and such estimation error.

Although some error is inevitable when the page ta-
ble is replaced by an outqueue, this approach to track-
ing page re-references has several advantages. First,
since CLIC tracks the most recent reference to all pages
that are in the cache, we expect to have accurate re-
reference distance estimates for hint sets that are be-
lieved to have the highest priorities, since pages re-
quested with those hint sets will be cached. If the pri-
ority of such hint sets drops, CLIC should be able to
detect this. Second, by evicting the oldest entries from
the outqueue when eviction is necessary, CLIC will tend
to miss read re-references that have long re-reference
distances. Conversely, read re-references that happen
quickly are likely to be detected. These are exactly the
type of re-references that lead to high caching priority.
Thus, the estimation procedure is biased in favor of read
re-references that are likely to lead to high caching pri-
ority.

The second threat to the efficiency of CLIC is the
number of possible hint sets for which CLIC must track
statistics. Although the amount of statistical information
tracked per hint set is small, the number of distinct hit
sets from each client might be as large as the product of
the cardinalities of that client’s hint value domains. In
our DB2 traces, the number of possible hint sets is 5040,
and the number that we actually observed in each trace is
an order of magnitude smaller than that. For another ap-
plication, however, these numbers could be much larger.

We propose two techniques for restricting the number
of hint sets that CLIC must consider, one based on hint
set frequency and one based on generalization. We de-
scribe these techniques in Sections 5.1 and 5.2.



5.1 Frequently-Occurring Hint Sets

All of the hint types in our DB2 test traces exhibit fre-
quency skew. That is, some values in the hint domain
occur much more frequently than others. As a result,
some hint sets occur much more frequently than others.
One way to cope with large numbers of hint sets is to ex-
ploit this skew by tracking statistics for the hint sets that
occur most frequently in the request stream and ignoring
those that do not. Ignoring infrequent hint sets may lead
to errors. In particular, we may miss a hint set that would
have had high caching priority. However, since any such
missed hint set would occur infrequently, the impact of
the error on the server’s caching performance is likely to
be small.

The problem with this approach is that we must deter-
mine, on the fly, which hint sets occur frequently, with-
out actually maintaining a counter for every hint set.
Fortunately, this frequent item problem arises in a vari-
ety of settings, and numerous methods have been pro-
posed to solve it. We have chosen one of these methods:
the so-called Space-Saving algorithm [13], which has re-
cently been shown to outperform other frequent item al-
gorithms [6]. Given a parameter k, this algorithm tracks
the frequency of k different hint sets, among which it
attempts to include as many of the actual k most fre-
quent hint sets as possible. It is an on-line algorithm
which scans the sequence of hint sets attached to the re-
quests arriving at the server. Although & different hint
sets are tracked at once, the specific hint sets that are be-
ing tracked my vary over time, depending on the request
sequence.

After each request has been processed, the algorithm
can report the £ hint sets that it is currently tracking, as
well as an estimate of the frequency (total number of oc-
currences) of each hint set and an error indicator which
bounds the error in the frequency estimate. By analyzing
the frequency estimates and error indicators, it is pos-
sible to determine which of the k& currently-tracked hint
sets are guaranteed to be among the actual top-k£ most
frequent hint sets and which are not. However, for our
purposes this is not necessary.

We adapted the Space-Saving algorithm slightly so
that it tracks the additional information we require for
our analysis. Specifically:

N(H): For each hint set H that is tracked by the Space-
Saving algorithm, we use the frequency estimate
produced by the algorithm as N (H).

N,.(H): We modified the Space-Saving algorithm to in-
clude an additional counter for each hint set H that
is currently being tracked. This counter is initialized
to zero when the algorithm starts tracking H, and it
is incremented for each read re-reference involving

H that occurs while H is being tracked. We use the
value of this counter as N,.(H).

D(H): We track the expected re-reference distance for
all read re-references involving H that occur while
H is being tracked, i.e., those read re-references that
are included in N,.(H).

For all hint sets H that are not currently tracked by the
algorithm, we take N,.(H) to be zero, and hence Pr(H)
to be zero as well.

Since the Space-Saving algorithm’s frequency esti-
mates may be overestimates, N (H) will in general be
an overestimate of the true frequency of hint set 7. On
the other hand, since N,.(H) is only incremented while
H is being tracked, N,.(H) will in general underestimate
the true frequency of read re-references involving H. As
a result, we expect in general to underestimate f,;+(H)
when we use the Space-Saving algorithm. However, the
higher the true frequency of H, the more time H will
spend being tracked and the more accurate this estimate
will be.

The Space-Saving algorithm requires two counters for
each tracked hint-set, and we added several additional
counters for the sake of our analysis. Overall, the space
required is proportional to k. Thus, this parameter can be
used to limit the amount of space required to track hint
set statistics. With each new request, the data structure
used by the Space-Saving algorithm can be updated in
constant time [13], and the statistics for the tracked hint

sets can be reported, if necessary, in time proportional to
k.

5.2 Generalizing Hint Sets

An alternative to focusing on frequently-occurring hint
sets is to group similar hint sets together, and then track
re-reference statistics for the groups, rather than the in-
dividual hint sets. In our setting, each hint set consists of
a set of values, one value from the domain of each hint
type. We have considered a restricted form of grouping
these hint sets based on the hint types.

To group hint sets, CLIC recursively partitions the
space of possible hint sets one hint type at a time. For ex-
ample, for the DB2 traces, CLIC might first partition the
hint sets according to the value of the “object type ID”
hint in each hint set. This would result in six partitions,
one for each possible object type ID. CLIC would re-
cursively consider each of these six partitions for further
sub-partitioning using one of the remaining hint types.
The result of this process can be represented as a deci-
sion tree in which the final partitions correspond to the
leaf nodes of the tree. Figure 5 illustrates a small deci-
sion tree based on the hint types from the DB2 traces.

Once constructed, the decision tree can be used to as-
sign caching priorities to requested pages. Each node,
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Figure 5: Sample Decision Tree for the 54040 Trace.
Node priorities are shown (all numbers x 1E-5).

or partition, n in the tree is assigned a caching priority,
Pr(n). When an I/O request (p, H) occurs, CLIC deter-
mines the node n into which the decision tree classifies
the hint set H, and assigns priority Pr(n) to page p.

For a given set of hint types, there are many possi-
ble decision trees that can be constructed, depending on
the order in which the hint types are used for partition-
ing, and depending on how deeply the sub-partitioning
continues along each branch of the tree. Ideally, CLIC
should construct its decision tree on-line and continu-
ously adapt it as it observes new I/O requests. To ap-
proximate such behavior, our current implementation of
CLIC instead simply rebuilds its decision tree periodi-
cally. Specifically, it divides the I/O request stream into
intervals of fixed length L. During the ith interval, it
monitors the statistics described in Section 3 for a lim-
ited number, k, of distinct hint sets. At the end of the
interval, it uses these k hint sets as training data for a de-
cision tree construction algorithm. The resulting tree is
then used to assign priorities for all requests that arrive
during interval ¢ + 1.

To construct a decision tree after each interval, CLIC
begins with a root node representing a single partition
containing all of the hint sets in the training data. The
priority of the node is taken to be the frequency-weighted
average of the priorities of the training hint sets that map
to that node:

e N(H)PE(H)
ZHEn N(H)

It then considers partitioning the node according to each
of the hint types. Partitioning a node using a given hint
type creates one child node for each possible value of
that hint type. Suppose that CLIC is considering splitting
a node n to produce child nodes ci,co, ..., cy,. Define
the priority variance V introduced by this split to be

_ i N(e)(Pr(ci) — Pr(n))?

Pr(n)

Pr(n) (3)

v

“

where N (¢;) is the sum of the request counts N (H) of
the training hint sets that map to node c;. Splits with high
priority variance are desirable, as they separate training
hint sets with substantially different priorities into dif-
ferent nodes. Among the possible hint types for which
CLIC could split n, it chooses the hint type with maxi-
mum priority variance.

CLIC continues to partition nodes until either of two
stopping conditions is reached. First, CLIC will not split
anode n if N(n) < Nyupn. Second, CLIC will not split a
node if the priority variance introduced by the best possi-
ble split is less than a gain threshold G. Both N,,;,, and
G are parameters of the decision tree construction algo-
rithm that can be used to influence the size of the final
tree, controlling a tradeoff between space and accuracy
of priority assignments.

6 Experimental Evaluation

Objectives: We used trace-driven simulation to evaluate
our proposed mechanisms. The goal of our experimental
evaluation is to answer the following questions:

1. Can CLIC identify good caching opportunities for
storage server caches, and thereby improve the
cache hit ratio over other caching policies? (Sec-
tion 6.1)

2. How well do the mechanisms used by CLIC to re-
duce the cost of tracking statistics affect perfor-
mance? (Sections 6.2 and 6.3)

3. Does CLIC scale as the number of hint types grows?
(Section 6.4)

4. Can CLIC improve performance for multiple stor-
age clients by prioritizing the caching opportunities
of the different clients based on their observed ref-
erence behavior? (Section 6.5)

Simulator: To answer these questions, we implemented
a simulator of the storage server cache. In addition to
CLIC, the simulator implements the following caching
policies for purpose of comparison:

OPT: This is an implementation of the well-known op-
timal off-line MIN algorithm [3]. It replaces the
cached page that will not be read for the longest
time. This algorithm requires knowing the future
so it cannot be used for cache replacement in practi-
cal systems, but its hit ratio is optimal so it serves as
an upper bound on the performance of any caching
algorithm.

LRU: This algorithm replaces the least-recently used
page in the cache. Since temporal locality is often
poor in second-tier caches, we expect CLIC to per-
form significantly better than LRU.



TQ: This is a hint-aware algorithm that was proposed
for use in second-tier caches [10]. Unlike the algo-
rithms proposed here, it works only with one spe-
cific type of hint that can be associated with write
requests from database systems. We expect our pro-
posed algorithms, which can automatically exploit
any type of hint, to do at least as well as TQ when
the write hints needed by TQ are present in the re-
quest stream.

The TQ algorithm has previously been compared to a
number of other second-tier caching policies that are
not considered here. These include MQ [20], a hint-
oblivious policy, and write-hint-aware variations of both
MQ and LRU. TQ was shown to be generally superior
to those alternatives when the necessary write hints are
present [10], so we use it as our representative of the state
of the art in hint-aware second-tier caching policies.

The simulator accepts a stream of I/O requests with as-
sociated hint sets, as would be generated by one or more
storage clients. It simulates the caching behavior of one
of the four supported cache replacement policies (CLIC,
OPT, LRU, and TQ) and computes the read hit ratio for
the storage server cache. The read hit ratio is the number
of read hits divided by the number of read requests.
Workloads: In this paper, we use DB2 Universal
Database (version 8.2) as our storage system client. DB2
is a widely-used commercial relational database system
to which we had access to source code. We instrumented
DB2 so that it would generate I/O hints and dump them
into an I/O trace. The types of hints generated by the
instrumented DB2 are described in Figure 2.

To generate our traces, we ran a TPC-C workload on
DB2. TPC-C is a well-known on-line transaction pro-
cessing (OLTP) benchmark, and we ran it at scale factor
25. At this scale factor, the TPC-C database initially oc-
cupied 606,317 4KB blocks, or about 2.3 GB, in the stor-
age system. The TPC-C workload inserts new items into
the database, so the database grows during the TPC-C
run.

We varied two different DB2 configuration parame-
ters, and collected traces under the resulting configu-
rations. The first parameter is the size of DB2’s in-
ternal buffer cache (the buffer pool), which we set at
10%, 50%, and 90% of the initial database size (60,000,
300,000, and 540,000 pages, respectively). We expect
this parameter to be significant because it affects tem-
poral locality in the request stream seen by the underly-
ing storage server. The larger DB2’s buffer cache, the
less temporal locality we expect to be available at the
storage server. The second DB2 parameter we varied is
softmax, which controls the urgency with which DB2
forces dirty pages from its buffer cache to disk for recov-
erability reasons. Smaller values of softmax result in
more (and more frequent) write requests in the request

stream. Figure 6 summarizes the I/O request traces we
used for our evaluation.

6.1 Base Results

In our first experiment, we compare the cache hit ratio
of CLIC to the other replacement policies that we con-
sider (LRU, TQ, and OPT). We tested both CLIC and
an off-line version of CLIC. The off-line version makes
two passes over the input trace. During the first pass it
gathers statistics for each hint set and computes hint set
caching priorities. During the second pass, it uses those
priorities to manage the cache. In this experiment, CLIC
(both on-line and off-line) was given unlimited space for
tracking page references and for recording hint statistics,
and this space was not subtracted from the server cache
size. Thus, the CLIC algorithm uses more space than its
competitors.

Figure 7 shows the results of this experiment for
the three traces with softmax=400. The traces with
softmax=40 resulted in behavior similar to that shown
in the figure. There are several observations to be made
from Figure 7. First, all of the algorithms, including
LRU, have similar performance for the 60_400 trace. The
60-400 trace comes from the DB2 configuration with the
smallest buffer cache, and there is a significant amount
of temporal locality in the trace that is not “absorbed” by
that cache. This temporal locality can be exploited by
the storage server cache. As a result, even LRU performs
reasonably well. Both of the hint-based algorithms (TQ
and CLIC) also do well.

The performance of LRU is significantly worse on the
other two traces, as there is very little temporal locality.
The hint-based algorithms perform much better. CLIC,
which learns how to exploit the available hints, does bet-
ter than TQ, which implements a hard-coded response to
one particular hint type. CLIC’s performance approaches
that of OPT on the 300_400 trace, but the gap is greater
on the 540400 trace. The 540400 trace comes from
the DB2 configuration with the largest buffer cache, so it
has the least temporal locality of all traces and therefore
presents the most difficult cache replacement problem.
We also note that there is very little difference between
the off-line and on-line versions of CLIC. This indicates
that on-line collection of hint set statistics is effective.

This experiment shows that the hint analysis per-
formed by CLIC results in better second-tier caching de-
cisions than LRU and the hint-aware TQ. The downside
is that CLIC as used in this experiment does not bound
the amount of memory used for the metadata that is re-
quired for tracking cache statistics. In the next two sec-
tions, we show that the techniques we propose for effi-
cient tracking of statistics can bound the amount of mem-
ory used to a small value without a significant penalty in
performance.



Trace DB2 Buffer Distinct | Distinct

Name Size (blocks) | softmax | Requests | Hint Sets Pages

6040 60K 40 38101851 169 919215
60_400 60K 400 37699091 164 930688
300_40 300K 40 32102429 128 1130925
300-400 300K 400 31869377 154 1320882
54040 540K 40 49279589 105 1684878
540_400 540K 400 21863719 140 1807431

Figure 6: I/O Request Traces
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Figure 7: Read Hit Ratio of Caching Policies

6.2 Limiting the Outqueue Size

In this experiment, we study the effect of limiting the
size of the outqueue that CLIC uses to track the sequence
number of each page’s most recent reference (Section 5).
In the previous section, we showed the performance of
CLIC with unlimited outqueue size, and in this section
we show that we can limit the size of the outqueue with-
out a large performance penalty.

We ran two sets of experiments, one in which the num-
ber of outqueue entries was limited to one per page in the
storage server’s cache, and one in which the number of
entries was limited to 5 per storage server cache page. If
the cache holds C pages, this means that CLIC tracks the
most recent reference for 2C' pages in the former case,
and 6C pages in the in the latter case (since it tracks this
information for all cached pages, plus those in the out-
queue). For each tracked page, CLIC records a sequence
number and a hint set. If each of these is represented as a
4-byte integer, this represents a space overhead of 0.2%
at our 4KB page size. An outqueue limit of 5 entries per
server cache page represents a space overhead of roughly
1%, which is still quite small.

Figure 8 shows the results of this experiment for all six
traces and a server cache size of 180K pages. In all cases,
an outqueue limit of 5 entries per server cache page (the
middle bar in each group in Figure 8) results in a server
cache read hit ratio very close to what was obtained with
an unlimited outqueue. In most cases, an outqueue with
only one entry per server cache page also does well (with
some exceptions for the 54040 trace). Similar experi-
ments with server cache sizes of 60K pages and 300K
pages resulted in identical conclusions. Thus, we can see
that limiting the outqueue size saves space without de-
grading the performance of CLIC. For all of our remain-
ing experiments, we use an outqueue limit of 5 entries
per server cache page.

6.3 Tracking Only Frequent Hint Sets

In this experiment, we study the effect of tracking only
the most frequently occurring hint sets (top-%£ hint set
filtering). We vary the number of hint sets tracked by
CLIC, k, and measure the server cache hit ratio. Figure 9
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Figure 8: Effect of Outqueue Size on Read Hit Ratio
Each bar represents a different outqueue size.

shows the results of this experiment for the three traces
with softmax=400, and a server cache size of 180K
pages. The rightmost point for each trace is the result ob-
tained when tracking all of the hint sets in the trace. For
every trace, the figure shows results for the Space-Saving
algorithm used by CLIC and an off-line top-k algorithm.
The off-line top-k algorithm makes two passes over the
input trace. In the first pass it computes the frequency
of every hint set and determines the k£ most frequent hint
sets. In the second pass, it tracks cache statistics for the
top-k hint sets determined in the first pass. Thus, this
off-line algorithm enables CLIC to track the exact top-k
hint sets, while the Space-Saving algorithm enables it to
track an approximate top-k group of hint sets.

The figure shows that we can significantly reduce the
number of hint sets tracked with almost no sacrifice in
performance. For all traces, tracking 20 hint sets (or
more) results in performance that is almost identical to
tracking all hint sets. The figure also shows that we do
not lose accuracy because we are tracking an approxi-
mate top-k£ and not an exact top-k. The off-line and
Space-Saving results are almost identical for k£ > 10.

6.4 Increasing the Number of Hints

In addition to the top-k approach studied in the previ-
ous section, we also propose using decision trees to limit
the space required for tracking hint statistics. The de-
cision tree approach works by reducing the number of
hint types that we track, so we present an evaluation of
this approach in the context of studying the scalability
of CLIC as the number of hints in the hint sets (i.e., the
different hint types) increases.

To increase the number of hints we injected additional
synthetic hints into our DB2 traces. Each DB2 trace
record contains 5 real hint types. In this experiment, we
add T additional hint types and hence 1" additional hints
to each hint set. Each injected hint is chosen randomly
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Figure 9: Effect of Top-K Hint Set Filtering on Read Hit
Ratio

from a domain of D possible hint values. A particular
value from the domain is selected using a Zipfian distri-
bution with skew parameter z = 1. When T" > 1, each
injected hint value is chosen independently of the other
injected hints for the same record. This injection proce-
dure potentially increases the number of distinct hint sets
in a trace by a factor D”'. For our experiments, we chose
D = 10, and we varied T'.

Since the injected hints are chosen at random, we do
not expect them to provide any information that is use-
ful for server cache management. We are interested in
whether the methods used by CLIC to limit the number
of hint sets will be effective in filtering out the injected
hints, focusing instead on those original hint types that
provide predictive value.

Figure 10 shows the read hit ratios in a server cache
of size 180K when adding extra hints to the three traces
with softmax=400. The figure shows the hit ratio
with no extra hints (" = 0) and with 7" = 1 to 3 ex-
tra hints in every hint set. Results for both decision tree
and top-k hint set filtering are shown. For the top-k
hint set filtering, we use the Space-Saving algorithm with
k = 100. For the decision tree, we use a rebuild interval
of L = 10° requests, a monitoring limit of k£ = 100 hint
sets, N,in = 5000, and a gain threshold of G = 1074,
These values of G and N,,;, gave us good results for
all of our traces, and we leave the problem of optimally
tuning the decision tree parameters for future work. All
of the decision trees constructed by CLIC during these
experiments had fewer than 150 nodes.

The figure shows that decision trees and top-k filter-
ing are equally effective at making caching decisions for
T = 0. As T increases and more “noise dimensions” are
added to the hints, decision trees perform better because
they are able to ignore entire dimensions, although top-k
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remains competitive. For the 60400 and 300_400 traces
(but not the more difficult 540_400 trace), decision trees
are able to filter out the noise in the trace and experience
almost no drop in performance. To put this in perspec-
tive, we note that the number of different hint sets in-
creases from about 1000 to about 50000 in each trace as
T increases from 1 to 3. Thus, from this experiment we
conclude that both frequency-based hint set filtering and
decision trees enable CLIC to effectively deal with large
numbers of hint types without requiring a large amount
of space.

6.5 Multiple Storage Clients

One desirable feature of CLIC is that it should be capable
of accommodating hints from multiple storage clients.
The clients independently send their different hints to
the storage server without any coordination among them-
selves, and CLIC should be able to effectively prioritize
the hints to get the best overall cache hit ratio.

To test this, we simulated a scenario in which multiple
instances of DB2 share a storage server. Each DB2 in-
stance manages its own separate database, and represents
a separate storage client. All of the databases are housed
in the storage server, and the storage server’s cache must
be shared among the pages of the different databases.
To create this scenario, we create a multi-client trace for
our simulator by interleaving requests from several DB2
traces, each of which represents the requests from a sin-
gle client. We interleave the requests in a round robin
manner, one from each trace. We truncate all traces to
the length of the shortest trace being interleaved to elim-
inate bias towards longer traces. We treat the hint types
in each trace as distinct, so the total number of distinct
hint sets in the combined trace is the sum of the number
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of distinct hint sets in each individual trace.

Figure 11 shows results for the trace generated by in-
terleaving the three traces with softmax=400. The
server cache size is 180K pages, and CLIC uses top-k fil-
tering with £ = 100. We also performed this experiment
with decision trees and the results were almost identi-
cal to top-k filtering. The figure shows the read hit ratio
for the requests from each individual trace that is part of
the interleaved trace. The figure also shows the overall
hit ratio for the entire interleaved trace. For comparison,
the figure shows the hit ratios for the full-length (untrun-
cated) traces when they use independent caches of size
60K pages each (i.e., the storage server cache is parti-
tioned equally among the clients). The figure shows a
dramatic improvement in hit ratio for the 60400 trace
and also an improvement in the overall hit ratio as com-
pared to equally partitioning the server cache among the
traces. CLIC is able to identify that the 60_400 trace has
the best caching opportunities (since it has the most tem-
poral locality), and to focus on caching pages from this
trace. This illustrates that CLIC is able to accommodate
hints from multiple storage clients and prioritize them so
as to maximize the overall hit ratio.

Note that it is possible to consider other objectives
when managing the shared server cache. For exam-
ple, we may want to ensure fairness among clients or to
achieve certain quality of service levels for some clients.
This may be accomplished by statically or dynamically
partitioning the cache space among the clients. In CLIC,
the objective is simply to maximize the overall cache
hit ratio without considering quality of service targets or
fairness among clients. This objectives results in the best
utilization of the available cache space. Our experiment
illustrates that CLIC is able to achieve this objective, al-
though the benefits of the server cache may go dispro-
portionately to some clients at the expense of others.

7 Related Work

Many algorithms have been proposed to improve on
LRU, including MQ [20], ARC [12], CAR [2], and 2Q
[9]. These algorithms use a combination of recency of
use and frequency of use to make replacement decisions.
They can be used to manage a cache at any level of a
cache hierarchy, though some, like MQ, were explicitly
developed for use in second-tier caches, for which there
is little temporal locality in the workload.

There are also caching policies that have been pro-
posed explicitly for second (or lower) tier caches in a
cache hierarchy. Chen et al [5] have classified these
as either hierarchy-aware or aggressively collaborative.
Hierarchy-aware methods specifically exploit the knowl-
edge that they are running in the second tier, but they are
transparent to the first tier. Some such approaches, like
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X-RAY [1], work by examining the contents of requests
submitted by a client application in the first tier. By as-
suming a particular type of client and exploiting knowl-
edge of its behavior, X-RAY can extract client-specific
semantic information from I/O requests. This informa-
tion can then be used to guide caching decisions at the
server. X-RAY has been proposed for file system clients
[1] and DBMS clients [15].

Aggressively  collaborative  approaches require
changes to the first tier. Examples include PROMOTE
[7] and DEMOTE [17], both of which seek to maintain
exclusivity among caches.  Hint-based techniques,
including CLIC, are aggressively collaborative. At the
extreme, it is possible to give control of the second tier
cache to the first tier, as is done in ULC [8]. Among
the aggressively collaborative techniques, hint-based
approaches are arguably the least intrusive and least
costly. Hints are small and can be piggybacked onto I/O
requests, and the policies used to manage the first tier
cache need not be changed.

Several hint-based techniques have been proposed, in-
cluding importance hints [5] and write hints [10], which
have already been described. Karma [19] relies on ap-
plication hints to group pages into “ranges”, and to asso-
ciate an expected access pattern with each range. As was
described in Section 1, these techniques are ad hoc and
difficult to generalize. Unlike CLIC, they are designed
to exploit specific types of hints.

A previous study [5] suggested that aggressively col-
laborative approaches provided little benefit beyond that
of hierarchy-aware approaches and thus, that the loss of
transparency implied by collaborative approaches was
not worthwhile. However, that study only considered one
ad hoc hint-based technique. Li et al [10] found that the
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hint-based TQ algorithm could provide substantial per-
formance improvements in comparison to hint-oblivious
approaches (LRU and MQ) as well as simple hint-aware
extensions of those approaches.

There has also been work on the problem of sharing
a cache among multiple competing client applications
[4, 11, 16, 18]. Often, the goal of these techniques is
to achieve specific quality-of-service objectives for the
client applications, and the method used is to somehow
partition the shared cache. This work is largely orthogo-
nal to CLIC, in the sense that CLIC can be used, like any
other replacement algorithm, to manage the cache con-
tents in each partition. CLIC can also used to directly
control a shared cache, as in Section 6.5, but it does not
include any mechanism for enforcing quality-of-service
requirements or fairness requirements among the com-
peting clients.

The problem of identifying frequently-occurring items
in a data stream occurs in many situations. Metwally
et al [13] classify solutions to the frequent-item prob-
lem as counter-based techniques or sketch-based tech-
niques. The former maintain counters for certain indi-
vidual items, while the latter collect information about
aggregations of items. For CLIC, we have chosen to use
the Space-Saving algorithm [13] as it is both effective
and simple to implement. A recent study [6] found the
Space-Saving algorithm to be one of the best overall per-
formers among frequent-item algorithms.

8 Conclusion

We have presented CLIC, a technique for managing a
storage server cache based on hints from storage client
applications. CLIC provides a general, adaptive mech-
anism for incorporating application-provided hints into
cache management. We used trace-driven simulation to
evaluate CLIC, and found that it was very effective at
learning to exploit hints. In our tests, CLIC learned to
perform as well as or better than TQ, an ad hoc hint based
technique. CLIC also performed substantially better than
LRU, which is hint-oblivious. Our results also show that
CLIC, unlike TQ and other ad hoc techniques, can ac-
commodate hints from multiple client applications.

A potential drawback of CLIC is the overhead of
learning which hints are valuable. We considered two
techniques for limiting this overhead, one based on iden-
tifying frequently-occurring hints and the other based on
aggregating hints with similar properties, using decision
trees. We found both approaches to be effective. The
frequency-based approach is very simple, while the de-
cision tree approach is more complex and has several
parameters that must be tuned. We intend to explore
simpler and more easily controllable decision tree tech-
niques for CLIC as part of our future work.
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