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Abstract

SystemXXL is a scalable, secondary storage solution
aimed at the enterprise market. The system consists of
a back-end architectured as a grid of storage nodes built
around a distributed hash table; and a front-end consist-
ing of a layer of access nodes scaled for performance and
implementing traditional file system interface.

This paper concentrates on the back-end, which is,
to our knowledge, the first commercial implementa-
tion of a scalable, high-performance content-addressable
secondary storage delivering global duplicate elimina-
tion, per-block user-selectable failure resiliency, self-
maintenance including automatic recovery from failures
with data and network overlay rebuilding.

The back-end programming model is based on di-
rected acyclic graphs of blocks with pointers to other
blocks exposed. This model is exported with a low-level
API allowing clients to implement new access protocols
and to add them to the system on-line. The API has been
validated with an implementation of the file system in-
terface.

The critical factor for meeting the design targets has
been the selection of proper data organization based on
redundant chains of data containers. We present this or-
ganization in detail and describe how it is used to deliver
required data services. Surprisingly, the most complex
to deliver turned out to be on-demand data deletion, fol-
lowed (not surprisingly) by the management of data con-
sistency and integrity.

1 Introduction

The enterprise environment places strenuous demands on
the secondary storage. With ever increasing amounts
of data produced and fixed backup windows, there is a
clear need for scaling performance and backup capac-
ity appropriately. Varying importance of data requires
corresponding reliability, availability and retention peri-

ods. Regulatory requirements (SOX, HIPPA, the Patriot
Act, SEC rule 17a-4(t)) demand security, traceability and
data audit. Strict data retention and deletion procedures
need to be defined and followed rigorously. Retained
data need to be recovered and presented on demand, and
failing to do so may result not only in a serious loss to the
business, but also in fines and even criminal prosecution.
Last but not least, with limited IT budgets efficiency is
also of primary importance, both in terms of improving
storage utilization as backup and archival data consume
more space, and in terms of reducing mounting data man-
agement costs.

Substantial progress has been made to address these
enterprise needs, as demonstrated by advanced disk-
targeted deduplicating VTLs [4, 5], disk-based back-
end servers [38] and content-addressable archiving solu-
tions [6]. However, exponential increase in the amount of
data stored creates new problems not addressed by these
solutions. First of all, unlike primary storage, which is
usually networked and under common management (e.g.
SANs), secondary storage consists of a large number of
highly-specialized dedicated components, each of them
being a storage island requiring customized, elaborate,
and often manual, administration and management. As a
result, large fraction of the total cost of ownership (TCO)
can still be attributed to management of more and more
of secondary storage components. Moreover, fixed ca-
pacity assignment to each storage device results in poor
capacity utilization, whereas duplicate elimination lim-
ited to one device only leads to wasted space caused by
duplicates stored on multiple components. Finally, since
each of secondary storage devices offers fixed, limited
performance, reliability and availability, the high over-
all requirements of enterprise secondary storage in these
dimensions can be met only by implementing complex
in-house solutions.

Fortunately, new technology and previous research
results provide building blocks for a solution ad-
dressing these problems. Content-addressable storage
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paradigm [6, 20, 38] enables cheap and safe implemen-
tation of duplicate elimination, whereas distributed hash
tables [1, 18, 21, 22, 26, 37] allow for building scal-
able, failure-resistant systems and extending duplicate
elimination to a global level. Erasure codes can add re-
dundancy to the stored data with fine-grain control be-
tween required redundancy level and resulting storage
overhead. Hardware and pricing trends are also criti-
cal for enabling SystemXXL. Large, reliable SATA disks
with prices falling every year deliver vast raw yet cheap
storage capacity, whereas multicore CPUs provide cheap
and powerful computing resource required by such sys-
tem. Other work applicable include research on self-
management [13, 28], monitoring [30], and on-line re-
configuration [25] and upgrade [9]. All these elements
facilitated building SystemXXL, but the task proved to
be much more complex than originally envisioned, re-
quiring a lot of original research and development effort;
comparable to designing and constructing a building out
of bricks and stones.

SystemXXL [2] is a commercial secondary storage so-
lution for enterprise addressing shortcomings discussed
earlier. It consists of a back-end architectured as a grid
of storage nodes and a front-end consisting of a layer
of access nodes scaled for performance. The front-end,
implementing the file system interface, is discussed else-
where [3]. In this paper we concentrate on the back-end.
Its capacity is dynamically shared among all clients and
all types of data like back-up and archiving. This shar-
ing together with system-wide duplicate elimination al-
low for highly efficient use of storage capacity. The sys-
tem is highly-available, as it supports on-line extensions
and upgrades, tolerates multiple disk, node and network
failures, rebuilds the data automatically after failures and
informs users about recoverability of the deposited data.
The reliability and availability of the stored data can
be additionally dynamically adjusted by the clients with
each write, as the back-end supports multiple data redun-
dancy classes.

This paper makes the following contributions. First, it
presents the SystemXXL as a concrete commercial im-
plementation of scalable secondary storage system ad-
dressing today’s enterprise needs. Second, it discusses
in detail the SystemXXL data organization and how it
is used to implement advanced data services like global
duplicate elimination, on-demand deletion, and data in-
tegrity management. Third, it contains an evaluation of
the SystemXXL that demonstrates effectiveness of its
implementation.

The remainder of this paper is organized as follows.
Section 2 describes the system’s functionality including
the programming interface. Section 3 contains a high-
level discussion of the back-end design. It establishes
context for the next section, 4, which discusses require-

ments on data organization and the resulting solution.
Section 5 illustrates how this organization is used to de-
liver data services like data rebuilding and distributed
data deletion. Section 6 presents evaluation of the sys-
tem. Related work is discussed in Section 7, whereas
conclusions and future work are given in Section 8.

2 Functionality

The back-end has been designed as a vast data reposi-
tory, allowing for storing and extracting streams of data
with high performance. Although internally it consists of
a potentially large number of storage nodes, externally it
behaves as one large system. The scalability target is at
least thousands of dedicated nodes resulting in raw stor-
age capacity on the order of hundreds of petabytes, with
potentially even larger configurations. The primary de-
ployment target is the data center.

SystemXXL back-end from the beginning was in-
tended as a foundation for a commercial product. There-
fore, one of the design targets has been to support not
only tailor-made new applications, but also commercial
legacy applications, as long as they use streamed data
access. As a result, the system does not define one fixed
access protocol, instead the system is flexible to allow
support for legacy applications using standards like file
system interface as well as for new applications using
highly-specialized access methods. New protocols can
be added on-line with new protocol drivers, without in-
terruptions for clients using existing protocols.

One of the primary design goals has been to ensure
continuous operation of the system, limiting or eliminat-
ing impact of upgrades, extensions and failures. Because
of the distributed architecture of the system, it is often
possible to keep system availability non-stop even dur-
ing hardware or software upgrade (rolling upgrade) elim-
inating need for costly downtime. Moreover, the system
is capable of automatic self-recovery in case of hardware
failures (disk, network, power loss), and even from some
of software failures. The system works correctly in the
presence of up to a specific configurable number of fail-
stop and intermittent hardware failures. Because of high
overhead of Byzantine failure handling and low proba-
bility of their occurrence in the data center, they are not
handled, except that there are several layers of data in-
tegrity checking, so random data corruption will be de-
tected.

Another important function of the system is to en-
sure high data reliability, availability and integrity. Each
block of data is written with a user-selected redundancy
level, allowing this block to survive up to the requested
number of disk and node failures. This is achieved
with erasure coding each block into fragments; as shown
in [31] erasure codes increase mean time to failure by
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many orders of magnitude over simple replication for
the same amount of space overhead. After a failure, if a
block remains readable, the system automatically sched-
ules data rebuilding to bring the redundancy back to the
level requested by the user. The system ensures that no
permanent data loss remains hidden for long. Global
state of the system indicates whether all stored blocks
are readable, and if so, how many disk and node failures
must happen before data loss occurs.

2.1 Programming Model

The back-end programming model is based on an ab-
straction of a sea of variable-sized, content-addressed,
highly-resilient blocks. Block address is derived from
SHA-1 hash of its content. A block consists of data and,
optionally, an array of pointers, pointing to already writ-
ten blocks. Blocks are variable-sized to allow for better
duplicate elimination ratio; and pointers are exposed to
facilitate data deletion implemented as garbage collec-
tion. The back-end exports a low-level block interface
used by protocol drivers to implement new and legacy
protocols. We have decided to provide such block in-
terface instead of a high-level one like file system to
simplify the implementation and allow for clean separa-
tion of the back-end from the front-end. Moreover, such
interface allows for efficient implementation of a wide
range of high-level protocols, not just one.
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Figure 1: Blocks organized in a directed acyclic graph.
Data part of each block is shaded, pointers are not.

Blocks in the back-end form a DAG (directed acyclic
graph), as illustrated by Fig. 1. Drivers write trees of
blocks, but because of deduplication, these trees overlap
at deduplicated blocks and form directed graphs. Addi-
tionally, no cycle is possible in these structures, as long
as the hash used in block address is secure. A source
vertex in a DAG is usually a block of a special block
type calledsearchable retention root. Besides regular

data and an array of addresses, a retention root contains a
user-definedsearch key used to locate the block. Such a
key can be arbitrary data; a user retrieves a searchable
block by providing its search key instead of a cryptic
block content address. For example, multiple snapshots
of the same file system can have each root organized as
a searchable retention root with search key containing
file system name and a counter incremented with each
snapshot. Searchable blocks do not have user-visible ad-
dresses and cannot be pointed to, so they cannot be used
to create cycles in block structures.

Fig. 1 shows a set of blocks organized into a DAG with
3 source vertices, 2 of them are retention roots; the 3rd
source vertex is a regular block, which indicates that this
part of the DAG is still under construction.

The API operations include writing and reading regu-
lar blocks, writing searchable retention roots, searching
for a retention root based on its search key; and marking
a retention root with a specified key to be deleted by writ-
ing an associated deletion root, as discussed below. Note
that currently cutting data stream into blocks is beyond
this interface and is left to the drivers, although we plan
to re-evaluate this decision soon.

On writing a block, a user assigns it to one of a few
availableredundancy classes. Each class represents a
different tradeoff between data redundancy and storage
overhead: from low redundancy data class — a block in
this class can survive only one disk failure, but storage
overhead over block size is minimal — to critical data
class, in which a block can be replicated multiple times
on different disks and physical nodes.

The system does not provide a way to delete a sin-
gle block immediately, because such block may be refer-
enced by other blocks, so in fact it should not be deleted.
Instead, the API allows to mark which parts of DAG(s)
should be deleted. To mark a retention root not alive,
a user writes a special block calledsearchable deletion
root with the search key identical to this retention root’s
search key. In Fig. 1, there is a deletion root associ-
ated with the retention root SP1. The deletion algorithm
marks for deletion all blocks not reachable from the alive
retention roots, for example in Fig. 1 all blocks with dot-
ted lines will be marked. Note that the block named A
will also be deleted because there is no retention root
pointing to it, whereas the block named F will be re-
tained, as it is reachable from the retention root SP2,
which is alive, because it does not have a matching dele-
tion root.

During data deletion, there is a short read-only period,
in which the system identifies blocks to be deleted. Ac-
tual space reclamation happens in the background during
regular read-write operation. Note that before entering
a read-only phase, all blocks to be retained should be
pointed by alive retention roots.
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3 System Architecture

SystemXXL back-end nodes are built of highly reliable
server-grade components. No customized hardware is
needed. Detailed description of available hardware con-
figurations is given in Section 6. The number of storage
nodes determines total raw capacity of the system as well
as its maximal level of performance. Front-end access
nodes can be added to realize this performance up to the
limit determined by the current back-end configuration.

Software components of the back-end includestorage
server, proxy server andprotocol drivers. Each storage
node hosts one or more storage server processes. The
number of storage servers run on a storage node de-
pends on its resources. The bigger the node, the more
servers we run, with each server responsible exclusively
for a specific number of this node disks. With the ad-
vent of multicore CPUs, the critical decision has been
made how to harness all this computing power. An ob-
vious approach to parallelize each storage server more
with each increase in the number of cores available suf-
fers from programming complexity; it is much easier to
keep parallelism constant per storage server and put mul-
tiple servers on one storage node.

Proxy servers run on access nodes and export the same
block API as the storage servers. A proxy provides ser-
vices like locating the back-end nodes, optimized mes-
sage routing and caching.

Protocol drivers use the API exported by the back-
end to implement access protocols. These drivers can
be loaded in the runtime on both storage and proxy
servers. The decision on which node to load a given
driver depends on available resources and driver resource
needs. Usually, resource-hungry drivers like the file sys-
tem driver are loaded on proxy servers.

3.1 Storage Server

Storage server is the main software component of the
back-end. The design goals for storage server architec-
ture were: targeting it to multicore CPUs, and to dis-
tributed environment, support for parallel development
by multiple teams of programmers, high maintainability
and testability, and, last but not least, high reliability of
the resulting system.

To satisfy these goals we have designed and im-
plemented an asynchronous pipelined message passing
framework consisting of stations calledunits. Each unit
in this pipeline is single-threaded and does not write-
share any data structures with other units (a unit may
also have some internal worker threads). The only com-
munication among pipelined units happens with message
passing, so these units can be co-located on the same
physical node, as well as distributed to multiple nodes.

When communicating units are co-located on the same
node, read-only sharing can be used as an optimization.
Synchronization and concurrency issues have been lim-
ited to one unit only. Additionally, each unit can be tested
in separation by providing stubs of other units.

3.2 Network Overlay

Since one of our design goals has been scalability, the
use of distributed hash tables has been a natural choice.
However, because for a distributed storage system both
storage utilization and data redundancy are extremely
important, we have had additional requirements on a
DHT: assurances about storage utilization and an ease
of integration of the selected overlay network with data
redundancy scheme we have planned to use, i.e. erasure
coding. Since none of the existing DHTs allowed for
that, we have decided to use a modified version of the
name removed for blind review (AnDHT) [1] distributed
hash table. AnDHT makes it possible to maintain very
short routing paths for a wide range of the number of
nodes and guarantees a minimal level of storage utiliza-
tion.

node1
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Figure 2: Supernodes and components. 4 supernodes
spanned over 6 physical nodes. Each supernode has 4
components, i.e. supernode cardinality is 4.

In AnDHT, each overlay node is assigned exactly one
hashkey prefix, which is also an identifier of this virtual
node. All prefixes together cover entire hashkey space,
and the overlay network strives to keep them disjoint.
An AnDHT node is responsible for hashkeys with prefix
equal to this node identifier. Upper part of Fig. 2 shows
a prefix tree having as leafs four AnDHT nodes dividing
the prefix space into four disjoint subspaces.

To meet our DHT requirements, we have extended
the original AnDHT withsupernodes. A supernode rep-
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resents one AnDHT node (and as such, it is identified
with a hashkey prefix), but is spanned over several phys-
ical nodes to increase resiliency to node failures. Each
supernode consists of a fixed number (calledsupern-
ode cardinality) of supernode components. Components
of the same supernode are calledpeers and are usually
placed on separate physical nodes, as show on Fig. 2.
Usually, supernode cardinality is in range of 4-32, and in
the commercial SystemXXL it is set to 12. For a given
SystemXXL incarnation, its supernode cardinality is the
same for all supernodes and is constant throughout entire
system lifetime.

Supernode peers use distributed consensus algorithm
to decide what change should be applied to the supern-
ode — for example, after node failure, they decide on
which physical nodes new incarnations of lost compo-
nents should be re-created.

3.3 Read and Write Handling

On write, a block of data is routed to one of the peers of
the supernode responsible for the hashkey space to which
this block hash belongs. Next, this write-handling peer
checks if a suitable duplicate is already stored; this pro-
cess is described in detail in Section 5.2. If a duplicate is
found, its address is returned; otherwise the new block is
compressed (if requested by a user), fragmented, and its
fragments are distributed to remaining peers.

A read request is also routed to one of the peers of a
supernode responsible for this block hashkey. Such peer
first locates the block metadata (usually it is found lo-
cally), and next sends fragment read requests to some of
other peers in order to read the minimal sufficient num-
ber of fragments required for this block reconstruction. If
any of these requests times out, all remaining fragments
are read. After sufficient number of fragments have been
found, the block is reconstructed, decompressed (if it
was compressed), verified and, in case of successful ver-
ification, returned to the user.

In general, reading is very efficient for streamed ac-
cess, as all fragments are sequentially pre-fetched from
disk to a local cache. However, fragment location by
a peer can be a quite elaborate process. Usually, it is
enough to check the local node index and the local cache
(their organization is beyond the scope of this paper),
but in some cases (for example, during component trans-
fers or after intermittent failures), the requested fragment
may be present only in one of the previous locations of
this component. In such case, the component directs dis-
tributed search for missing data. In particular, the trail
of previous component locations can be searched in the
reverse order.

3.4 Load Balancing

In a distributed storage system like the SystemXXL
back-end, the distribution of components among phys-
ical nodes is critical for system survivability, data re-
siliency and availability, storage utilization, and system
performance. For example, placing too many peer com-
ponents on one machine may have catastrophic conse-
quences if this node is lost. The affected supernode may
not recover, because too many components have been
lost; and even in case it is recoverable, some or even all
of the data handled by this supernode may not be read-
able, due to loss of too many fragments. Also, perfor-
mance of the system is maximized, when components
are assigned to nodes proportionally to available node
resources, as the load on each node is proportional to
the hashkey prefix space covered by the components as-
signed to this node.

Our system continuously attempts to balance compo-
nent distribution over all physical machines to reach a
state where failure resiliency, performance and storage
utilization are maximized. The quality of a given distri-
bution is measured by a multi-dimensional function pri-
oritizing these objectives, calledsystem entropy. Such
balancing is carried out by each machine, which peri-
odically considers set of all possible transfers of locally
hosted components to neighboring nodes. If the machine
finds a transfer that would improve the distribution, such
component transfer is executed (with safeguards prevent-
ing multiple conflicting transfers happening at the same
time). After a component arrives at a new location, its
data is also moved from old location(s) to the new one;
but this data transfer happens in the background and may
take a long time.

Load balancing is also used to manage adding and
removing machines to/from the system, with the same
entropy function applied to measure quality of resulting
component distribution after these changes.

3.5 Impact of Supernode Cardinality

Selection of supernode cardinality has profound impact
on properties of SystemXXL. First of all, it determines
the maximal number of tolerated node failures. The net-
work survives node failures as long as each supernode
remains alive, and for that at least half of each supernode
peers plus one should remain alive to reach a consensus.
As a result, the system survives at most half of supernode
cardinality minus 1 permanent simultaneous node fail-
ures among physical nodes hosting peers of each supern-
ode.

Supernode cardinality influences also scalability, at
least in theory. For a given cardinality, the probability
that each supernode survives is fixed; the higher cardi-
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nality the higher probability. When a system size grows,
its number of supernodes also grows, and, as a result, the
system reliability decreases, as for the system to be op-
erational we require all supernodes to be alive. However,
since permanent loss of a physical node is very unlikely,
the practical impact of this limitation is negligible in the
target range of the system size.

Finally, supernode cardinality defines the number of
data redundancy classes available. Erasure coding is
parametrized with the maximal number of fragments that
can be lost while a block remains still reconstructible.
Since in SystemXXL the erasure coding always produces
supernode cardinality fragments, the tolerated number of
lost fragments can vary from one to supernode cardi-
nality minus one (in the latter case we keep supernode
cardinality copies of such block). Each such choice of
tolerated number of lost fragments defines one data re-
dundancy class. Each class represents different tradeoff
between storage overhead (due to erasure coding) and
failure resilience. Such overhead is given by the ratio of
the tolerated number of lost fragments to the difference
between supernode cardinality and the tolerated number
of lost fragments. For example, if supernode cardinality
is 12 and a block can lose no more than 3 fragments, then
the storage overhead for this class is given by the ratio of
3 to (12-3), i.e. 33%.

4 Data Organization

Proper representation of stored data is critical for meet-
ing reliability, availability and performance targets of
SystemXXL. The system should be able to easily iden-
tify the availability of stored data, and in case of a failure,
rebuild the data only to the requested redundancy level
(as opposed to RAID, which rebuilds entire disk even if
it contains no valid user data). Since components move
between nodes followed by the data transfer, it should
be possible to locate and retrieve data from old compo-
nent locations. When such data is available, it should be
transferred instead of being rebuilt, as transfer is much
cheaper operation. Data written in one stream should be
placed close to each other to maximize write and read
performance. Last but not least, the data organization
should support on-demand distributed data deletion, in
which data blocks not reachable from any alive retention
root are deleted and the space occupied by them is re-
claimed.

4.1 Synchruns and Synchrun Components

As discussed earlier, we use erasure coding for data re-
dundancy. Resulting fragments of one block are dis-
tributed to peer components of the supernode responsible
for this block. The basic logical unit of data management

in SystemXXL issynchrun, containing a limited number
of consecutive blocks written by one write-handling peer
component and belonging to a given supernode. Since
writing a block really means writing supernode cardi-
nality of its fragments, each synchrun is represented by
supernode cardinality ofsynchrun components, one for
each peer. For thei-th peer of a supernode, the cor-
responding synchrun component contains alli-th frag-
ments of the synchrun blocks. A synchrun is a logical
structure only, but synchrun components actually exist
on corresponding peers.

4.2 Chains of Containers

For a given write-handling peer, only one synchrun is
open at any given time. As a result, all such synchruns
can be logically ordered in a chain, with the order de-
termined by the write-handling peer. Synchrun compo-
nents are placed in a data structure calledsynchrun com-
ponent container (SCC). Each SCC can contain one or
more chain-adjacent synchrun components, and as a re-
sult, SCCs form also chains similar to synchrun compo-
nent chains.
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Figure 3: Data organization with synchruns and syn-
chrun containers.

Upper row in Fig. 3 shows two synchruns A and B
both belonging to the empty prefix supernode (cover-
ing entire hashkey space). Each synchrun component is
placed here in one SCC, with individual fragments also
shown. SCCs with synchrun components of these syn-
chruns are shown as rectangles placed one behind the
other. A chain of synchruns is represented by the supern-
ode cardinality of SCC chains, we call thempeer SCC
chains. In the remainder of the Fig. 3 we show only one
such peer SCC chain.

Peer SCC chains, in general, are identical with re-
spect to synchrun components metadata and the number
of fragments in each of them, but occasionally there may
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be differences caused, for example, by node failures re-
sulting in chain holes. This chain organization allows
for relatively simple and efficient implementation of re-
quired features. For example, data is available (i.e. all
blocks are reconstructible), if sufficient number of peer
chains (equal to the number of fragments needed to re-
construct each block) do not have any holes. Note that in
such way determination of data availability can easily be
made for each redundancy class.

Each supernode will eventually be split due to loading
more data or adding more physical nodes (this is a regu-
lar AnDHT split and results in two new supernodes with
prefixes extended from the ancestor prefix with, respec-
tively, 0 and 1). After the supernode split, each synchrun
in this supernode is also split in half, with fragments dis-
tributed between them based on their hash prefixes. Sec-
ond row of Fig. 3 shows two such chains, one for the
supernode with the prefix 0, and the other for the supern-
ode with the prefix 1. Note that, as a result of the split,
fragments of synchruns A and B are distributed to these
two chains; and we end up with 4 synchruns now, but
each of them approximately half the size of the original
one.

The system strives to maintain limited number of local
SCCs, and merges adjacent synchrun components into
one SCC (as shown on the third row of Fig. 3) until max-
imum size of SCC is reached. Limiting the number of
local SCCs let us keep their metadata in RAM which in
turn enables fast determination of actions necessary to
provide required data services. The target size of an SCC
is a configuration constant (set usually well below 100
MB), so multiple SCCs can be read in the main memory.
These SCC concatenations are loosely synchronized on
all peers, so peer chains look the same. Similar operation
is needed after deletion, shown in the remaining rows of
this figure and discussed later in Section 5.3

This data organization is relatively simple in a static
system, but it becomes quite complex due to the dy-
namic nature of the SystemXXL back-end. For example,
when a peer is transferred to another physical node be-
cause of load balancing, its chains are transferred in the
background to a new location, one SCC at a time. Simi-
larly, after a supernode split, not all SCCs of the supern-
ode are split immediately; instead we run background
operations adjusting chains to the current supernode lo-
cations and shape. As a result, in any given moment,
we may have chains partially-split, partially present in
previous locations of this peer, or both. After failure,
we may have serious holes in some of the chains. For-
tunately, since peer chains describe the same data, we
have the supernode cardinality chain redundancy in the
system, so usually there is a sufficient number of com-
plete chains. This chain redundancy allows for reason-
ing about the data in the system even in the presence of

transfers/failures. Additionally, more refined algorithms
are used in some cases constructing chain coverage from
chain parts present on different peers.

5 Data Services

Based on the data organization described above, Sys-
temXXL can efficiently deliver data services like identi-
fication of recoverability of data, automatic data rebuild-
ing, load balancing, deletion and space reclamation, data
location in network, deduplication and others. Detailed
description of all of them is beyond the scope of this pa-
per, but we sketch below how we deliver efficient data
rebuilding, deletion and duplicate elimination.

5.1 Data Rebuilding

On node or disk failure, the SCCs residing there are lost.
As a result, the redundancy of the data blocks with frag-
ments belonging to these SCCs is at best reduced below
the level requested by users when writing these blocks.
In the worst case, a given block may be lost completely if
not enough fragments survive. To keep the block redun-
dancy at the desired levels, the system scans SCC chains
looking for holes and schedules data rebuilding as back-
ground jobs for each missing SCC.

Multiple peer SCCs can be rebuilt in one rebuilding
session. Based on SCC metadata, minimal number of
peer SCCs needed for data rebuilding is read by a peer
performing the rebuilding, and then erasure coding and
decoding are applied to them in bulk to obtain fragments
which should belong to rebuilt SCC(s). Next, the re-
built SCCs are sent to the current target locations. Be-
fore SCCs are rebuilt, all input SCCs are made to look
the same, i.e. required splits and concatenations are per-
formed first. This requirement allows for fast bulk re-
building as measured in Section 6.

5.2 Duplicate Elimination

Duplicate elimination can be classified in many dimen-
sions: (1) the level at which duplicates are detected: an
entire file, a subset of a file, fixed-size block or variable-
size block; (2) time when the deduplication happens: in-
line when a duplicate is detected before it is stored, or
in the background after it hits the disk; (3) how accurate
it is: reliable in which if a duplicate of an object being
written is present, it will be detected, or approximate, in
which some duplicates may go undetected at a gain of
better performance; (4) how equality of two objects is
verified: by comparing secure hashes of two object con-
tents; or by comparing data of these objects; and, last,
but not least, (5) scope of detection: it can be local, re-
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stricted only to data present on a given node; or global,
i.e. using all data from all nodes.

Today SystemXXL implements variable-sized block,
in-line, hash-verified global duplicate elimination imple-
mented on storage nodes. For regular blocks, we use fast
approximate deduplication, whereas for retention roots,
we do reliable duplicate elimination to ensure that two
or more blocks with the same search prefix point to the
same blocks. In both cases, for successful deduplication,
we require that the potential duplicate of a block being
written has redundancy class not weaker than the class
requested by this write; and that the potential old dupli-
cate is reconstructible.

On a regular block write, the peer handling this write
is selected based on the hash of this block; so two iden-
tical blocks written when this peer is alive will be han-
dled by it and the second block will be found a duplicate
of the first one. More complicated case arises when the
write-handling peer has been recently created because of
transfer or component recovery, and it does not have yet
all the data it should have, i.e. its local SCC chain is
not complete. In such case, we go to the longest-alive
peer in the current supernode to check for possible du-
plicates. This is just a heuristics, as this peer may also
not have the proper SCC chain complete, so a duplicate
may not be detected. However, such miss occurs only in
corner cases, after massive failures when most likely all
chains are broken. Moreover, for a particular block, we
miss only one opportunity to eliminate a duplicate; next
identical block will be deduplicated unless more failures
or this peer transfers happen, and only before chain re-
building on the oldest peer is completed.

For retention roots, we need to ensure that two blocks
with the same search prefix point to the same blocks (oth-
erwise retention roots will not be useful to identify snap-
shots). As a result, we need an accurate duplicate elim-
ination for retention roots. When a local full SCC chain
does not exist at the peer handling this write, the peer
sends duplicate elimination queries to all other peers in
this supernode. Each of these peers checks locally for
a duplicate. A negative answer includes also a sum-
mary description of parts of the SCC chain on which
this answer is based. The write handling peer collects
all replies. If there is at least one positive, a duplicate
is found; otherwise, when all are negative, this peer tries
to build full chain coverage using chain information at-
tached to negative replies. If the entire SCC chain can
be covered, the new block is not a duplicate; otherwise
the write of the retention root is rejected with special er-
ror status indicating that data rebuilding is in progress
(this may happen after massive failures); in such case this
write should be submitted later. Needless to say, such sit-
uations so far happened only in special tests, and never
in practice.

5.3 Deletion and Space Reclamation

Implementing data deletion in a system like SystemXXL
turned out to be surprisingly difficult because of many
challenges which stem from the nature of the sys-
tem: content-addressability, distribution, failure toler-
ance, and duplicate elimination. While deletion in our
content-addressable system is somehow similar to dis-
tributed garbage collection [24], which is well under-
stood, overcoming remaining challenges, discussed be-
low, required new research.

When deciding if a block is to be duplicate-eliminated
against another old copy of this block, we must be sure
that this old block is not scheduled for deletion. A de-
cision which block to keep and which to delete must
be consistent in the distributed setting and in the pres-
ence of failures. For example, a deletion decision made
should not be temporarily lost due to intermittent fail-
ures, as otherwise we may eliminate duplicates using
blocks which are really scheduled for deletion. More-
over, robustness of the data deletion algorithm should be
higher than data robustness. We need this property be-
cause, even if some blocks are lost, data deletion should
be able to proceed to logically remove the lost data and
heal the system (obviously, only when such action is ex-
plicitly requested by a user).

To simplify the design and make the implementation
manageable, we have implemented deletion split in two
phases: read-only, during which blocks are marked for
deletion and users cannot write data; and read-write
phase, during which blocks marked for deletion are re-
claimed and users can issue both reads and writes. Hav-
ing read-only phase simplified the deletion implementa-
tion, because it lets us eliminate the impact of writes on
the process of marking blocks for removal.

Deletion is implemented with per-block reference
counter that counts the number of pointers in blocks in
the system pointing to this block. Reference counters are
not updated immediately on write. Instead, they are up-
dated later in the read-only phase processing all pointers
written since the previous read-only phase (so counter
update is incremental). For each such pointer, the ref-
erence counter of the pointed block is incremented. Af-
ter all such incrementation is completed, all blocks with
reference counter equal to zero are marked for deletion
(dark-shaded fragments in Fig. 3). Moreover, reference
counters of blocks pointed by blocks already marked
for deletion (including roots with associated deletion
roots) are decremented. Next, the whole decrementa-
tion process (i.e. marking for removal blocks with ref-
erence counters equal to zero and decrementing refer-
ence counters of blocks pointed by pointers included in
these blocks) is repeated, until no more new blocks can
be marked for deletion. At this point, read-only phase
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ends, and blocks marked for deletion can be removed in
the background.

Deletion algorithm as described above requires meta-
data of all blocks as well as all pointers to be present to
be able to proceed. The pointers and block metadata are
replicated on all peers, so the deletion can proceed even
if some blocks are no longer reconstructible, as long as
at least one block fragment exists.

Since blocks are really kept as fragments, a copy of the
block reference counter is kept per-fragment, and each
fragment of a given block should have the same value
of this counter. Reference counters are computed inde-
pendently on peers participating in the read-only phase.
Before deletion is started, each such peer must have its
SCC chain complete with respect to fragment metadata
and pointers. Not all peers in a supernode have to par-
ticipate, but some minimal number of peers is required
to complete the read-only phase. Computed counters are
later propagated in the background to remaining peers.

The redundancy in counter computation allows dele-
tion decision to survive node failures. However, the in-
termediate results of deletion computations are not per-
sistent. Any failure before the decision is made wipes
out these results on the affected nodes, and the whole
computation needs to be repeated if too many peers can-
not participate in this phase anymore; or deletion can
still continue, if sufficient number of peers in each su-
pernode were not affected by such failure. Upon con-
clusion of read-only phase, the new counter values are
made failure-tolerant. All dead blocks i.e. blocks with
counters equal to zero are then swept out from physical
storage in background (reclamation in Fig. 3).

6 Evaluation

In our evaluations, we have used the current SystemXXL
hardware. Each storage node (SN) runs one back-end
server, and has six 500 GB SATA disks, 6GB RAM, two
dual-core 3 GHz CPUs and two GigE cards. Some exper-
iments have been done also with the experimental next
generation hardware (denoted SN2), in which each stor-
age node runs two back-end servers and has twelve 1
TB SATA disks, 20 GB of RAM, two quad-core 3GHz
CPUs and four GigE cards. In all experiments, we have
used the current access node (AN) with 6 GB RAM, two
dual-core 3 GHz CPUs, two GigE cards and only a small
local storage. All nodes run Linux version Red Hat EL
5.1.

All experiments were performed using 64KB block
size, which were 33% compressible to 48 KB (except
as noted).

6.1 Read/Write Bandwidth

This experiment shows write throughput as a function of
fraction of blocks detected as duplicates for two differ-
ent compression ratios. We have used 4SN2 machines,
and 4AN machines. Each AN runs one testing driver
able to generate a stream of blocks with a specified per-
centage of duplicates and compression ratio. Duplicates
are evenly distributed in the stream. Duplicated data is
written in the same order as the base data, re-creating
the original data stream. For the read experiment, testing
driver attempts to read data in the same order as it was
written.
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Figure 4: Write throughput as a function of duplicate ra-
tio.

As shown in Fig. 4, very high bandwidth is achieved,
which is a consequence of a carefully chosen data organi-
zation utilizing bulk transfer to disk. Duplicates are pro-
cessed much more effectively than non-duplicated data,
because they do not require fragmentation, fragment dis-
tribution and storage. Moreover, SCC-based organiza-
tion allows the write-handling peer to perform fast local
duplicate elimination by checking block reconstructibil-
ity with SCC reports submitted in the background from
the remaining peers. However, when all writes are du-
plicates, the network bandwidth between AN and SNs
becomes a bottle-neck, and the overall performance does
not increase as much as expected (both curves flatten a
bit at 100% duplicates). For high deduplication ratios,
the CPU utilization decreases dramatically and network
bandwidth between storage nodes remains available, so
background tasks like data reconstruction and data scrub-
bing can be run without impact on user-visible perfor-
mance.

Read bandwidth highly depends on factors like se-
quentiality of read data, and a number of drivers read-
ing simultaneously, but it is not directly determined by
the percentage of duplicates when the read data was
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written (more precisely, for a given duplicate elimina-
tion ratio, read performance highly depends on granu-
larity of distribution of duplicates). Detailed discussion
of impact of these factors on read performance is be-
yond the scope of this paper. Instead, we only give read
throughput achieved when drivers read data written se-
quentially. With four drivers reading, the total combined
read bandwidth was 700MB/s for 33% compressible data
and 500MB/s for 0% compressible data.

The time to fill the 4 SN2 node system highly depends
on the ratio of duplicates in the data written: from 1 day
for writing data with no duplicates, to up to 10 days of
continuous writing with 95% of duplicates. In general,
for configurations, in which high performance is not a
priority, fewer ANs can be used, resulting in extended
time-to-fill.

6.2 System Scaling

This experiment, with up to 12SNs and the number of
ANs set to half of the number of SNs, shows how perfor-
mance is scaled when numbers of storage nodes and ac-
cess nodes increase. Two set of measurements are done
— a dynamic one, in which nodes are added while user is
writing, and a static one, in which number of nodes is sta-
ble. In the latter case, each measurement was performed
independently initializing system from scratch and load-
ing the same amount of random, non-duplicated data.
Time on X axis refers to the dynamic case only.
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Figure 5: Dynamic vs. static scalability test.

The results indicate that in the range of nodes tested
the system performance scales linearly with the system
growth in the stable case. The system attempts to bal-
ance components so hash space is divided equally across
storage nodes. Such balancing guarantees that every ma-
chine is equally loaded and does not become a bottle-
neck. In the dynamic case, there is a cost of system
growth, so resulting user bandwidth is lower, because
most of data is on the oldest nodes, and to check for

duplicate elimination we need to query these nodes on
every write. However, after all data transfers are com-
pleted, the performance in the dynamic case will be the
same as in the stable case.

6.3 Node Failure and Data Rebuilding

This experiment shows the system behavior and its per-
formance just after node failure, during resulting data re-
construction, and after the failed node is recovered. We
have used 4SN2 machines and 4AN machines.

0 16 32 48 64 80 96 112 128
Duration in minutes

0

100

200

300

400

500

600

700

B
an

dw
id

th
 (

M
B

/s
)

Reconstruction read
Reconstruction write
Non-duplicate user write

1 SN failure

Failed SN restart

Backup window Backup window

Figure 6: Node failure during backup.

We started writing to the healthy system with four stor-
age nodes, achieving write throughput over 600 MB/s.
After about 14 minutes one storage node failed (both
back-end servers crashed). Write performance just af-
ter the node failure dropped to 300 MB/s, then stabi-
lized at about 400 MB/s. The initial drop was caused
by timed-out messages to the failed node and overhead
for system rebalancing. Data rebuilding (reconstruction)
tasks were ordered, however they were suppressed be-
cause of the ongoing user backup. Reconstruction started
to work with full bandwidth just after all user writes had
been finished. Every block reconstruction required read
of 9 fragments to rebuild 3 lost fragments. The recon-
struction read bandwidth reached 480 MB/s on 3 surviv-
ing machines, whereas reconstruction write bandwidth
reached 160 MB/s. The rebuilding was finished in the
58th minute and the system became healthy once again,
but containing only 3 storage nodes.

In the 64th minute the next writing session started
achieving write bandwidth of 430 MB/s. The failed node
was recovered and connected once again in the 100th
minute. Just after the re-connection, system write band-
width dropped to 380 MB/s, but when components rebal-
ancing was finished it increased to about 550 MB/s. At
the end of the experiment the system had 4 storage nodes,
however it was not healthy, as not all data (SCCs) were
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in the correct places. Write performance will increase
to the initial (600 MB/s) after all pending transfers are
finished and the system becomes healthy again.

The results show that the system maximizes user band-
width during backup even if background tasks are pend-
ing. Such approach allows user to minimize costly
backup windows regardless of internal system state, but
carries the risk of starvation of critical data rebuilding
tasks. However, this may happen only if the system is
fully loaded by a user all the time and only when user
writes non-duplicated data. If the user load decreases or
some duplicates are written, reconstruction is executed in
the background. Finally, this experiment also shows how
quickly the system adjusts to changed environment. It is
only a matter of minutes for the system to fully utilize all
available resources.
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6.4 Data Deletion

The purpose of this experiment is to evaluate the dura-
tion of read-only phase as a function of data loaded. We
focus here on the scenarios that resemble real usage of
the system, therefore we use the file system interface to
write to and remove data from the back-end periodically,
with the overall amount of the data in the system increas-
ing. Deletion experiments were performed using 4SN2
machines and 1AN machine.

We repeat four incarnations of the following scenario
consisting of four steps, as illustrated in Fig. 7. In the1

st

step (shown with dotted lines), the data is loaded dou-
bling the total amount each time from 1 to 2 to 4 and to 8
TB. In the2

nd step, we run read-only phase recomputing
the counters for recently loaded data (no data is marked
for deletion in this step). The duration of each2

nd step is
shown with light-gray bars in Fig. 7. After that, in the3

rd

step (shown with the dashed lines), additional half TB of
new data (ND) is loaded and a user asks also for dele-
tion of a 0.2 TB of older data (DD). In the last step, one
more read-only deletion phase is run to recompute coun-
ters reflecting recently loaded data and mark the blocks
to be deleted. The duration of each such read-only phase
is shown with dark-gray bars. In all cases, the new data
is not compressible and does not contain any duplicates,
but with duplicates present the results will be similar, ex-
cept that all phases will be shorter.

Although the X axis in Fig. 7 shows duration of each
read-only phase, the data-loading steps are not shown in
proportion there, because they are too big (we load ter-
abytes of data and it takes several hours). We note that
all read-only phases are relatively short, the longest one,
after loading3.7 TB of data (which took about4 hours)
is about 30 minutes, resulting in deletion time of under
13% of writing time. For writing with two ANs, this frac-
tion can go up to 20% in case of not-duplicated streams,
but for highly-duplicated data (which is the common case
for backups), deletion takes significantly less, on the or-
der of 5% of writing time, because less data need to be
read to access all pointers, and filling in the capacity
takes so much more time. Moreover, the duration of the
first read-only phase (shown with the light-gray bars) in
each incarnation is proportional to the new data loaded
in the first step of the scenario. Finally, the duration
of the second read-only phase (shown with dark bars)
is more less constant for all 4 incarnations and is about
11 minutes. This shows also the power of the incremen-
tal reference-counting based deletion in SystemXXL, as
clearly the duration of the read-only phase depends only
on the amount of data added and deleted since the previ-
ous run of this phase, but not the total amount of data in
the system.

7 Related Work

Significant number of distributed storage systems [10,
11, 12] targeted very large scale, distribution over wide-
area network and use of untrusted peers leading to fre-
quent configuration changes. For example, the goal of
OceanStore [10] was to provide reliable storage for all
data ever created. As a result, these systems concentrated
on scalability (e.g. OceanStore, PAST [12]) and toler-
ance of wide class of failures, including Byzantine and
large-scale correlated failures (Glacier [16]), at expense
of performance.

Another group of distributed storage systems tar-
geted the data center and, in this, are more like Sys-
temXXL. These systems include distributed virtual disk
like Petal [17], distributed file systems like CEPH [32]
and Farsite [8], clustered file systems like Sorrento [29],
Panasas [34], and GoogleFS [15], clustered storage in-
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cluding Ursa Minor [7], RADOS [33], and FAB [23].
Compared to SystemXXL these systems have different
target applications and are not advertised as secondary
storage. As a result, they do not provide duplicate elimi-
nation (except Farsite, which does it on file level); these
systems are not CAS-based, but need to deal with issues
of consistency in the presence of write-sharing, which do
not occur in our system. Ursa Minor does support user-
selected choices of data redundancy, similar to our data
redundancy classes. DISP [14] is a flexible system that
can be specialized to both WAN and data center. Like
SystemXXL, DISP uses erasure codes, but it does not
provide duplicate elimination.

Venti [20], EMC Centera [6], Pergamum [27] and
DataDomain [38] are secondary storage systems. Venti,
Pergamum and Centera target archiving, whereas Data-
Domain is designed to store backup data. Pergamum
does not support duplicate elimination, Venti prototype
and Centera do it, respectively, on fixed block size and
entire file level. These approaches result in lower dedu-
plication than a variable-block size approach used by
SystemXXL and DataDomain. However, DataDomain
is a centralized system and does not do global deduplica-
tion in distributed environment. SystemXXL provides
global deduplication using also variable block chunk-
ing with comparable write performance. RepStore [36],
a smart-brick storage system built around DHT, uses
erasure codes and content-based addressing, but does
not provide deduplication. Deep Store [35], an archiv-
ing system, employs multitude of techniques for reduc-
ing stored data size, including delta compression and
variable-block-size deduplication. However, this system
does not target backup data.

Blocks in our system have some resemblance to ob-
jects in the object-based storage [19], as they have at-
tributes (for example redundancy class) and simple inter-
face to access its components like pointers.

Many systems introduce structures similar to SCCs for
aggregating a number of blocks. Venti uses arenas to
serve as a unit of data maintenance; however, they do
not take advantage of the sequential nature of incoming
data streams and achieve very low performance. Data-
Domain introduces containers to group sequential writes
from each stream of data to increase effectiveness of
read-ahead caching. SystemXXL achieves a similar re-
sult by sorting incoming blocks by their stream id and
flushing them out to disk in batches. Using separate con-
tainers for every stream in SystemXXL is not feasible,
as the number of containers written concurrently may be
very large for big systems. SystemXXL data organiza-
tion is unique in use of replicated chains of containers
which allow for reasoning about state of the data in the
system.

Deletion in a distributed storage system is relatively

simple if there is no duplicate elimination. It can be done
with leases like in Glacier [16], or with simple recla-
mation of previous obsolete versions like in Ursa Mi-
nor. However, with deduplication, deletion becomes dif-
ficult for reasons explained earlier. For example, Venti
and Deep Store have not implemented deletion. As far
as we know SystemXXL back-end approach to deletion
is unique. Introduction of blocks with pointers, reten-
tion and deletion roots and redundant chains of contain-
ers enable us to implement easy-to-use fault-tolerant dis-
tributed deletion at the lowest part of the system.

8 Conclusions and Future Work

SystemXXL is a decentralized, scalable secondary stor-
age system commercially available today. It can be
used as on-line repository for all enterprise backup and
archiving data, dynamically and efficiently sharing avail-
able capacity. Critical features like high availability and
reliability, ease of management, capacity and perfor-
mance scalability, and storage efficiency make the sys-
tem unique in addressing today’s enterprise needs caused
by the explosive growth of data. The system is externally
visible as one storage pool and can be accessed by legacy
applications using traditional file system interface.

The core architecture is built around a DHT extended
with virtual supernodes, each spanning multiple phys-
ical nodes. Data redundancy is provided with era-
sure codes, with fragments of erasure-coded blocks dis-
tributed among supernode components. Redundancy in
the network and data allows for on-line upgrades and
extensions increasing availability of the system. High
storage efficiency is facilitated by variable block size
global deduplication. The back-end exports low-level
API providing operations on content-addressed blocks,
with pointers to other blocks exposed. In this way blocks
form a directed acyclic graph. A novel data organi-
zation based on redundant chains of data containers is
used to deliver reliably multitude of data services, in-
cluding failure-tolerant deletion and fast verification of
data health.

Although the system is fully functional today, there is
important work left to further improve its value proposi-
tion delivered to the end user. Read-only phase of dele-
tion will be eliminated to make the system fully usable all
the time. Deduplication can be improved with multi-size
block techniques and moved to a proxy server at least in
the common case, saving bandwidth and improving write
performance of highly-duplicated streams. Additionally,
since potentially multiple types of clients can access the
back-end, there is a need for a stream interface in which
cutting data into blocks is standardized by the back-end.
This will ensure higher deduplication among data written
by different types of clients.
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