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Abstract

Micro-recovery, or failure recovery at a fine granular-
ity, is a promising approach to improve the recovery
time of software for modern storage systems. One of
the key challenges in performing micro-recovery is to
be able to perform efficient and effective state restora-
tion, while accounting for dynamic dependencies be-
tween multiple threads in a highly concurrent environ-
ment. In this paper, we present Log(Lock), a practical
and flexible architecture for tracking dynamic depen-
dencies and performing state restoration, without re-
architecting legacy code. Concretely, we use a sys-
tematic approach to address the problem of system
state restoration during micro-recovery, by developing
state space exploration methods and the Log(Lock) ex-
ecution model. In the state space exploration phase,
we formally model thread dependencies based on both
state and shared resources, capturing failure contexts
through different ‘restoration levels’. We develop re-
covery strategies by deriving restoration protocols in
terms of recovery points and restoration levels. The
Log(Lock) execution model tracks state changes using
Log(Lock) primitives and implements state restoration
based on restoration protocols. We have implemented
Log(Lock) in a real enterprise storage controller. Our
experimental evaluation shows that Log(Lock) enabled
micro-recovery is both efficient (<10% impact on per-
formance) and effective (reduces a 4 second downtime
to only a 35% performance impact).

1 Introduction

Enterprise storage systems serve as repositories for
huge volumes of critical data and information. Un-
availability of these systems would result in losses
amounting to millions of dollars per hour [23] and
could bring organizations to a grinding halt.

Most existing work in the domain of storage sys-
tem availability addresses failures of the storage me-
dia (such as disks) and recoverability from these fail-
ures [28, 13, 1, 2]. However, failures at the firmware
layer that result in service loss remain largely un-
addressed. At the same time, the software at the
firmware layer of a storage system has evolved tremen-
dously in terms of functionality. Modern storage con-
trollers are highly concurrent embedded systems with
millions of lines of code [14, 25]. As a result of this

complexity, recovering from controller failures is both
difficult and expensive.

While system availability requirements are con-
stantly being driven higher, increasing system size
stemming from performance expectations, virtualiza-
tion and consolidation for easier management, is ac-
tually causing failure recovery time to increase. Since
software failure recovery is often performed through
system-wide recovery, the recovery process itself does
not scale with system size [24, 4, 25].

How can failure recovery be made scalable? Parti-
tioning the system into smaller components with inde-
pendent failure modes can reduce recovery time. How-
ever, it would also increase management cost and de-
crease flexibility, while still being susceptible to sym-
pathetic failures. On the other hand, refactoring the
software into smaller independent components, in or-
der to use techniques such as micro-reboots [4] or
software rejuvenation [8], may require sizable invest-
ments in terms of development and testing effort and
cost. In the case of legacy systems, this can be un-
acceptable. An alternative approach is to be able to
perform fine-granularity recovery or micro recovery,
without re-architecting the system. Under this ap-
proach, failure recovery is targeted at a small subset
of tasks/threads that need to undergo recovery while
the rest of the system continues uninterrupted.

Enabling fine grained recovery can be challenging,
especially in legacy systems, and to perform micro re-
covery, the following issues must be addressed:

• Evaluating recovery success: What are the
failures that can effectively and efficiently be re-
covered from, using micro-recovery?

• Determining recovery actions: What are the
recovery strategies and recovery actions that must
be performed in order to restore the system from
an error state to an error-free state?

• Identifying dependencies: Given that in highly
concurrent systems, there may be a large number
of dynamic dependencies, what is the scope of fine-
granularity recovery?

• Enhancing recovery success and efficiency:
How can we enhance the system to facilitate better
recovery success and efficiency?

In this paper, we address the first three questions,
focusing on the challenges of tracking and restoring



system state during micro-recovery, evaluating the
possibility of recovery success and determining recov-
ery actions based on system state.

We make two unique contributions in terms of effec-
tive state restoration during micro-recovery. First, by
analyzing the system state space, we identify the set
of events and system states that affect state restora-
tion from the perspective of micro-recovery. We intro-
duce the concepts of Restoration levels and Recovery
points to capture failure and recovery context, and
describe how to flexibly evaluate the possibility of re-
covery success. Based on the restoration levels and re-
covery points, we introduce Resource Recovery Proto-
col (RRP) and State Recovery Protocol (SRP), which
provide rules to guide state restoration.

Our second contribution is Log(Lock), a practi-
cal and lightweight architecture to track dependencies
and perform state restoration in complex, legacy soft-
ware systems. Log(Lock) passively logs system state
changes to help identify dependencies between multi-
ple threads in a concurrent environment. Concretely,
it allows threads to incrementally track changes to rel-
evant shared state and resources without impacting
system performance or modifying legacy code.

We have implemented and evaluated Log(Lock) in
a real enterprise storage controller. Our experimen-
tal evaluation shows that Log(Lock) enabled micro-
recovery is both efficient (<10% impact on perfor-
mance) and effective (reduces a 4 second downtime
to only a 35% performance impact). In summary,
micro-recovery with Log(Lock) presents a promising
approach to improving storage software robustness
and overall storage system availability.

2 Log(Lock): Design Overview

This section gives an overview of the Log(Lock) sys-
tem design. We first describe the problem statement
that motivates the Log(Lock) design. Then we outline
the technical challenges for systematic state restora-
tion during micro-recovery. Using examples, we high-
light the unique characteristics of storage software re-
covery in terms of state consistency and state restora-
tion efficiency. Finally, we briefly describe the system
architecture of Log(Lock).

2.1 Motivation

In this section, we motivate the need for a flexible
and lightweight state restoration architecture using a
highly concurrent embedded storage controller. The
storage controller refers to the firmware that controls
the cache and provides advanced functionality such as
RAID, I/O routing, synchronization with remote in-
stances and virtualization. In modern enterprise-class
storage systems, the storage controller has evolved to
become extremely complex with millions of lines of

code that is often very difficult to test. The controller
code typically executes over an N-way processing com-
plex using a large number of very short concurrent
threads (∼20 million/minute). While the software is
designed to extract maximum concurrency and satisfy
stringent performance requirements, it does not ad-
here to ACID properties or transactional semantics.
This software is representative of a class that are ex-
pected to sustain high throughput and low response
times continuously.

With this architecture, when one thread encounters
an exception that causes the system to fail, the com-
mon way to return the system to an acceptable, func-
tional state is by restarting and reinitializing the entire
system. While the system reinitializes and waits for
the operations to be redriven by a host, access to the
system is lost contributing to downtime. As the sys-
tem scales to larger number of cores and as the size of
the in-memory structures increase, such system-wide
recovery will no longer scale [4, 25].

Many software systems, especially legacy systems,
do not satisfy the conditions outlined as essential
for micro-rebootable software [4]. For instance, even
though the storage software may be reasonably mod-
ular, component boundaries, if they exist, are very
loosely defined and components are stateful. Under
these circumstances, the scope of a recovery action is
not limited to a single component.

The goal of micro-recovery is to perform recovery
at a fine granularity such as at the thread-level, while
determining the scope of recovery actions dynamically,
based on dependencies identified at runtime. The key
challenges in performing micro-recovery are identify-
ing dependencies based on failure and recovery con-
text, determining recovery actions and restoring the
system to a consistent state after a failure.

2.2 Technical Challenges

With software recovery, the actions that achieve state
restoration, depend on the actions of the failed thread
and its interactions with state and shared resources.

Threads in the system interact in the two funda-
mental ways: (1) reading/writing shared data and (2)
acquiring and releasing resources from/to a common
pool. Threads also interact with the outside world
through actions such as positioning a disk head or
sending a response to an I/O. Often these actions can-
not be rolled back and are referred to as outside world
processes (OWP) [6]. In such a system, state restora-
tion and micro-recovery must consider the sequence
and interleaving of the actions of concurrent threads
that gives rise to the following conflicts:

• Dirty Reads (Write-Read Conflict): Data
written by the failed thread has already been con-
sumed by another thread.



• Lost Updates (Write-Write Conflict):
Rolling back the failed thread may cause the
updates of other threads to be overwritten or lost.

• Unrepeatable Reads (Read-Write Conflict):
The value of the shared state variable required by
the failed thread has already been overwritten.

• Resource Ownership : The failed thread may
continue to be in the possession of resources from
a shared pool or may be holding a lock resulting
in resource leaks or starvation issues.

For a given failure, the set to recovery actions that
need to be performed to return the system to a con-
sistent state may vary depending upon the failure and
the occurrence of one or more of the above conflicts.
Note that for application state, the intention is not to
deterministically replay the events before the failure,
or recover the application state to exactly as it was at
the instant of failure. Rather, the goal is to restore
the system to an error-free state. In fact, the recovery
strategy may itself explicitly rely on non-determinism
to remove transient failures. For example, Rx [16]
demonstrates an interesting approach to recovery by
retrying operations in a modified environment using
checkpointed system states for rollbacks.

Checkpointing for fault-tolerance is a well known
technique [6, 5, 19, 9, 16] that has also been applied
to deterministic replay for software debugging [27, 21,
22]. However, checkpointing techniques are mostly
targeted at long-running applications [6] such as sci-
entific workloads [5], or applications where the mem-
ory footprint and the system performance require-
ments can tolerate the overhead imposed by check-
pointing [16, 9]. A number of unique challenges in
the case of storage controller software make check-
pointing infeasible: Unlike long-running applications,
storage controllers have a very high rate of short
(< 500µsecs) concurrent threads and are designed to
support extremely high throughput and low response
times. Given the highly concurrent nature of con-
trollers, both quiescing the system in order to take
the checkpoint, as well as logging the tasks in order
to redrive work beyond the checkpoint is expensive
in terms of time and space - especially since system
state includes large amounts of metadata and cached
data. Next, communication with OWPs such as hosts
and media cannot be rolled back and hence invali-
date checkpoints. Finally, due to the complexity of
the code, not all failures will be amenable to micro-
recovery, making checkpointing too heavy weight.

System state restoration and conflict serialization is
also of interest to transactional systems [12]. Trans-
actional databases use schemes like strict 2-phase
locking (2PL) to guarantee conflict serializability [3].
However, such techniques can increase the length of
critical sections (i.e. durations of locks) and are inef-

 

R1:  /* Increment number of Users */ 

       lockWrite( &numActiveUsersLock); 

       numActiveUsers ++; 

       unlockWrite( &numActiveUsersLock); 

       ... 

       ... 

      /* Decrement number of Users */ 

      lockWrite( &numActiveUsersLock); 

      numActiveUsers --; 

      unlockWrite( &numActiveUsersLock); 
 

R2: /* Start background tasks if no users active */ 

       lockRead ( &numActiveUsersLock); 

       if ( numActiveUsers == 0 ) { 

 Start performing background tasks. 

       } 

       unlockRead( &numActiveUsersLock); 
 

Figure 1: Example 1: Lost Update Conflict

 

R3: /* Get cache track to write to fast-write cache */ 

      startSCSICmd(); 

       processRead(); 

      getCacheTrack(); 

        getTempResource() { 

       ... 

       PANIC 
 

Figure 2: Example 2: Resource Ownership Conflict

ficient for storage controllers that execute in a highly
concurrent environment. Moreover, we show in Sec-
tion 2.3 that, recovery actions are determined based
on both the context and semantics of failure and a
“one size fits all” serializability, while simplifying re-
covery procedures, can constrain the recovery process.

2.3 Examples

We present three real examples from a storage con-
troller software. We demonstrate how the semantics
and success of fine-grained recovery are determined by
failure context and the interactions of threads.

Figure 1 shows two code snippets: R1 increments
the number of active users before performing work and
in R2 a background job is triggered when there are no
active users in the system. When a panic (user de-
fined or system failure/exception) occurs during the
execution of region R1, then assume that the micro-
recovery strategy is to reattempt execution of region
R1. The recovery action must ensure clean relinquish-
ing of resources such as the lock numActiveUsersLock.
It is important to ensure that the system state is con-
sistent since corruption of the counter can either cause
the background jobs to never be triggered or triggered
in the presence of active users. In Example-1, the sys-
tem can tolerate dirty reads or unrepeatable reads of
the numActiveUsers count but must ensure that no
updates are lost. On the other hand, if the failure
was caused during the execution of region R2, a back-



 

R4: /* Update Metadata Location */ 

      lockWrite( &MetadataLocationLock); 

      MetadataLocation = XX; 

      unlockWrite( &MetadataLocationLock); 

 … 
 

Figure 3: Example 3: Dirty Read Conflict

ground task that is not critical, the recovery strategy
may be to just abort the current execution of the back-
ground task. However, recovery must ensure that the
lock numActiveUsersLock has been released.

Figure 2 shows the processing of a write command.
In the event of encountering a failure, state restoration
must ensure that temporary resources obtained from
a shared pool are freed correctly in order to avoid re-
source leaks or starvation. It may also require that,
certain cache tracks are checked for consistency, de-
pending upon the point of failure. However, for a re-
source such as a buffer or empty cache track obtained
from a shared pool for exclusive use, dirty reads, un-
repeatable reads and lost updates can be tolerated.

Figure 3 shows a thread that updates a global vari-
able indicating the metadata location, such as for
checkpoint activity. In the event of a failure caused
due to a failed location, the thread may have the op-
portunity to modify the location without notifying
other threads in the system or causing inconsistency,
provided there have been no dirty reads. However,
in the event of a dirty read, the system may have to
resort to recovery at a higher level.

These examples highlight the fact that consistency
requirements for state restoration vary with failure
context. For example, in the case of a counter generat-
ing unique numbers, the only requirement may be that
modifications are monotonous. For a shared resource,
the state remains consistent as long as there are no
resource leaks that could eventually lead to starva-
tion and system unavailability. Unlike a transactional
system, where similar problems are addressed, the se-
mantics of the state and failure may render certain
types of conflicts irrelevant from the perspective of
system availability and fault tolerance. This empha-
sizes the need for a flexible state restoration architec-
ture which is also lightweight and efficient, there by
allowing the system to sustain high performance.

2.4 System Architecture

The Log(Lock) architecture design aims at providing
support for state restoration during micro-recovery.
To achieve this goal, Log(Lock) tracks resources and
state dependencies relevant to a thread that has in-
corporated recovery handlers for micro-recovery.

Figure 4 presents an overview of our system ar-
chitecture and describes the roles played by the
Log(Lock) execution model and restoration protocols.
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Figure 4: Log(Lock) Architecture Overview

The figure shows a system with concurrently executing
threads where the thread depicted by a solid line in-
corporates micro-recovery mechanisms. In order to fa-
cilitate micro-recovery, the thread sets recovery points
during execution, where each recovery point is associ-
ated with a recovery criterion. The recovery criterion
specifies the conditions that must be satisfied by the
failure context in order to use the recovery point as
a starting point for recovery. Using the Log(Lock)
architecture, the thread (depicted by a solid line) en-
abled with micro-recovery mechanisms indicates state
and resources that are relevant to recovery. Log(Lock)
then begins logging all relevant changes and depen-
dencies, based on the actions of both this thread and
other concurrent threads (depicted by dotted lines).

In the event of a failure, control transfers to a
developer specified recovery handler. The handler
performs state restoration actions by utilizing the
resource tracking and state dependency information
provided by the Log(Lock) execution model, in consul-
tation with the restoration protocols. It also decides
on an appropriate recovery strategy such as rollback,
error compensation or system-level recovery. The im-
plementation of the Log(Lock) dependency tracking
component must ensure efficiency during normal oper-
ation while the recovery protocols ensure consistency
of state restoration during failure recovery. Below, we
summarize the four primary design objectives of the
Log(Lock) architecture:
• Incremental: Allow micro-recovery to be applied

incrementally to handle failures depending upon
effectiveness of a fine-grained approach.
• Lightweight and Non-intrusive: Minimize im-

pact on system performance and modifications to
legacy software functional architecture.
• Dynamic: Handle dynamic dependencies.
• Flexible: Allow application developers the flexi-

bility to treat different failures differently without
enforcing a “one size fits all” consistency require-
ment, allowing a larger number of failures to be
handled correctly at a fine-granularity.



Table 1: Valid States for Thread Ti

Notation Description
TiS Ti initial state
TiR Ti holds a read lock
TiW Ti holds an exclusive write lock
TiU Ti has released the lock
TiF Ti is in failed state
TiA Ti acquired a resource
TiRe Ti released a resource
TiE Ti completed execution

In the next two sections, we first describe the con-
cepts of ‘restoration levels’ and ‘recovery points’ and
present the restoration protocols. Then, we present
the Log(Lock) execution model and illustrate applica-
tion of the protocols through example scenarios.

3 State Space Exploration

In this section, we model failure scenarios and recovery
contexts using a state space analysis approach. Our
approach is based on the intuition that in a concurrent
system, global state and shared system resources are
often protected by locks or similar primitives.

This section is divided into two parts. In the first
part, we model system events, state transitions and
interleaving of concurrent threads and demonstrate
the discrete state space and recovery scenarios. We
introduce the concepts of Restoration Level and Re-
covery Criterion, that help match a failure context to
a recovery strategy. In the second part, we systemat-
ically identify the set of recovery strategies that can
be applied to each failure scenario and present two
protocols for state restoration. The Resource Re-
covery Protocol (RRP) defines the steps to handle
resource ownership conditions and the State Recov-
ery Protocol (SRP) sets forth the rules to perform
state restoration.

3.1 Modeling Thread Dependencies

Let T = {Ti|1 ≤ i ≤ n} define a system with n concur-
rent threads. Let Xi(t) denote the sequence of states
of thread Ti up to time t. The schedule S(t) for the
system T at time t is the interleaving of the sequence
of actions in Xi(t) for each thread Ti. Let v denote a
globally shared structure protected by a lock. Table 1
shows the list of valid states for a thread. The system
implements micro-recovery at a thread granularity.
Any failure that cannot be handled by micro-recovery
is resolved using a system-level recovery mechanism
(e.g. software reboots).

The state space for system execution consists of all
legitimate schedules S(t). System states that repre-
sent the failed state of one of the executing threads
is relevant from the perspective of micro-recovery. To

simplify the subsequent discussion, we apply the fol-
lowing rules to reduce the state space:
• We consider the interactions between only two

threads T1 and T2.
• We only consider system states where the last state

of thread T1 is T1F .
• Only T1 encounters a failure. Failures of thread T2

are symmetric and can be treated similarly.
• Read or write actions performed by T2 before any

such actions by T1 are ignored.
• We assume that the system can recover from only

a single failure. Failure during recovery results in
system-level failure recovery.

• The “end” event is equivalent to a commit or ex-
ternally visible action that cannot be rolled back.

From the perspective of state restoration for micro-
recovery, the occurrences of the following patterns in
the schedule S(t) are of interest and relevant to the
selection of a recovery strategy by thread T1. Let →
denote the “happened before” relation [10].
• Dirty Read (DR): T1W→T2R→T1F .
• Lost Update (LU): T1W→T2W→T1F .
• Unrepeatable Read (UR): T1R→T2W→T1F .
• Residual Resources (RR): T1R→T1F∧T1U9T1F

or T1W→T1F∧T1U9T1F or T1A→T1F∧T1Re9T1F .
• Committed Dependency (CD):

T1W→T2R→T2E→T1F or T1W→T2W→T2E→T1F

or T1R→T2W→T2E→T1F .
To determine the right strategy for recovery, it is

important to determine which of the above conflicts
have occurred and are relevant to recovery.

Restoration Level: The restoration level Ri(t)
of a thread Ti at instant t, is a 5-tuple
〈DR,LU,UR,RR,CD〉 indicating the occurrence of
dirty reads, lost updates, unrepeatable reads, residual
resources and committed dependencies in S(t).

Recovery Point: A recovery point pi in thread Ti

represents a target starting point for recovery, in the
event of a failure. A default recovery point defined for
all threads is the initial system state.

Recovery Criterion: Each recovery point pi is asso-
ciated with a recovery criterion Ci which is a 4-tuple
〈DR,LU,UR,RR〉 that represents the set of criteria
for dirty reads, lost updates, unrepeatable reads and
residual resources, that the system state should sat-
isfy before recovery can be attempted from point pi.
For the default recovery point, all the elements of the
recovery criterion are defined as “don’t care”.

At the time of failure, multiple recovery points may
be defined for a thread. However, the feasibility and



correctness of restoring the failed system state using a
recovery point, is determined by the resource and state
recovery protocols described next. Once the valid re-
covery points have been identified from the available
choices, the selection of an appropriate recovery point
and recovery strategy may be a decision depending
upon factors such as the amount of resources avail-
able for recovery and the time required to complete
recovery.

3.2 Restoration Protocols

In this discussion, we consider the following possi-
ble recovery strategies: (1) Rollback; (2) Roll-forward
style recovery or error compensation; (3) System-level
recovery [15]. Of these the rollback and error compen-
sation strategies may be applied to the failed thread
only (single-thread recovery) or to multiple threads in-
cluding the failed thread (multi-thread recovery). The
following protocols are based on the assumption that
committed dependencies cannot be rolled-back.
Resource Recovery Protocol (RRP): System
state can be restored to recovery point pi only if Ri(t)
meets Ci on the RR criterion. Otherwise, the thread
must first attempt to release or acquire resources to
meet the criterion.

State Recovery Protocol (SRP): 1. To perform
single-thread recovery and restore state to recovery
point pi, Ri(t) should meet Ci on every element of Ci.
2. IfRi(t) does not meet Ci on DR, LU, UR conditions
and CD occurs in S(t), then only error compensation
or system-level recovery can be attempted.
3. If Ri(t) does not meet Ci on DR, LU, UR condi-
tions and CD has not been observed in S(t), then only
multi-thread rollback, error compensation or system-
level recovery is possible.

4 Log(Lock) Execution Model

In this section, we present a concrete execution model
of Log(Lock), that utilizes the state space analysis pre-
sented in the previous section. We show how to decide
recovery strategies and how restoration levels can be
tracked practically. Although the discussion in this
paper focuses on a thread-level recovery granularity,
the Log(Lock) architecture can easily be extended to
a more coarse granularity of micro-recovery such as at
a task or component level.

In a complex legacy system such as a storage
controller, not all failures can be handled efficiently
through fine-grained recovery - either because the fail-
ure and recovery code may be too complex, or system-
level recovery may be a more effective recovery tech-
nique, or simply because there may be insufficient de-
velopment and testing resources. Therefore, our ap-
proach first involves identifying candidates for fine-
grained recovery based on the analysis of failure logs

and the software itself. The executing instance of each
candidate is known as a recoverable thread. Recall
that, for each recoverable thread multiple recovery
points and associated recovery criterion may be de-
fined. In the event of a failure, control is transferred
to the recovery handler (Section 2.4).

4.1 Tracking State Changes

Log(Lock) is based on the intuition that all shared
state and resources are protected by locks or simi-
lar synchronization primitives. Tracking lock/unlock
calls can therefore guide the understanding of system
state changes and provide the information required to
identify the restoration level at the instant of failure.
At the same time, by tracking these calls on resources
and applying the resource recovery protocol, we can
prevent deadlocks or resource starvation issues. In or-
der to compute restoration levels and perform system
state restoration, Log(Lock) maintains the following:

Undo Logs: Undo logs are local logs maintained
by each recoverable thread primarily for the follow-
ing purposes: (1) Track the sequence of state changes
within a single thread; (2) Track the creation of re-
covery points and (3)Track resource ownership. In
general, the Undo logs can be used to encode any in-
formation required by a thread’s recovery handler.

Change Track Logs: In order to track conflicts
between concurrent threads, Log(Lock) maintains
Change Track Logs for each lock. The Change Track
Log is used to: (1) Track concurrent changes to shared
structures and (2) Track commit actions.

Both the Undo Log and Change Track Logs are
maintained only in main memory and are verified for
integrity using checksums. Unlike database logs or
checkpoints for state restoration, these logs do not
need to be flushed to stable storage. If a failure crashes
the system causing it to lose or corrupt the logs, then
we must perform a system-level restart to restore the
system to a consistent, functional state and no longer
require the software’s state restoration logs from be-
fore the failure.

Log(Lock) provides four basic primitives to a re-
coverable thread:

• startTracking(lock): Start tracking changes to the
structure protected by lock.

• stopTracking(lock): Stop tracking changes to the
structure protected by lock.

• getRestorationLevel(lock): Compute the restora-
tion level for the structure protected by lock.

• getResourceOwnership(lock): Get ownership infor-
mation (including lock ownership) for the struc-
ture protected by lock.

In the event of a failure, the system transfers con-



 
/* Recovery Criterion for R1: No residual resources */ 

            Owner = getResourceOwnership(&numActiveUsersLock); 

/* Acquire ownership in write mode for consistent recovery*/ 

            if( Owner == ReadMode) { 

                        unlockRead(&numActiveUsersLock); 

      lockWrite(&numActiveUsersLock);  

            } else if(!Owner) 

      lockWrite(&numActiveUsersLock); 

            level = getRestorationLevel(&numActiveUsersLock);          

                                  

            if ( level indicates dirty reads or lost updates ) { 

                        /* Indicates write completed */  

      numActiveUsers -- ; 

            } else { 

      /* No other operations or write may not have completed */ 

                        Replace old value using the Undo log;  

            } 

            unlockWrite( &numActiveUsersLock); 

/* State restore complete. Jump to new execution point */ 

Jump to R1;  
 

Figure 5: State Restoration Using Log(Lock)

trol to the designated recovery handler. The recovery
handler can utilize the getRestorationLevel and getRe-
sourceOwnership primitives to determine the current
restoration level and resource ownership and then in-
voke recovery procedures appropriately. The restora-
tion level is determined by examining the undo and
change track logs.

4.2 Recovery Using Restoration Protocols

Figure 5 shows pseudo code for state restoration using
the restoration protocols and the Log(Lock) architec-
ture for the scenario shown in Figure 1. The recovery
criterion associated with recovery point R1 specifies
that resources (numActiveUsersLock) acquired after
the recovery point should be released and does not
care about occurrences of DR, LU or UR events. As
shown in the figure 5, the getResourceOwnership prim-
itive is used to determine ownership of the numAc-
tiveUsersLock resource. Then, depending upon the
occurrence of events such as dirty reads and lost up-
dates that indicate whether the write had completed
successfully, appropriate recovery actions are chosen.
Once state restoration is complete, execution is trans-
ferred to recovery point R1.

Similarly, in the case of the example in Figure 2, as-
sume that the recovery criterion only specifies the con-
straint on releasing the temporary resource acquired
after the recovery point. Therefore, the getResource-
Ownership primitive is used to obtain the current own-
ership status of the temporary resource. If the re-
source is held by the thread, in order to rollback to
recovery point R3, the resource must be cleanly relin-
quished. The pseudo code for this example and the
next is not shown due to lack of space.

In the case of the failure scenario shown in Figure 3,

the recovery criterion for recovery point R4 would be
that no resources acquired after the recovery point
(such as lock MetadataLocationLock) should be held
by the thread and that no DR or LU events should
have occurred. Like the previous example, the ge-
tResourceOwnership primitive is used to obtain the
current status of the lock protecting the MetadataLo-
cation structure, and if not held in the write mode,
a lockWrite call is issued to obtain exclusive access.
Once secured against further modifications, the recov-
ery actions are determined by the current restoration
level. If no other thread has already consumed this
value (i.e., no DR or LU events have occurred), then
the changes of the failed thread can be undone safely
by replacing with the values in the Undo log. How-
ever, if the value is likely to have been consumed by
another thread (i.e. DR or LU occurred), then the
restoration level does not meet the recovery criterion
for R4. So, in accordance with SRP, the error cannot
be handled using single-thread recovery. Depending
upon the support for multi-thread recovery (provided
the CD event has not occurred) recovery may require
rollbacks of multiple threads. If however, the restora-
tion level indicates a CD event, then system-level re-
covery or error-compensation is performed.

4.3 Implementation Details

We now discuss some implementation issues involved
in the purging algorithm, the decision on recovery suc-
cess, and the lock granularity, which are critical com-
ponents in the Log(Lock) execution model.

Purging Algorithm : Undo logs go out of scope
i.e., can be purged when a recoverable thread com-
pletes execution. Similarly, change track logs for a
lock are purged when the recoverable thread issues a
stopTracking call. However, unlike undo logs, change
track logs cannot be purged immediately since these
centralized logs may be shared by multiple recoverable
threads. In that case, the log entries corresponding to
the purging thread are only marked for purging and
are actually purged when the last recoverable thread
using the log issues a stopTracking call on that lock.

Ensuring Recovery Success: Multi-thread re-
covery i.e., applying state restoration and recovery
to more than one thread, can typically handle more
failure scenarios compared to single-thread recovery.
However, multi-thread recovery is complex to imple-
ment. Moreover, multi-thread recovery may result in
a domino effect [18] potentially resulting in unavail-
ability of resources and unbounded recovery time[25].

A simpler and more effective technique would be
to limit recovery to a single thread and ensure recov-
ery success through other mechanisms such as depen-
dency tracking and scheduling. Recovery conscious
scheduling [25] describes an approach where depen-
dencies between concurrent threads are identified and



dependent threads serialized. This approach can help
limit the number of concurrent dependent threads and
increase single-thread recovery success.

Lock Granularity: Another aspect of the sys-
tem that affects recovery success is the granularity of
locks - i.e., the coupling between a synchronization
primitive such as a lock or mutex and the structure it
protects. For example, consider a large shared state
protected by a single lock that synchronizes access to
disjoint portions of the structure. Such a design could
adversely affect both the performance and recovery
success of the system since it could artificially increase
the number of dependencies between threads. Besides
rewriting code, another possible workaround would be
to explicitly specify the sub-structure protected by the
lock in the startTracking call and log both value and
access in the change track logs. Shared resource pools
are often protected by such coarse-grained locks. How-
ever, the lock granularity may not be a problem in the
case of resources since recovery handlers are mostly
concerned only about ownership of resources.

5 Experiments

We have implemented the Log(Lock) architecture for
system state restoration and micro-recovery on an in-
dustry standard, high-performance storage controller,
and applied Log(Lock) to a variety of state and re-
source locks. In this section, we present our evalua-
tion of Log(Lock) with respect to performance, failure
recovery and scalability. We first describe our experi-
mental setup and evaluation metrics. Then we present
our experimentation methodology and results.

Concretely, we identified state and resource in-
stances that are changed or accessed rapidly through
the observation periods, based on instrumenting the
system (Table 2). We also identified representative
failure scenarios based on the study of bug reports,
failure logs and code. Using these scenarios as can-
didates for micro-recovery and state restoration, we
evaluate the Log(Lock) efficiency and effectiveness. In
summary, our results show that:
• The Log(Lock) architecture imposes negligible

overhead and sustains high performance (< 10%
impact) under a variety of workloads, even
while tracking rapidly changing state (nearly 15K
times/second) for significant durations.

• We observe an extremely high rate of recovery
success (>99%), i.e., percentage of time restora-
tion levels meet recovery criterion. This high rate
of recovery success makes it evident that micro-
recovery with Log(Lock) can be a promising ap-
proach to system recovery from transient failures.

• The Log(Lock) approach exhibits significant im-
provement in recovery time, with throughput
dropping only 35% below average with micro-

recovery, compared to more than 4 seconds of un-
availability without micro-recovery.

5.1 Experimental Setup

We implemented the Log(Lock) based state restora-
tion architecture in an enterprise-class high perfor-
mance, highly concurrent embedded storage con-
troller. The system consists of a 4-way processor
complex (4 3.00 GHz Xeon 5160 processors with 12
GB memory running IBM MCP Linux) running the
controller software over a simulated backend. The
controller implements persistent memory (non-volatile
storage) for write caching. Simulating the backend
allows flexibility in terms of experimenting with dif-
ferent configurations such as read/write latencies and
error injection. The back end configuration varied be-
tween 50-250 LUNS of 100GB each with read and
write latencies of the disk set to 20 ms. The host
functionality was performed from a different system (2
1.133 GHz Pentium III processor with 1 GB memory,
RHLinux 9) connected to the storage complex through
a high-bandwidth (2 GB) fiber channel interconnect.

Our workload was generated using a randomized
synthetic workload generator which took as inputs the
following parameters: read/write ratio, block size and
queue depth (i.e. maximum number of outstanding re-
quests from host). The experiments presented in this
paper utilized three distinct read/write ratios: 100%
writes, 50%-50% mix of reads and writes and 100%
reads. Block size was set to 4 KB and queue depth
varied between 16 and 256.

5.2 Metrics

Our experiments aim at evaluating efficiency and ef-
fectiveness of the Log(Lock) architecture. Efficiency
and effectiveness depend on the following parameters:
(1) rate of access to shared state or resources and (2)
duration of a recoverable thread. Increase in each of
these parameters results in an increase in the log size
and logging overhead. Likewise, increase in each of
these parameters increases the probability of conflicts.

Efficiency refers to the impact of Log(Lock) on
system performance. To measure performance, we uti-
lize two metrics: throughput (IOs per second or IOps)
and latency (seconds/IO).

Effectiveness refers to the ability of the state
restoration architecture to reduce the recovery time
and positively impact the availability of the system.
Concretely, it refers to the probability of recovery suc-
cess with the Log(Lock) architecture and the impact
on system recovery time.

Effectiveness is measured using the following met-
rics: (1) recovery success, i.e. the percentage of time
the restoration level meets the recovery criterion for
single thread recovery, and (2) recovery time, i.e. the



time required to restore the system to a consistent
state after encountering a failure. Note that in the
experiments reported in this paper we focus on sin-
gle thread recovery while evaluating recovery success.
While our Log(Lock) approach can also be applied
to multi-thread recovery, as described in Section 4.3,
multi-thread recovery can be costly in terms of cod-
ing effort, resource consumption and recovery time.
Instead, we assume that a technique such as recov-
ery conscious scheduling [25] can help reduce the need
for multi-thread recovery and improve the success of
single thread recovery.

5.3 Methodology

In order to study the efficiency and effectiveness of
Log(Lock), we first identify state and resource in-
stances in the software for tracking. We instrumented
the system to identify top locks in terms of access
and contention. Table 2 shows the top five locks in
the system in terms of number of accesses and con-
tention. The table shows the semantics of the lock
(i.e. the state or resource protected), the number
of CPU cycles lost to contention, number of occur-
rences of contention (> 2000 CPU cycles), number of
accesses to the lock and the average number of lock
acquisitions per IO. Frequently acquired locks are in-
dicative of state that is accessed or modified often.
For example, Table 2 shows that the fiber channel
lock is accessed nearly 10 times per IO, indicating
that this is a good candidate for evaluating the ef-
ficiency Log(Lock). Contention, while indicative of
longer durations of holding locks, also shows a higher
probability of accesses by concurrent threads.

To evaluate effectiveness, we first measure the re-
covery success for the candidates identified from Ta-
ble 2. We measure recovery success across locks with
different rates of access and varying duration of track-
ing. To evaluate the impact on recovery time, we iden-
tify candidates for state restoration based on analysis
of failure logs, defects and the software itself.

We present evaluation of the efficiency of our
Log(Lock) architecture as compared to the original
system, henceforth referred to as baseline. The base-
line implementation does not perform state restora-
tion or fine-grained recovery. Instead, it uses a highly
efficient system level recovery mechanism (SLR) that
checks all persistent system structures such as non-
volatile data in the write cache for consistency, reini-
tializes software state and redrives lost tasks. Note
that no hardware reboot is involved.

An alternative approach to Log(Lock) is to imple-
ment schemes such as strict 2-phase locking (2PL),
commonly used in transactional systems. Essentially,
these protocols require locks to be held for the en-
tire duration of a recoverable thread. However, due
to the high degree of concurrency in the system and

Table 2: Lock Access over 75 minutes
Lock Contention Number of Locks/IO

Cycles (Count) accesses

Fiber channel 2654991 (578) 137196747 10.34
IO state 219969 (76) 90122610 6.79
Resource 608103 (100) 63482290 4.78
Resource state 124965 (52) 30040757 2.26
Throttle timer 79848 (11) 113316 0.0085
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the implementation of lock timeouts, such a scheme
when implemented in our storage controller software
caused lock timeouts and failed to bring up the sys-
tem. Therefore, throughout this evaluation section,
we primarily use the baseline system for comparison.

5.4 Efficiency of Log(Lock)

In order to measure efficiency, we compare the perfor-
mance of the Log(Lock) architecture with the baseline
system during failure-free operation.

5.4.1 Effect of Frequency of State Change

As described in Section 5.2, as the rate of accesses to
a state variable or resource being tracked increases,
the logging overhead increases. The workloads used
for this experiment consisted of 100% write IOs and
the data is averaged over a 10 minute run. The queue
depth is represented on the x-axis. For this exper-
iment, we chose four locks from Table 2 representa-
tive of a range of access rates, which range from 12.5
times/second to 15244 times/second. The duration of
tracking was 2600 CPU cycles on average (and stan-
dard deviation 265 CPU cycles).

Figure 6 shows the throughput with varying access
rates under different queue depths. The numbers show
that even for very high access rates, the Log(Lock)
approach has negligible impact on performance. The
lock with access rate 14107 times/sec (the resource
pool lock) was tracked for 2429 CPU cycles and results
in a 4.5% drop in throughput. We attribute this to the
possibility of nested lock conditions in that particular
code path, causing the system to be sensitive to even
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the small delay introduced by Log(Lock).
Figure 7 shows the variation of latency with queue

depth for different access rates. The curves for the var-
ious access rates almost completely overlap showing
that across configurations, the impact of Log(Lock)
on latency, even for high access rates, is negligible.
The observation that the latency increases with queue
depth is a trend commonly observed in systems and
is independent of Log(Lock). Figure 8 zooms into the
points for queue depth 16 to give the reader a closer
look at the data. As in the case of throughput, latency
increases by 4% for the resource pool lock and is at-
tributed to the occurrence of nested lock situations
in the code path. The important message from Fig-
ures 6 and 7 is that Log(Lock) tracking can sustain
high performance even while tracking rapidly modi-
fied/accessed state or resources.

5.4.2 Effect of Duration of Tracking

Figures 9 and 10 show the variation of system perfor-
mance with different durations of tracking. The dura-
tions were measured in terms of number of CPU cy-
cles between the startTracking and stopTracking calls,
averaged over a 10 minute run. The independent pa-
rameter queue depth is shown on the x-axis. The fig-
ures represents the performance for candidate locks
from Table 2 that were tracked for different durations
ranging from 2894 CPU cycles to 69830 CPU cycles
(IO state for 2894 and 69830 CPU cycles, timer, fiber
channel and resource pool for 7258, 20228 and 34642
CPU cycles respectively). The numbers were chosen
to be representative of a range of tracking durations.
Since no functional code was modified, rather than
varying the duration of a single lock, different locks
were instrumented to obtain this range. The rate of
access of each lock varied as shown in Table 3.

From Figures 9 and 10 we observe that, the per-
formance of the system with Log(Lock) is comparable
to the baseline system across various queue depths.
For the IO state lock (a lock in the IO path), when
the duration of tracking was increased from 2894 CPU

cycles to 69830 CPU cycles, the throughput dropped
by 8.85% and response time increased by 9.75%. This
drop in performance can be attributed to two factors:
(1) occurrence of more conflicts with increase in du-
ration of tracking and (2) increased possibility of en-
countering nested lock conditions which are sensitive
to the delay introduced by tracking. In the case of
the resource lock, a tracking duration to 34642 CPU
cycles resulted in a drop of only 4%, which is nearly
identical to the performance with a tracking duration
of only 2429 CPU cycles, as shown in the experiment
in Section 5.4.1. We conclude that, though the over-
head of tracking is a function of both the frequency
and duration of tracking, it is more significantly im-
pacted by the semantics of the lock being tracked and
the efficiency of the code path involving the lock.

5.4.3 Performance with Other Workloads

Figure 11 and 12 show the throughput and latency
with four other workloads. The figures compare the
performance of a system powered by Log(Lock) and
the baseline system under varying queue depths for
the following workloads: Workload-1 (100% read, disk
latency 20ms), Workload-2 (100% read, disk latency
1ms), Workload-3 (50%Read, disk latency 20ms) and
Workload-4 (50% read, disk latency 1ms). Data from
tracking the fiber channel lock (15244 times/sec for
20228 CPU cycles each) is shown. Overall, the impact
on performance was < 0.5% in all cases. Figures 11
and 12 reiterate the observation that the Log(Lock)
architecture is lightweight and sustains high perfor-
mance for a range of workloads.

Examining the object code for our implementation
showed that in the event of a lock being tracked, fewer
than 200 assembly instructions were added to the
code path. Assuming one instruction executes per
CPU cycle, even at a frequency of 15244 times/second,
on a 3.00 GHz processor, this amounts to a time over-
head of less than 1% (assuming that the size of the
state being saved to undo logs is small). Also, note
that the code for a storage controller by itself is aggres-
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Table 3: Recovery Success with the 100% Write Workload
Lock Recovery Tracking Calls #Access Duration Recovery

Criterion (times/sec) (times/sec) CPU cycles Success

Fiber channel No Residual Resources 3666 15244 20228 100%
IO state No DR, LU or UR 2500 10266 2894 99.88%
Resource pool No Residual Resources 10 14107 34642 100%
Resource state No Residual Resources 5 6675 4806 100%
Throttle timer No Residual Resources 10 12.59 7258 100%
IO state No DR, LU or UR 2444 10045 69830 99.38%

sively optimized to sustain high throughput, minimize
the duration of locks in the I/O path and avoid nesting
of locks to a large extent. Unlike checkpoints, which
require large amount of state to be copied to sta-
ble storage, our techniques copy very small amounts
of relevant state and information in memory only.
The combination of all these factors results in the
Log(Lock) system being able to sustain high perfor-
mance despite an extremely high frequency of access
to shared state and resources. In conclusion, we be-
lieve that the scenarios where performance will be im-
pacted by tracking are when there are multiple levels
of nesting with very frequently accessed locks, increas-
ing sensitivity to delay introduced by tracking. How-
ever, we expect that these situations are uncommon
in well designed concurrent systems.

5.5 Effectiveness of Log(Lock)

The next set of experiments are focused on evaluating
the effectiveness of a micro-recovery framework with
Log(Lock), in improving system recovery.

5.5.1 Recovery Success

The first metric of effectiveness is recovery success i.e.,
the percentage of time the restoration level meets the
recovery criterion at the end of execution of a recov-
erable thread. This metric demonstrates the oppor-
tunity for micro-recovery in the system and evaluates
if the system can effectively utilize Log(Lock) based
state restoration. Table 3 shows the recovery success

for locks of varying semantics, rates of access and du-
ration of tracking. For each lock, the recovery crite-
rion, the number of tracking threads per second, the
rate of access, duration of tracking and recovery suc-
cess are shown. The restoration level in each case was
obtained by calling the getRestorationLevel method
before stopTracking, and recovery success was com-
puted as the percentage of time the restoration level
met the recovery criterion. As Table 3 shows, our stor-
age controller exhibits a high rate of recovery success
for a range of locks, even with high rates of access. We
conclude that, for failures involving the restoration of
these instances of state and resources, fine-grained re-
covery presents an effective recovery strategy.

5.5.2 Recovery Time

To illustrate the impact of Log(Lock) based micro-
recovery on the overall recovery time and availability
of the controller software, we injected transient fail-
ures that disappeared on retry. The failures required
restoration of the IO state to its previous value and
a retry of the function. For the Log(Lock) system,
the recovery criterion for IO state was set as shown in
Table 3. Once the failure was injected, the thread ver-
ified if the restoration level at the time of recovery met
the recovery criterion, before attempting state restora-
tion and retry. The tracking duration was equivalent
to the set up with 69830 CPU cycles.

Figures 13 and 14 show the variation of throughput
and latency respectively over time. The points of fail-
ure injection are marked in the figures. The through-
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put and latency shown are for a workload with 100%
write IOs, queue depth 64 and disk latency 20 ms. The
Log(Lock) architecture is compared to system-level re-
covery (SLR) in the case of the baseline system. Recall
that SLR is implemented entirely in software and in-
volves restarting the controller process and verifying
data structures and cache data for consistency before
redriving IO transactions. Overall, during failure-free
operation, the average throughput and latency respec-
tively with Log(Lock) is 708IOps, 0.0946 sec/IO and
710IOps, 0.0912 sec/IO for the baseline system.

With the Log(Lock) system, failure recovery is ef-
ficient enough to continue to deliver good throughput
even during recovery, with throughput dropping only
by ∼35%. However, the recovery time for the base-
line system is as high as 4 seconds and it takes an
additional 2 seconds to begin sustaining high perfor-
mance. It is important to remember that as the size
of the system and in-memory data structures increase,
the recovery time for system level recovery (SLR) is
bound to increase. This, along with the opportunity
for micro-recovery illustrated by the high recovery suc-
cess shown in the previous experiment, further pro-
mote the case for micro-recovery in high performance
systems like the storage controller.

6 Related Work

Due to lack of space, in this section we only briefly dis-
cuss related work that has not been discussed in previ-
ous sections. Our work is largely inspired by previous
work in the area of transactional systems, software
fault tolerance and storage system availability.

Hardware redundancy and software redundancy [7],
rejuvenation [8] or fault isolation approaches such as
isolating VMs from the failure of other VMs [17, 9]
are complementary to our techniques and are already
deployed in our setups. Since these approaches are
targeted at handling failures at a different level they
focus on a coarser granularity of recovery compared to
our techniques. Failure-oblivious computing [20] in-
troduces a novel method to handle failures - by ignor-
ing them and returning possibly arbitrary values. This
technique may be applicable to systems like search en-
gines where a few missing results may go unnoticed,
but is not an option in storage controllers.

Application-specific recovery mechanisms such as
recovery blocks [18], and exception handling [26] are
used in many software systems. However, to the best
of our knowledge, fine-grained, localized recovery, in
the presence of multiple interacting tasks executing
concurrently, has not been well studied in the past
both in terms of identifying dynamic dependencies
and its impact on performance and availability.

Logging of access patterns has been used for de-
terministic replay [21, 22, 27] and bug detection [11].
However, in micro-recovery, there is no requirement
to perform deterministic replay. Also, the purpose of
logging access patterns in Log(Lock) is to identify re-
covery dependencies between concurrent threads.

7 Conclusion

We have presented Log(Lock), a practical and flex-
ible architecture for tracking dynamic dependencies
and performing state restoration without rearchitect-
ing legacy code. By exploring system state space, we
formally model thread dependencies based on both
state and shared resources, capturing failure contexts
through different ‘restoration levels’. We develop re-
covery strategies in the form of restoration proto-
cols based on recovery points and restoration levels.
A comprehensive experimental evaluation shows that
Log(Lock) enabled micro-recovery is both efficient and
effective in reducing system recovery time.

The Log(Lock) architecture can easily be extended
to a more coarse granularity of micro-recovery such
as at a task or component level. However, a limi-
tation of our approach is that although the protocols
and the Log(Lock) architecture provide guidelines and
information required for micro-recovery, programmer
intervention is still required to define the recovery ac-
tions. One of our ongoing efforts is to improve on this
aspect by incorporating micro-feedback based learn-
ing methods. We are also interested in deploying and
evaluating the Log(Lock) approach in other high per-
formance systems both to observe performance and
also to get more insights in term of effectiveness of
state restoration. Another line of effort is to extend
the Log(Lock) capability to support longer durations
of tracking, for example, across multiple threads.
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