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Abstract

Current file systems are not adequate to handle efficiently
all kinds of loads: a parallel file system like GPFS can
span across a high number of nodes providing a POSIX
interface, but may behave poorly with small files or big
directories with high inter-node sharing ratios; PVFS2
offers good performance for shared access, but only
for MPI-IO applications; Hadoop DFS offers efficient
streaming access to large files, but has a relaxed seman-
tics and offers almost no support for shared updates. . . As
no single file system fits all needs, data centers usually
end up with more than one file system type, or at least
with more than one file system configuration (with dif-
ferent number of servers, block and cache sizes, redun-
dancy policies, etc.)

The multiplicity of file systems and the exposure of
their internal structure and layout pushes the responsibil-
ity of placing the files in the right place onto the users
who, instead, should be able to organize data in a sensi-
ble way, regardless of low level features or resources. To
solve this situation, this paper proposes using a virtual-
ization layer between the user and the raw file system(s)
that is able to take sensible decisions on where and how
files should be placed to take advantage of underlying
file system(s) features. We present COFS (COmposite
File System) as a framework providing this virtualiza-
tion. Finally, we also present and evaluate an example
of use that boosts the performance of an existing parallel
file system through the virtualization of its name space.

1 Introduction

High-performance computing is rapidly developing into
large aggregations of computing elements in the form of
clusters or grids. In the last few years, the size of such
distributed systems has increased from tens of nodes to
thousands of nodes, and the number is still raising; con-
sequently, there is also a need for parallel file systems

able to provide a sustained flux of data to the distributed
computing elements.

At the same time, there is a widening range of sci-
entific and commercial applications seeking to exploit
these new computing facilities. The requirements of
such applications are also heterogeneous, usually lead-
ing to dissimilar patterns of use of the underlying file
systems. This trend is favored by the increasing number
of high-end computing facilities that aim to be “general
purpose”, in contrast with the more focused systems de-
signed to solve specific problems or run homogeneous
workloads that, for example, populated the high ranks of
the Top500 [3] list just a few years ago.

Nevertheless, typical distributed and parallel file
systems are heavily oriented to provide performance
for workloads with specific characteristics (reduced or
low scale write shares, supporting mpi-io applications,
streaming data, etc.), jeopardizing the ability to adapt to
varying use patterns from different applications. They
may also introduce additional restrictions which depend
on the characteristics of the supporting platform (cluster
size, interconnection network, number of servers, num-
ber of clients, etc.); the file system has then to be finely
tuned (by means of cache sizes, timeouts, etc.) and deci-
sions taken through these settings may alter factors such
as the optimum number of entries in a directory, the max-
imum concurrency level when accessing the name space
hierarchy or the most adequate pattern to access files.

Computation centers try to support the distinct re-
quirements by providing several file systems (or at least
different file system configurations), which are tradition-
ally mounted on separate branches of a directory tree.
The burden of file system complexities and restrictions
is then explicitly passed to the user, who must keep in
mind the nuts and bolts of each specific file system and
its configuration in order to achieve good results. In par-
ticular, a user must:

• Know how the available file systems are organized,



which services/features are available in each of
them (block sizes, automatic backup services, high
availability, etc.) and to which branch of the direc-
tory hierarchy each file system is attached.

• Explicitly choose which file system to use by plac-
ing the files in the corresponding branch of the
directory tree (which may not correspond with a
logical/functional/sensible organization of the files
from a user’s perspective.)

• Make sure that each file system instance is used ac-
cording to specific rules (e.g. 100,000 files in one
directory may be fine on a certain file system, but it
may crash the whole system on a different one.)

Our proposal consists of using virtual layers to prevent
the exposition of the file system internal structure, free-
ing the final user from the burden of handling it by inter-
posing intelligent modules capable to take advantage of
the underlying file system features. Our goal is to break
the ties between the user-visible hierarchical organiza-
tion and the underlying file system structure, not only by
providing independence from the storage location of data
blocks, but also by transparently re-structuring the actual
directory and i-node information.

In order to demonstrate the feasibility of adding a new
layer above raw file systems without harming the perfor-
mance, as well as having a testbed for testing placement
policies, we have developed the COmposite File System
(COFS): a proof-of-concept framework based on decou-
pling the file system metadata and the name space hier-
archy from the data handling, and making a heavy use
of union file system concepts. As an application exam-
ple, we have deployed the COFS framework on our test
cluster, and have used it to boost the performance of its
native parallel file system by transparently re-arranging
the user file hierarchy without altering the user view.

The main contributions of this paper can be summa-
rized as:

1. Proposing the use of virtualization techniques to ad-
dress different file system issues and limitations,
based on fully decoupling the metadata and name
space from the actual file system structure.

2. Implementing a proof-of-concept framework and
evaluating its ability to boost the performance of a
parallel file system as a case study.

The rest of this paper is organized as follows: next sec-
tion summarizes related work; in section 3 we discuss
our working hypothesis and the potential applications
of our virtual file system model; section 4 describe the
implementation details of the COFS framework; a case
study and performance results are shown in sections 5
and 6; finally, we outline our plans for future work.

2 Related work

It is widely known that current parallel and distributed
file systems constitute a potential bottleneck for the high
I/O demands of the applications running on large-scale
computing clusters. Given the complexity of file sys-
tems, a lot of work has been done to address different
issues from different perspectives. In this section we try
to summarize some of the developments that constitute
the foundation of our present work.

2.1 File system specialization

Modern file systems try to adapt to the new demands
by means of specialization. These optimizations allow
to achieve efficiency for a given set of workloads, but
there is a cost in terms of lack of performance for non-
optimized cases, or changes in semantics that make the
system inadequate for non-targetted environments. In
the following paragraphs we mention a few examples of
these specializations and the corresponding trade-offs.

The Hadoop Distributed File System [6] is designed
for streaming access to large data sets and fault toler-
ance; to this end, they use a very relaxed consistency
model, assuming that files are rarely changed once writ-
ten, which makes it inadequate for simultaneous paral-
lel write accesses. The closely related Google File Sys-
tem [13] is also highly specialized on sequential accesses
and “append-only” modifications.

On the other hand, “parallel” file systems do provide
mechanisms for simultaneous parallel access (including
writing) but, even then, they tend to specialize and favor
specific workloads.

IBM’s GPFS [22] provides POSIX semantics across
very large-scale clusters and is specially optimized for
large, contiguous I/O operations; nevertheless, the com-
plexity of the coherence mechanisms may hinder the per-
formance for high ratios of write sharing.

Lustre [7] also offers a POSIX interface and tries to
simplify coherence handling by centralizing metadata
management. It achieves good behavior for parallel
metadata operations and distributed I/O requests; on the
other hand, some studies show that its data striping poli-
cies are not adequate for MPI-IO implementations [30].

Finally, PVFS2 [4,8] has evolved to overcome some of
the parallel performance issues by going further into spe-
cialization and focusing on specific parallel access I/O
models such as MPI-IO; as a counterpart, it offers a re-
laxed semantics, and performance is poor for POSIX-like
parallel operations.

Recently, some studies tried to experimentally deter-
mine the strong and weak points of different parallel
file systems and how they behave under different work-
loads [9, 23]. Another evaluation, focused on PVFS2,
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aimed to isolate the different causes of performance
losses and determine their impact [16]. Additionally, ef-
forts are being directed to mitigate some of the issues and
limitations, at least for specific cases (e.g. hierarchical
striping for Lustre [30] or specific file creation strategies
for parallel I/O [10].)

Our proposal aims to combine the different optimiza-
tions by transparently redirecting requests to the file sys-
tem which is most suitable for the current needs. For
cases where no single file system fits well, our COFS
framework also allows combining different file systems
or transforming the requests using solutions designed for
specific situations.

2.2 Global and virtual name spaces

Most of current file systems offer a “global” name space,
where “global” means that each object has an identifier
which is valid across the whole system and can be used to
refer to that object from any place. Usually, this concept
is mapped into a unique hierarchical directory tree where
files are grouped inside directories and identified by its
directory “path” from the root and a unique name inside
the directory.

This view of a “path” from a common root is also use-
ful when data spans across several storage nodes, parti-
tions or even file systems.This unified hierarchy is some-
times refereed to as a “virtual” name space.

IBM’s GPFS [22] distributes the name space-related
metadata across several nodes much in the way it dis-
tributes data files (directories are essentially treated as
special files). Other file systems, such as Lustre [7],
Ceph [26] or PVFS2 [4] decouple metadata and name
space management from data accesses, having special-
ized services and distinct storage mechanisms for name
space handling.

Mechanisms to maintain name space coherence also
vary with file systems: GPFS uses distributed locking
techniques; PVFS2 prevents consistency problems by
distributing metadata with a “no shared data, no cached
data” policy [23]; and Lustre uses a single metadata
server to avoid conflicts. Panasas [28] (closely related to
Lustre) organizes the directory tree into separated “vol-
umes”, having a single metadata server per volume. Vol-
umes appear as directories in the name space root, which
act as “mount points” in a classical Unix file system.

The approach used by ONTAP GX [12] is also based
on volumes; nevertheless, they tend to be small and the
“mount points” (calledjunctions) may be located any-
where on the name space. Additionally, a virtualization
layer makes easy to physically re-locate or replicate a
whole volume for performance or capacity reasons, in a
transparent way from the user’s point of view.

The file systems mentioned above use explicit parti-

tioning via name space: when a user decides to place
files in a directory path crossing a certain mount point or
junction, all those files will essentially be handled in the
same way, regardless of how they are to be used.

An alternative to the explicit name space partitioning
is based on stackable file systems. Stackable file sys-
tems are a well-known technology that can be used to
extend the functionality of a file system [31]. In par-
ticular, fan-out stackable file systems (orunion file sys-
tems) can combine the contents of several directories
(possibly in different file systems) into a unified“virtual”
view [20, 21, 29]. Essentially, each operation is for-
warded to the corresponding objects in all the underlying
file systems and the result is a sensible composition of the
operation results for each layer, including file attributes
and other metadata.

RAIF [15] uses this mechanism to combine several
file systems (branches) into a single virtual name space.
Internally, the directory structure is replicated on all
branches, and regular files are placed (possibly striped)
in specific branches according a set of rules matched
against file names. In other respects, RAIF is very tied
to the low-level underlying file systems for conventional
file metadata management, so it may suffer from opera-
tions that require synchronous accesses to all branches.

Our proposal combines several aspects of the different
approaches: explicit file system boundaries are avoided
(i.e. no mount points: any file in any part of the name
space can be on any file system), and metadata and name
space management are decoupled from data handling (as
in PVFS2 or Lustre), but also from the underlying file
systems (no need to replicate the user view of the direc-
tory hierarchy into the the low-level file systems.)

2.3 Other file system virtualizations

The use of virtualization techniques applied to file sys-
tems is not a new topic. They have been used at different
levels of the file system to hide complexities and facili-
tate the storage management.

Acting on the lowest device level, Parallax [25] uses
a virtual machine to offer a block-based interface hid-
ing a distributed storage environment. In a similar way,
Peabody [14] uses a software-based iSCSI target to pro-
vide virtual disk images that a local file system can then
use as a backing store.

At the infrastructure level, ONTAP GX [12] virtual-
izes the file system servers and network interfaces used
to access the file system data, offering a single virtual
large server with multiple interfaces and allowing trans-
parent reprovisioning of physical servers.

Virtualization is also used at the name space level.
ONTAP GX provides a virtual layer allowing volumes
(directory subtrees) to be transparently re-located or
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replicated. On the other hand, RAIF [15] uses virtual-
ization to divert the target file system for individual files,
though the directory tree itself is not virtualized, but di-
rectly mapped into the underlying file systems.

The prototype presented in this paper (COFS) exploits
virtualization at the name space level, using single file
granularity and virtualizing also the directory hierarchy.
Working at file level makes it easier to determine use pat-
terns and select the most appropriate layout for the file.
Of course, this does not coerce the use of additional vir-
tual layers by the low level file underlying file systems.

3 Rationale

3.1 The price of optimizations

There is a widening gap between the computing power
of current large scale platforms and the performance that
file systems deliver. Current trends in file systems try
to overcome this gap by optimizing the file system in-
ternals and its configuration to satisfy the most common
demands from the high level applications.

This has a price. Providing certain features or opti-
mizing certain operations may strain the requirements on
other components beyond practical limits (e.g. a direc-
tory structure may be designed to contain an extremely
large number of entries; however, if strictly consistent
parallel accesses is required, then the cost of coherence
handling may penalize such large directories.) As a re-
sult, optimized file systems bring up a set of restricted
conditions under which they can operate with efficacy.
Such file systems may be very efficient in their domains,
but performance drops when limits are forced.

On the other hand, the spread and availability of large
computing facilities has increased the diversity of appli-
cations targetted to run on them, bringing different I/O
needs; so, each time is more difficult for a single file sys-
tem to match all needs. At the end, some applications
end up paying the price of features and optimizations that
they cannot use [23].

3.2 Dealing with multiple file systems

The first approach to solve this situation consists of pro-
viding several file systems with different settings on the
same computing center. This has several drawbacks:

1. The application must be adapted to a specific com-
puting facility and moving it will have a higher cost
(as other computing premises may use different file
systems configured in different ways.)

2. The user should know the low level details of the
system (this may be arbitrarily complex, ranging

from optimum sizes for reads and writes up to how
many directory entries fit in a cache block.)

3. Changes in the computing facility (reprovisioning,
upgrades, etc.) may alter the optimum file system
parameters, requiring a new optimization process.

4. Last but not least, the user may not have the oppor-
tunity, the capability or the time to carry out such
adaptations.

The final cause of these issues is that the internal struc-
tures of file systems are exposed to the application level.
While users think in terms of abstractions like files log-
ically organized in hierarchical trees, file systems have
a quite rigid map between such abstractions and the ac-
tual data layout; as a consequence, small changes in log-
ical data organization may have significant (and possibly
negative) impact on performance.

3.3 Advantages of high-level virtualization

Our proposal consists of taking advantage of a virtualiza-
tion layer on top of conventional (and maybe optimized)
file systems. Even if some control over physical layout is
apparently lost, the multiplicity of layers of current file
systems mitigates the negative effects [24] and may even
improve some results [15].

We strongly believe that decoupling the file system
metadata and name space from the actual data layout is
a key factor. Metadata management at low-level file sys-
tem layers is usually heavily tied to the low level data
layout, aiming to efficiency; nevertheless, this makes the
inner limitations and complexities visible to the applica-
tions.

On the contrary, we consider that the metadata and
name service must provide a convenient view of the file
system for the user, and transparently convert user re-
quests into the appropriate low-level file system opera-
tions, adapting them to the advantages and limitations of
the underlying file systems. The building blocks we plan
to use are:

• Virtualization of the file system by decoupling the
metadata and the name space hierarchy from the ac-
tual file layout in the low-level file system(s).

• File system composition to combine underlying file
systems with different features and capabilities, uni-
fying them under a common layer.

It is important to note that we do not intend to build a
new file system from scratch, but to prove that it is pos-
sible to increase the overall performance by leveraging
existing file systems and make a combined use of their
strong points while mitigating the disadvantages.
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Some concrete areas that may benefit from these vir-
tualization techniques are:

- Bypassing the limitations of current file systems.A
virtualization module can be aware of the optimization
trade-offs of a particular file system. Thus, it can trans-
late application needs into actual layouts which are able
to take advantage from optimizations and tuned param-
eters. Being this transparent, the administrators have
the freedom to change or adapt configurations without
affecting application performance. As an example, a
virtualization module could split a large user directory
into smaller ones so that the number of entries is large
enough to fill a data block (to improve cache usage),
but small enough to prevent false-sharing conflicts and
avoiding unnecessary synchronization traffic (handling
low-level details that the user does not need to be aware
of.) In a similar way, other improvements such as hierar-
chical striping [30] could be transparently applied when
needed.

- Automatically mapping files into the most adequate
file system.For data centers with several file systems it
would be possible to use an intelligent module in the vir-
tualization layer to decide the best location for each file:
the user may have his own tree structure (which does not
need to take into account file properties and intended us-
age) and the files will be transparently located in the file
system that is best for them. Prediction algorithms and
other heuristics can be used to guess the requirements of
newly created files, using the name, logical location, the
user or the job that has created the file as inputs for the
prediction algorithms.

- Replicating files into different file systems. Virtual-
ization at file system level can also be used to maintain
replicas of the same data into different file systems, both
for availability and load balancing [15]. Additionally, the
replication mechanism can be used to provide extended
features and allow different use patterns. For example, a
large multimedia file can be located in a parallel file sys-
tem, allowing efficient access from a distributed applica-
tion while it is being generated and/or modified, and be
replicated to a streaming file system to allow fast stream-
ing sequential access for visualization.

- Write off-loading to improve performance and band-
width utilization. It is frequent to see that writes from
many clients (possibly to different files) are done simul-
taneously in burst. This may cause some servers satu-
rate and prevent them from offering the desired perfor-
mance. In this situation, write off-loading at block level
has been proposed as a technique for both keeping the
performance and reducing the power consumption [17]:
block writes are temporarily diverted to a different server
until the real target recovers its capacity. Using file sys-
tem level virtualization, the same technique can be ap-

plied across file systems: when peaks occur, they could
be detected and files would be written to a different file
system. There are two main advantages: first, the pres-
sure on the saturated file system is reduced, so it can
recover faster; second, by using additional file system
servers, storage-related network traffic has more chances
to use a bigger portion of the available bandwidth, possi-
bly reducing the overall response time.

- Extended features.Having a decoupled metadata and
name service allows for feature extensions that can be
activated per-file (and not globally at file-system level).
Such extensions may include security and cryptographic
modules, versioning, different coherence models, etc.
Virtualization can provide these specific services by sim-
ply diverting the specific file to a file system supporting
the desired features, or by having a module implement-
ing them at high level (e.g. replication could be provided
by a low-level file system using RAID mechanisms, or
by the virtualization layer by diverting writes to two or
more different file systems.)

In the following sections we present our framework to
explore these possibilities. Our performance results fo-
cus on the first item: using virtualization to improve the
behavior of an underlying file system for non-optimum
workloads. The COFS prototype shows that the poten-
tial benefits are higher than the costs of virtualization.

4 COFS implementation

We have developed the “Composite File System”
(COFS), a proof-of-concept prototype aimed towards the
virtualization of file systems which helps us understand-
ing how the file systems behave at low level, and pro-
vides a framework for testing and evaluating our ideas.
Its main goals are:

• Decoupling the user view of file hierarchy from the
actual layout, so the latter can be optimized for the
underlying file system(s).

• Being able to divert files from the same directory
into different file systems, transparently to the user.
This, together with the previous item, provides a
virtualized global name space.

Additionally, COFS has been conceived as a tool al-
lowing us to track operations at file system interface (to
obtain a detailed trace of the system behavior), to explore
different mechanisms for metadata handling and assess-
ing its impact on performance, and to test different poli-
cies and parameters for laying out data in the underlying
file system(s).

Despite being a proof-of-concept prototype, having a
reasonable performance is a major requirement, as we
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Figure 1: A multi-file system architecture, aug-
mented with COFS-based virtualized file system

pretend to show that the mechanism does not have a sig-
nificant overhead and, on the contrary, may boost perfor-
mance in several situations.

Also, POSIX compliance was a strong design require-
ment. Apart from the fact that this is still the domi-
nant model for most applications, our goal was reduc-
ing the operating restrictions of underlying file systems;
so, limiting the semantics was not an option: if POSIX
semantics is required and the underlying file system sup-
ports it, then COFS should also be able to deal with it.
The current implementation fully supports POSIX except
for some functionalities which were not relevant for our
present work (namely named pipes.)

It is important to mention that the framework does not
directly deal with data. There is no management of disks,
blocks or storage objects: COFS simply forwards data
requests to the underlying file systems and indicates an
appropriate low level path when a file is created. Then it
is up to the underlying file system to take the decisions
on low-level data server selection, striping, block/object
placement, etc. In this sense, COFS is not a complete file
system, but a tool to leverage the capabilities of underly-
ing file systems.

On the contrary, COFS does take the responsibility
on high level metadata management. By metadata we
specifically mean access control (owner, group and re-
lated access permissions), symbolic and hard link man-
agement, directory management (both the hierarchy and
the individual entries) and size and time data for non-
regular files (sizes and access time management for reg-
ular files rely on the underlying file system.)

4.1 Architecture

Fig. 1 shows an example of how the COFS prototype in-
tegrates in a multi-file system environment. File system
A is served by 3 file servers, while file system B has a
single file server front-end;n clients are able to contact
the servers through the network and, in a typical setup,
they would mount A and B on separate branches of their
local directory trees.

COFS introduces an extra layer on each client provid-
ing a unified virtual view of the multiple file systems,
while metadata information is handled by an additional
node. It is important to mention that even though we use
a single metadata server in the current stage of imple-
mentation, this is not forced by design, and the frame-
work also admits a distributed metadata service (we will
be back on this issue later.)

The COFS layer on each node offers a file system in-
terface, so it can be mounted as any other file system.
The implementation is based on FUSE (Filesystem in
USErspace [2]), which provides a kernel module that ex-
ports VFS-like callbacks to user-space applications. The
decision to use FUSE was driven by both portability and
level of support, as well as easy of development. FUSE is
a standard component of current linux kernels (also avail-
able for other operating systems) and provides a stable
platform for implementing a fully functional file system
in a userspace program. Considering our experimental
goals, the downside of missing some kernel-level infor-
mation that is not exported or forwarded to user level,
and possibly minor efficiency losses, is largely compen-
sated by having a drop-in environment that can be used in
most linux boxes without requiring specific kernel mod-
ifications.

Once intercepted by FUSE, file system requests are
internally diverted by COFS into two different modules
(the data and metadata drivers) with well-defined inter-
faces (Fig. 2). The data driver is responsible for mapping

Figure 2:Detail of COFS client architecture and in-
terfaces
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the regular files into the underlying file system(s), while
the metadata driver takes care of hard and symbolic links,
directories, and generic attributes. Some operations need
the collaboration of both drivers: for example, creating
a file involves creating an actual regular file on a conve-
nient location (a data driver responsibility) and updating
the proper entries in the directory (done by the metadata
driver). So, an interface is also defined for communica-
tion between both drivers.

4.2 The data driver

The COFS modular design allows us to easily test dif-
ferent policies for both data and metadata handling. By
now, we have two different drivers for the data module:
the sparse driver and thenull driver (which redirects all
data-related requests to/dev/null and is used for test-
ing and evaluation purposes.)

Thesparse driver implements a very simple policy to
re-organize the user’s file hierarchy into something ad-
equate to take advantage of the underlying file system.
When a new file is created, its actual location is not the
path indicated by the user, but an automatically generated
path that depends on the node issuing the create request,
the parent directory in the user’s view, and the process
creating the file.

Several parameters can be tuned for thesparse driver:
the depth of the actual directory tree, the maximum num-
ber of files and subdirectories in an actual directory, and
a randomization factor. The entries per directory affect
the way in which caches can be exploited, while the tree
depth can mitigate false-sharing accesses to the same di-
rectory. The randomization factor can help to balance the
pressure in situations where a single process creates lots
of files that are then accessed by multiple clients. The
overall result of thesparse policy is distributing the files
across several directories, while keeping them loosely
grouped by creator and proximity in the user’s view.

4.3 The metadata service and driver

For COFS, we decided to take a conceptually central-
ized approach for metadata because of its simplicity. We
dealt with scalability concerns by leveraging the well-
know technology of distributed databases: metadata can
be seen as small set of tables having information about
the files and directories and, in case of need, it could be
distributed into several servers by the database engine it-
self (without the need of explicit partitions.)

To this end, we chose the Mnesia database, which
is part of the Erlang/OTP environment [1]. Mnesia
provides a database environment optimized for sim-
ple queries in soft real time distributed environments

(with built-in support for transactions and fault toler-
ance mechanisms). Additionally, the Erlang language
has proven to be a good tool for fast prototyping of highly
concurrent code (the language itself internally deals with
thread synchronization and provides support for trans-
parently distributing computations across several nodes.)

The current COFS prototype uses a single metadata
server running an Erlang node with an instance of the
Mnesia database. It also keeps the current working set of
metadata information as a cache of active objects, using
a concurrent caching mechanism similar to the one de-
scribed by Jay Nelson [18]. The client’s metadata driver
simply forwards requests to the server, and handles meta-
data caching and leases.

5 Case study

One of the motivations of our work was the performance
drop observed in some of our large production clusters.
Such clusters have GPFS file systems, and an heteroge-
neous workload comprising both large parallel applica-
tions spanning across many nodes, and large amounts of
relatively small jobs.

Our observation indicates that typical modus operandi
ends up creating large amounts of files in the same di-
rectory. Large parallel applications usually create per-
node auxiliary files, and generate checkpoints by having
each participating node dumping its relevant data into a
different file; not unlikely, applications place these files
in a common directory. On the other hand, smaller ap-
plications are typically launched in large bunches, and
users configure them to write the different output files in
a shared directory, creating something similar to a file-
based results database; the overall access pattern is sim-
ilar to that from a parallel application: lots of files are
being created in parallel from a large number of nodes in
a single shared directory.

Very large directories, specially when populated in
parallel, require GPFS to use a complex and costly lock-
ing mechanism to guarantee the consistency, resulting in
far-from-optimal performance. The overhead is not lim-
ited to the “infringing” applications, but affects the whole
system, as file servers are busy with synchronization and
all file system requests are delayed.

Virtualization techniques based on decoupling the
name space from the actual low-level file system layout
could mitigate the issue, offering large directory views
to the user while internally splitting them to reduce the
synchronization pressure on the GPFS servers.

Next section presents a preliminary evaluation of our
COFS prototype in order to assess its ability to mitigate
this issue and boost a single GPFS file system.
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Figure 3:Effect of external workload on GPFS efficiency (with different scales)

6 Performance results

6.1 Experimental setup

Our test environment consisted of a cluster of 70 IBM
JS20 blades, with 2 processors each (PPC970FX) and
4GB of RAM. Blades were distributed in severalblade
centers: each blade center had an internal 1Gb switch,
and different blade centers were interconnected through
non-uniform network links (so that available bandwidth
is not the same for all blades.) We conducted our tests
on a GPFS file system, based on two external Intel-based
servers connected to the cluster by 1 Gb link each.

The current COFS prototype deals with metadata op-
erations, and simply forwards data requests. So, we used
metarates [5] as a benchmark.Metarates was developed
by UCAR and the NCAR Scientific Computing Division,
and measures the rate at which metadata transactions can
be performed on a file system. It also measures aggre-
gate transaction rates when multiple processes read or
write data concurrently. We used this application tocre-
ate, stat, utime, a number of files from the same direc-
tory in parallel. Directories were populated with differ-
ent amounts of files (from 256 to 32,768) and accesses
were done simultaneously from 4 to 64 nodes. As an
addition to the original code, we also measure the time
needed toopen andclose a file.

Our testbed cluster was not exclusively dedicated to
benchmarking: unless explicitly noted, our measure-
ments were done while the rest of the cluster was in pro-
duction. This gave us the opportunity to see how the
unrelated (though usual) workload affected the file sys-
tem behavior. Even if we observed that the overall effect
of the production workload is quite homogeneous along
time, special care was taken to detect and avoid devia-
tions due to particular situations. The methodology em-

ployed to obtain the measures minimized the impact of
punctual variations of system behavior, getting accept-
able statistical confidence levels.

6.2 Base system behavior

Understanding under which conditions a file system has
a good performance, and which are the factors that neg-
atively affect it, is the starting point for boosting it.

Our first experiment consisted of determining the ef-
fect of the production workload on the file system be-
havior. To that end, we executed themetarates bench-
mark using the cluster in dedicated mode, and then com-
pared the results with the cluster shared with a produc-
tion workload.

Fig. 3 shows the differences observed forstat andcre-
ate operations with and without the production back-
ground. Thex axis shows the number of nodes and pro-
cesses used. It can be appreciated that the cluster activity
reduces the file system performance by about an order
of magnitude. Considering that such operations have a
very small payload (only metadata information), we may
speculate that a large portion of the delay is caused not
by the bandwidth needed for the actual information, but
by consistency-related traffic (even when each process
works on a different set of files.) That assumption would
give our virtualization system enough margin to obtain a
good speed-up by reorganizing the file layout and reduce
the synchronization needed among GPFS clients.

The performance drop when using 16 nodes (clearly
visible for the create - Fig. 3) is due to the testbed
network topology: when using up to 8 nodes, blades
are located in “close” blade centers; for 16 nodes and
above, some blades are allocated in “far” locations, so
that the available bandwidth is shared with more nodes
and the effect of possible interferences from the produc-

8



0 500 1000 1500 2000 2500

files per directory

0

2

4

6

av
g

. 
ti

m
e 

p
er

 C
R

E
A

T
E

 (
m

s)

1 process (single node)
2 processes (single node)

0 500 1000 1500 2000 2500

files per directory

0

2

4

6

av
g

. 
ti

m
e 

p
er

 S
T

A
T

 (
m

s)

0 500 1000 1500 2000 2500

files per directory

0

2

4

6

av
g

. 
ti

m
e 

p
er

 U
T

IM
E

 (
m

s)

0 500 1000 1500 2000 2500

files per directory

0

2

4

6

av
g

. 
ti

m
e 

p
er

 O
P

E
N

/C
L

O
S

E
 (

m
s)

Figure 4:Effect of the number of entries in a directory on GPFS

tion workload is more noticeable. Still, there is a big gap
from the base-line of the dedicated executions that can
be reduced by a more appropriate file layout.

Another interesting observation is how thestat time
increases as the number of files in the directory de-
creases. Being GPFS a black box, we can speculate
that this is related to distributed locking granularity: a
stat response from the servers contains information about
several entries to take advantage of bandwidth; but the
less files we have the higher the probability of locking
conflict between a larger number of nodes. Note that
conflict-free access is not possible, because “the user”
has decided to put all the files in the same directory and
that forces the file system to handle a shared common
structure (the directory.)

The behavior of the system for 2048 files per directory
deserves a special comment, as the performance varies
depending on the number of processes per node. Ap-
parently, GPFS is able to coalesce the requests inside a
client and this coalescing crosses a boundary that makes
possible for GPFS to take advantage of the situation and
improve the performance (reducing the inter-node con-
flicts, and being able to handle intra-node sharing effi-
ciently). Ideally, a user could use this knowledge and
tune an application to take advantage of it; however, pa-

rameters are closely related to specific datacenter con-
figuration, so that user-specified per-application tuning
would be impractical. On the contrary, a virtualization
layer as the one provided by COFS may have a module
with this kind of information and exploit it transparently.

Running themetarates benchmark on a single node
reveals another boundary value: Fig. 4 shows that
GPFS has an extremely good behavior for single node
stat/utime/open/close operations on directories below
1024 entries (comparable to local file system rates.) We
can speculate that this is caused by the ability of GPFS
to delegate full control to clients under certain circum-
stances (e.g. single-node access and data present on local
cache). Beyond that size, performance drops to network-
compatible rates (though having two processes seems to
slightly compensate - only up to 2048 entries). Note that
the pattern is completely different forcreate: there is no
local information to exploit (as we are creating new en-
tries) and time per operation follows a steady linear in-
crease above 512 entries.

These observations inspired the COFSsparse data
driver module described in section 4.2. Its goal is split-
ting large shared user directories into non-shared directo-
ries small enough to enable delegation and local access,
so that GPFS can improve its performance. Next subsec-

9



16 32 64 128 256 512 1024 2048 4096 8192

files per node

0

20

40

60

80

100

av
g

. 
ti

m
e 

p
er

 C
R

E
A

T
E

 (
m

s)

4 nodes (gpfs)
8 nodes (gpfs)
16 nodes (gpfs)

16 32 64 128 256 512 1024 2048 4096 8192

files per node

0

20

40

60

80

100

av
g

. 
ti

m
e 

p
er

 C
R

E
A

T
E

 (
m

s)

4 nodes (cofs)
8 nodes (cofs)
16 nodes (cofs)

(a) Create times (pure GPFS vs. COFS virtualization over GPFS)
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(b) Stat times (pure GPFS vs. COFS virtualization over GPFS)
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(c) Utime times (pure GPFS vs. COFS virtualization over GPFS)

Figure 5:Operation time vs. files per node accessed in a shared directory (different scale for creation)

tion shows the results obtained using the COFS virtual-
ization layer to transparently alter the file system layout.

6.3 Virtualization results

Unless stated otherwise, COFS measurements in this
section have been done using thesparse data driver, lim-
iting the low level directory size to 512 entries, and us-
ing 1 random bit as randomization factor (that randomly
distributes related entries into two separate directories.)
We have also coalesced results per node in both COFS

and GPFS (merging results using 1 and 2 processors per
node) as we have observed that trends are determined by
nodes as a whole, and not individual processors (slight
differences exist: GPFS seems to be able to parallelize
some requests when using 2 processors and take cer-
tain advantage, while the FUSE component in COFS ap-
parently serializes them - nevertheless, differences are
marginal compared with overall values.)

Fig. 5(a) shows the benefits of breaking the relation-
ship between the virtual name space offered by the COFS
framework (exporting a single shared directory to appli-
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cation level) and the actual layout of files in the underly-
ing GPFS file system. By redistributing the entries into
smaller low level directories, COFS allows GPFS to fully
exploit its parallel capacity by converting a shared paral-
lel workload into multiple local sections that do not re-
quire global synchronization.

The scaling overhead of moving from 4 to 8 nodes
in GPFS disappears when COFS is used. For 16 nodes
there is also a big improvement, due to the elimination of
synchronization needs, but there is a performance barrier
slightly below 20 ms. Some network measurements con-
firmed that this was not related to COFS itself, but to the
particular topology of our testbed (as already mentioned
in section 6.2.)

Fig. 5(b) and 5(c) shows the average time forstat and
utime operations as a function of the number of files in
a shared directory accessed by each node (figures for
open/close operations are not shown as they closely re-
semble thestat figures for both GPFS and COFS.)

Overall, we can see that all the figures follow a simi-
lar pattern: there is a first phase of large operation times
when only a few files per node are accessed, that con-
verges when the number of files per node increases. It is
worth noting that the stable times forstat andutime are
considerably lower thancreate times; this is mainly due
to an effective use of caches for larger number of files
(which cannot be exploited forcreate operations.)

Times for utime operations are slightly higher than
times for stat operations. One of the main reasons for
these are i-node cache invalidations caused by the modi-
fication of data. On this respect, we must mention that we
have observed noticeable false-sharing effects inside the
i-node structure: some fields are rarely modified (type
and permissions) but frequently used, and they are af-
fected by modifications to more volatile fields (such as
access times) which are not so often needed. Despite of
this fact, i-nodes are usually handled and cached atom-
icly (including the current version of COFS - neverthe-
less, we plan to evaluate the effects of field-level caching
in next versions of COFS.)

The COFS layer remarkably reduces thestat time
when a directory grows beyond 512 entries per node
(from approx. 7ms. to 1ms. for 8 nodes; and from
5ms. to 1ms. for 4 nodes). The variability caused by net-
work noise is also eliminated, and Fig. 5(b) shows that
COFS operation times for 4 and 8 nodes are nearly iden-
tical. Even for 16 nodes, where the network bandwidth is
reduced, the speed-up for large directories is noticeable
(from approx. 27ms. to 6 ms. per operation.)

The utime time is also improved with COFS (from
about 5ms. to 1–3ms. for 4 and 8 nodes.) Again, the
effect is clearer for 16 nodes (from approx. 18ms. to
11ms, as seen in Fig. 5(c).)

Below 128 operations per node, the COFS setup is
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Figure 6:Stat times for several COFS configurations
(8 nodes)

only able to slightly reduce the high access cost for small
shared directories (but it does not incur in any additional
overhead.) Even then, results for 16 nodes show a bet-
ter behavior than pure GPFS (less variability and faster
convergence to reduced operation times.) That makes us
expect that the benefits of COFS will be more noticeable
for a larger number of nodes (as we will show in sec-
tion 6.4.)

In order to thoroughly understand the causes of COFS
benefits, we conducted some additional experiments.
Fig. 6 shows the results for 8 nodes: we compared pure
GPFS behavior with the results of COFS using differ-
ent sets of parameters for thesparse data driver (increas-
ing the number of entries per directory in the underlying
file system from 512 to 2048, and modifying the layout
randomness factor); we also executed the tests using the
COFSnull data driver (which diverts all operations to
/dev/null) in order to distinguish pure COFS behav-
ior from that related to the underlying file system.

The cost of accessing few files is mostly due to GPFS
(as the overhead does not appear with thenull data
driver.) And this cost is partially related to synchroniza-
tion: increasing the “random bits” in thesparse layout
effectively distributes the files into a wider number of
underlying directories, and we can observe that this helps
to mitigate the problem (by reducing the chances of si-
multaneous colliding accesses from different nodes - as a
matter of fact, we are reducing the level of false sharing
inside the back-end directories.)

The effect of layout randomization is complemented
by the limitation of the directory size. When the maxi-
mum number of entries is increased up to 2048 entries,
the synchronization overhead is also increased, resulting
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Figure 7: Operation times for 256 operations per
node on 64 nodes

in larger operation times (to better understand this effect,
it is worth noting that the benchmark creates all the files
to be “stated” from a single node in such a way that files
to be accessed by node 1 are created first, then those
for node 2, and so on; beyond the directory size limit,
the COFS data driver manages to put each node’s files
into different directories, effectively converting shared
accesses into non-shared accesses). This way, access
time approaches thenull driver results. On the contrary,
pure GPFS is unable to reduce the operation time.

In summary, our measurements show that using the
virtualization of the name space provided by the COFS
framework can drastically boost our underlying GPFS
file system for file creations on shared parallel environ-
ments (with speed-up factors from 2 to 10, as shown in
Fig. 5(a)). For the rest of metadata operations, perfor-
mance is also boosted (though the speed-ups are more
moderated), and the overhead and variability for parallel
access to small-sized directories is reduced.

6.4 Scalability

One of our concerns was to check that our proof-of-
concept prototype was able to deal with much larger en-
vironments than our testbed. So, we conducted some ad-
ditional experiments to probe possible scalability limits
in two different aspects: number of files in the file system
and number of nodes in the distributed environment.

In order to check how many entries was able to han-
dle a single COFS metadata server, we artificially pop-
ulated the metadata database with a large directory tree
(with a proportion of 10% directories and 90% files), and
then re-run the experiments on it. Results show no sig-
nificant degradation on create operations up to 8,000,000
entries (which is one order of magnitude larger than the
actual file system in our testbed.) With respect to other
metadata operations (stat, utime, open), results were sta-

ble up to 10,000,000 entries (where we started hitting
physical memory limits - the metadata server uses a JS20
blade with 4GB RAM). Further scalability should not be
a problem, as mechanisms to deal with creations in larger
tables in Mnesia are discussed in Erlang-related litera-
ture [1], and node physical limits can be bypassed by
using Mnesia distribution mechanisms [18]. Also, sev-
eral works on file system metadata focus on partitioning
techniques to distribute metadata and name space infor-
mation [11,19,27] to multiple nodes.

Regarding the number of nodes in the cluster, we had
the opportunity to deploy our prototype onto a dedicated
cluster with an architecture very similar to our original
testbed (for both blade centers and file system servers.)
By running themetarates benchmark on this testbed we
were able to confirm that the benefits of virtualization are
not only maintained but increased in larger scales. Fig. 7
shows the comparison of metadata operation times on 64
nodes, accessing 256 files per node on a shared directory
(results with other directory sizes are omitted due to lack
of space, but they show similar trends).

As we may observe, the base-line given by pure GPFS
shows considerably high operation times for 64 nodes,
because the inter-node conflicts when accessing a shared
directory increase with the number of nodes and they are
the main component of the operation cost. On the con-
trary, COFS is able to mitigate such conflicts, allowing
GPFS to obtain remarkable speed-ups. We expect to ob-
serve the same trend for a larger number of nodes.

7 Conclusions and future work

We propose the use of virtualization techniques to both
take advantage of the different file system optimizations,
while eliminating the burden from the high level appli-
cations. Name space virtualization is a key element, as
it allows decoupling the high level file organization from
the underlying file system configuration details.

The proof-of-concept prototype we implemented
(COFS) shows that this is a feasible approach, as the the-
oretical cost of the virtualization layer is largely compen-
sated by its benefits. Specifically, we have used the pro-
totype to boost a single GPFS file system, significantly
improving the metadata performance for shared parallel
workloads.

In the near future we will focus on tuning the prototype
(using autonomic techniques when possible), extending
it to support the additional functionalities described in
section 3.3 and exploring the different ways to increase
scalability.
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