
WorkOut: I/O Workload Outsourcing for Boosting the RAID
Reconstruction Performance

Abstract
User I/O intensity has a significant impact on the on-
line RAID reconstruction performance by virtue of disk
bandwidth contention. Based on our observation, this
paper proposes a novel scheme, calledWorkOut (I/O
WorkloadOutsourcing), to significantly boost the RAID
reconstruction performance. WorkOut effectively out-
sources I/O workloads by temporarily redirecting all
write requests and popular read requests originally tar-
geted at the degraded RAID set to a surrogate RAID
set during reconstruction, thus significantly speeding up
the reconstruction process and alleviating the user per-
formance degradation. WorkOut is orthogonal to and
can be easily incorporated into any existing reconstruc-
tion algorithms. Furthermore, it is applicable to improv-
ing the performance of other background support RAID
tasks such as re-synchronization and disk scrubbing.

Our lightweight prototype implementation of Work-
Out, driven by three representative real-life traces and
a TPC-C-like benchmark, demonstrates that, compared
with the existing reconstruction approaches PR and PRO,
WorkOut speeds up the reconstruction time by a factor of
up to 2.87, with an average of 2.09, and speeds up the av-
erage user response time by a factor of up to 5.89, with
an average of 2.88, simultaneously.

1 Introduction
As a fundamental technology for reliability and availabil-
ity, RAID [29] has been widely deployed in modern stor-
age systems. A redundancy-based RAID-structured stor-
age system ensures that data will not be lost when disks
fail. One of the key responsibilities of RAID is to re-
cover the data that was on a failed disk, a process known
asRAID reconstruction.

RAID reconstruction is commonly performed in two
different ways [11, 12]:off-line reconstruction, when the
RAID devotes all of its resources to performing recon-
struction without serving any I/O requests from user ap-
plications, andon-line reconstruction, when the RAID
continues to service user I/O requests during reconstruc-
tion. While the former entails stopping all applications
completely, making it inappropriate for most RAID-
structured storage systems that must provide 24/7 non-
stop services to the users, the latter is often limited to
using some fractions of the total bandwidth of the RAID
system, making it much slower than the former.

Advances in the storage technology have significantly
increased the capacity and reduced the cost of hard disks,

while other performance parameters, such as bandwidth,
seek time and rotational latency, have improved much
more slowly [10] and individual disk failure rates have
remained largely unchanged [4, 8, 19, 31, 33], thus sig-
nificantly increasing the length and frequency of recon-
struction and resulting in a longer “window of vulnera-
bility”, the time span in which a second disk failure may
cause persistent data loss. Moreover, this time span is
adversely affected by user I/O requests that arrive during
reconstruction. For example, the reconstruction time of
the on-line approach (with user I/O requests) can be as
much as 70 times (70×) longer than that of the off-line
approach (without user I/O requests) (see Section 2.2).

On the other hand, the extended reconstruction period,
in which the RAID-based server operates in the degraded
mode as a result of the user I/O requests having to com-
pete for disk bandwidth with the reconstruction process,
will more likely violate the performance goals and Ser-
vice Level Agreement (SLA) [11]. For example, the re-
construction process can increase the user response time
by a factor of 3 (3×) (see Section 2.2). Importantly,
the transition from the state ofservice accomplishment,
where the service is delivered as specified in SLA, to the
state ofservice interruption, where the delivered service
is different from and below that specified in SLA, is also
defined as afailure [11], which constitutes a noticeable
fraction of storage subsystem failures [19].

Therefore, the on-line reconstruction performance af-
fects the reliability and availability of RAID-structured
storage systems directly and significantly. On-line recon-
struction algorithms not only demand the ability to re-
cover from disk failures without data loss, but also must
(1) speed up the reconstruction process maximally to re-
duce the window of vulnerability and (2) impose mini-
mal impact on user performance, simultaneously [14].

Most existing effective RAID reconstruction ap-
proaches mainly focus on optimizing reconstruction
workflow [12, 23], reconstruction sequence [3, 38] or
data layout [15, 43] to improve the reconstruction per-
formance in a single RAID set. In a typical on-line re-
construction process, performing the internal reconstruc-
tion I/O requests and external user I/O requests simulta-
neously leads to disk bandwidth contention and frequent
long seeks to and from the multiple separate data areas.
Reducing the amount of user I/O requests directed to the
degraded RAID set, we believe, is an effective approach
to reducing the reconstruction time and alleviating the
performance degradation simultaneously. This also hap-

1

pens to be the reason why the off-line reconstruction ap-
proach is much faster than its on-line counterpart.

Inspired by the state-of-the-art data migration [2, 25,
41] and write off-loading [27] approaches, we propose
WorkOut(I/O WorkloadOutsourcing) to effectively uti-
lize a set of spare disks or the free space in one of the
many RAID sets in a large-scale storage system, which
we call asurrogate RAID set, to store the data relocated
by a request redirection technique that outsources a sig-
nificant amount of user I/O requests away from the de-
graded RAID set during reconstruction. The main idea
behind WorkOut is to temporarily redirect all write re-
quests and popular read requests originally targeted at the
degraded RAID set to a surrogate RAID set, thus signifi-
cantly reducing the reconstruction time since much more
disk bandwidth can then be allocated to the reconstruc-
tion process and alleviating the user performance degra-
dation caused by the reconstruction process.

In the context of the on-line RAID reconstruction tech-
nologies, WorkOut has the following salient features:
(1) WorkOut tackles one of the most important factors

adversely affecting the reconstruction performance,
namely,I/O intensity, that, to the best of our knowl-
edge, has not been adequately addressed by the pre-
vious studies [3, 38] and achieves a reconstruction
performance approaching that of the off-line recon-
struction approach for write-intensive applications,
by continuously and effectively serving the external
user I/O requests during reconstruction.

(2) WorkOut has a distinctive advantage of improv-
ing both reconstruction time and user response
time. It is a very effective reconstruction opti-
mization scheme that focuses on optimizing write-
intensive workloads that have been considered a
roadblock for many of the existing reconstruction
approaches [38].

(3) WorkOut is orthogonal and complementary to and
can be easily incorporated into most existing RAID
reconstruction approaches to further improve their
reconstruction performance.

(4) In addition to boosting the RAID reconstruction
performance, WorkOut is very lightweight and can
be easily extended to improve the performance of
other background support RAID tasks, such as re-
synchronization and disk scrubbing, that are also
becoming more frequent and lengthier for the same
reasons that reconstruction is becoming more fre-
quent and lengthier.

Extensive trace-driven and benchmark-driven exper-
iments conducted on our lightweight prototype imple-
mentation of WorkOut show that WorkOut outperforms
the existing reconstruction approaches PR [23] and
PRO [39], significantly in both reconstruction time and
user response time, simultaneously.

The rest of this paper is organized as follows. Back-
ground and motivation are presented in Section 2. We de-
scribe the design of WorkOut in Section 3. Performance
evaluations of WorkOut through a prototype implemen-
tation are presented in Section 4 and related work is pre-
sented in Section 5. We point out directions for future
research in Section 6, and conclude the paper in Section
7 by summarizing the main contributions of this paper.

2 Background and Motivation
In this section we provide the necessary background
knowledge and key observations that serve to motivate
our proposed research and facilitate our presentation of
WorkOut in later sections.

2.1 Disk failures in the real world
Recently, extensive studies on statistical analysis, trend
predications and impact evaluations of partial or com-
plete disk failures in large-scale storage systems have re-
vealed that disk failures are becoming the norm rather
than the exception [4, 8, 19, 31, 33]. Schroeder & Gib-
son [33] found that annual disk replacement rates in the
real world exceed 1%, with 2%-4% on average and up to
13% in some systems, much higher than 0.88%, the an-
nual failure rates (AFR) specified by the manufacturer’s
datasheet. Bairavasundaram et al. [4] observed that the
probability of latent sector errors that can lead to disk re-
placement is 3.45% in their study. Due to the high failure
rate and the increasing scale in disk-based storage sys-
tems that may contain hundreds or thousands of disks,
storage systems in the near future may be perpetually re-
pairing multiple failed disks in which recovery becomes
the state of storage [8].

In addition, partial or complete disk failures exhibit a
significant amount of spatial and temporal locality, indi-
cating that, after one disk failure, another disk failure will
likely occur soon [4, 8, 19]. Gibson [8] points out that the
probability of a second disk failure in a RAID-structured
storage system during reconstruction increases signifi-
cantly along with the reconstruction time: approximately
0.5% for one hour, 1.0% for 3 hours and 1.4% for 6
hours.

Frequent or long-term downtime and data loss are ob-
viously intolerable to the end users. Thus, given such
high partial or complete disk failure rates and their sig-
nificant economic impact to the users, fast recovery from
disk failures becomes increasingly important for building
reliable storage systems.

2.2 Mutually adversary impact of reconstruc-
tion and user I/O requests

During the on-line RAID reconstruction period, recon-
struction I/O requests and user I/O requests compete for
the bandwidth of surviving disks and adversely affect
each other. User I/O requests increase the reconstruc-

2

0
30
60
90
120
150
180

Off-Line On-line
fastest

On-line
slowest

Reconstruction Option

Re
co
ns
tru

cti
on

 T
im

e (
mi

nu
te)

0

15

30

45

60

Re
sp
on

se
Ti
me

 (m
illi

sec
on

d)Reconstruction Time Response Time

Figure 1: Reconstruction and its performance impact.

tion time while the reconstruction process increases the
user response time.

Figure 1 shows the reconstruction times and user re-
sponse times of a RAID5 disk array consisting of 5 disks
with a stripe unit size of 64KB in three cases: off-line
reconstruction, on-line reconstruction at the fastest speed
(when RAID favors the reconstruction process) and at the
slowest speed (when RAID favors the user I/O requests),
respectively. In the experiment we limit the capacity
of each disk to 10GB. The user I/O requests are gen-
erated by Iometer [18] with 20% sequential, 60%/40%
read/write and 8KB request size [32]. As shown in Fig-
ure 1, the user response time increases significantly with
the increasing reconstruction speed, 3 times more than
that in the normal mode, and the on-line reconstruction
process requires an amount of time that is up to 70 times
more than its off-line counterpart.

How reconstruction is performed impacts both the re-
liability and availability of the storage system [11]. Stor-
age system reliability is formally defined as the mean
time to data loss (MTTDL) that is a function of the
mean time to failure (MTTF) and the mean time to re-
pair (MTTR). For example, MTTDL of a RAID5 disk
array withD disks is given as follows [44]:

MTTDLRAID5 =
(2D − 1)µ + ν

D(D − 1)µ2
(1)

whereµ is the failure rate of hard disks (equal to1

MTTF
)

andν is the repair rate (equal to 1

MTTR
).

It must be noted that MTTR is typically no more than
hundreds of hours while MTTF is typically many orders
of magnitude larger than MTTR. Consequently, MTTDL
(or the system reliability) increases approximately lin-
early with ν (or with decreasing MTTR). The system
availability, formally defined as MTTF

MTTF+MTTR
[11], im-

proves with decreasing MTTR. Importantly, increasing
the user response time significantly will likely lead to
a violation of SLA, an event that is considered a sys-
tem failure [11], thus worsening the system reliability
and availability [5, 11]. Therefore, reducing the recon-
struction time and user response time simultaneously
is critical for improving the reliability and availability
of RAID-structured storage systems, especially as the
RAID reconstruction is becoming more frequent and
lengthier in large-scale storage systems.

0
30
60
90
120
150
180

9 43 59 150 200
I/O Intensity (IOPS)

Re
co
on

str
uc
tio

n T
im

e (
mi

nu
te)

0

15

30

45

60

Re
sp
on

se
Ti
me

 (m
illi

sec
on

d)

Reconstruction Time Response Time

Figure 2: I/O intensity impact on reconstruction.

On the other hand, user I/O intensity has a signifi-
cant impact on the on-line RAID reconstruction perfor-
mance, as show in Figure 2. The experimental setup is
the same as that in Figure 1, except that we imposed dif-
ferent I/O request intensities. Moreover, the RAID re-
construction process is set to yield to user I/O requests
(i.e., RAID favors the user I/O requests). From Figure
2, one can see that both the reconstruction time and user
response time increase with IOPS. When IOPS of user
I/O requests reaches its maximum of 200, both the re-
construction time and average user response time have
also reached their respective maximum, with the former
being 20.9 times its minimum value while the latter be-
ing 3.76 times its minimum value when IOPS of user I/O
requests is at its minimum of 9.

From the above experiments and analysis, we believe
that reducing the amount of user I/O requests directed
to the degraded RAID set is an effective approach to re-
ducing the reconstruction time and alleviating the user
performance degradation simultaneously, thus improv-
ing the reliability and availability of RAID-structured
storage systems.

2.3 Workload locality
Studies indicate that access locality is one of the key
web workload characteristics [6] and observe that 10% of
files accessed on a web server approximately account for
90% of the requests and 90% of the bytes transferred [1].
Studies also find that there is a significant portion of the
files, 28%-49%, are only accessed once [6].

As a result of access locality, caches have been widely
employed to improve the storage system performance.
The storage cache, while proven very effective in captur-
ing workload locality, is so small in capacity compared
with the typical storage device that it usually cannot cap-
ture all workload locality. Thus the locality underneath
the storage cache can still be effectively mined and uti-
lized [9, 24, 38]. For example, based on the study on
C-Miner [24] that mines block correlation below the stor-
age cache, correlation-directed prefetching and data lay-
out reduce the user response time by 12-25% compared
with the baseline case. By utilizing the workload locality
at the block level, PRO [38] reduces the reconstruction
time by up to 44.7% and the user response time by 3.6-
23.9% simultaneously.

3

Based on these observations, redirecting all read data
will increase the chances that the redirected data will
never be accessed in the future, choke the request queue
on the surrogate RAID set and increase its overhead.
Therefore, WorkOut only redirects the popular read data
to the surrogate RAID set by exploiting the access local-
ity so that future read requests to these popular data can
be served by the surrogate RAID set.Popular data in this
paper is defined as the data that has been read at least
twice.Different from read requests, write requests can be
served by any persistent storage device. Thus WorkOut
redirects all write requests to the surrogate RAID set.

3 WorkOut
In this section, we first outline the main principles guid-
ing the design of WorkOut. Then we present an archi-
tecture overview of WorkOut, followed by a description
of the WorkOut organization and algorithm. The design
choice and data consistency issues of WorkOut are dis-
cussed at the end of this section.

3.1 Design principles
WorkOut focuses on outsourcing I/O workloads and aims
to achieve reliability, availability, flexibility, and ex-
tendibility with data consistency guarantee, as follows.

Reliability. To reduce the window of vulnerability and
thus improve the system reliability, the reconstruction
time must be significantly reduced. Since user I/O inten-
sity severely affects the reconstruction process, WorkOut
aims to avoid I/O workloads as many as possible by redi-
recting it away from the degraded RAID set.

Availability. To alleviate the user performance degra-
dation and thus meet SLA, the user response time during
reconstruction must be significantly reduced. WorkOut
strives to achieve this goal by significantly reducing, if
not eliminating, the contention between external user I/O
requests and internal reconstruction requests, by means
of outsourcing I/O workloads to a surrogate RAID set.

Flexibility. Due to the high cost and inconvenience
involved in modifying the organization of an existing
RAID, it is desirable to completely avoid such modifi-
cation and instead utilize a separate surrogate RAID set
judiciously and flexibly. In our current design, the surro-
gate RAID set can be a dedicated surrogate RAID1 set, a
dedicated surrogate RAID5 set or a live surrogate RAID
set that uses the free space of an operational (live) RAID
set. How to choose an appropriate surrogate RAID set
is based on the space overhead, performance, reliability,
and maintainability requirements and trade-offs.

Extendibility. Since I/O intensity affects the per-
formance of not only the reconstruction process but
also other background support RAID tasks, such as re-
synchronization and disk scrubbing, the idea of WorkOut
should be readily extended to improve the performance
of these RAID tasks.

Fa
ile
d

Di
sk

Di
sk

Di
sk

Di
sk

Di
sk

Di
sk

Sp
are

Di
sk

+

Missed Read Write & Popular Read
Degraded RAID Set Surrogate RAID Set

RAID Controller Software

Reconstruction

WorkOut

Popular Data
Identifier

Surrogate
Space Manager

Request Redirector Reclaimer
Trigger

Administration
Interface

AdminCache/Buffer

Application

Re-synchronization
Disk scrubbing

Figure 3: An architecture overview of WorkOut.

Data consistency. Redirecting the write data to a stor-
age device with a single point of failure is unreliable
since data will be lost if a failure occurs in this device.
Therefore, redundant storage devices, such as a RAID
set, are more appropriate for WorkOut to store the redi-
rected data. Moreover, redirected data from different de-
graded RAID sets to the same surrogate RAID set must
not overwrite each other, for otherwise it can be very dan-
gerous and thus will not be acceptable to end users.

3.2 WorkOut architecture overview
Figure 3 shows an architecture overview of WorkOut.
In our current design, WorkOut, working underneath the
storage cache, is an augmented module to the RAID con-
troller software and works with but is independent of
the reconstruction module, so WorkOut can be incorpo-
rated into any RAID controller software with not only
various reconstruction approaches but also other back-
ground support RAID tasks. In this paper, however, we
focus on the reconstruction process and a discussion on
how WorkOut works with some other background sup-
port RAID tasks can be found in Section 4.7.

WorkOut consists of five key functional components:
Administration Interface, Popular Data Identifier, Surro-
gate Space Manager, Request Redirector and Reclaimer,
as shown in Figure 3. Administration Interfacepro-
vides an interface for system administrators to config-
ure the WorkOut design options.Popular Data Identifier
is responsible for identifying the popular read data.Re-
quest Redirectoris responsible for redirecting all write
requests and popular read requests to the surrogate RAID
set, whileReclaimer is responsible for reclaiming all
redirected write data back to the degraded RAID set after
the reconstruction process completes.Surrogate Space
Manager is responsible for allocating and managing a
space in the surrogate RAID set for each current recon-
struction process and controlling the data layout of the
redirected data in the allocated space.

4

D_Table������������������	�
������
����������������������	�
������
���� R_LRU���������	�
�������������	�
����
Figure 4: Data structures of WorkOut.

WorkOut is automatically activated by the reconstruc-
tion module when the reconstruction thread is initiated
and de-activated when the reclaim process completes. In
other words, WorkOut works through the entire recon-
struction and reclaim periods. Moreover, the reclaim
thread is triggered by the reconstruction module when
the reconstruction process completes.

In WorkOut, a physical surrogate RAID set can be
shared by multiple degraded RAID sets simultaneously,
so space in it should be effectively managed. Based on
the parameters pre-configured by system administrators,
the Surrogate Space Manager allocates a disjoint space
for each degraded RAID set that requests a surrogate
RAID set, thus preventing the redirected data from be-
ing overwritten by redirected data from other degraded
RAID sets. Noticeably, the space allocated to a degraded
RAID set is not fixed but could be expanded. For exam-
ple, the Surrogate Space Manager first allocates an esti-
mated space required for a typical degraded RAID set,
and if the allocated space is used up to 90%, it will allo-
cate some extra space to this RAID set. In this paper, we
mainly consider the scenario where there is at most one
degraded RAID set at any given time. Implementing and
evaluating WorkOut in a large-scale storage systems with
multiple concurrent degraded RAID sets are in process.

3.3 The WorkOut organization and algorithm
WorkOut relies on two key data structures to redirect re-
quests and identify popular data, namely,D Table(a log
table that manages the redirected data) andR LRU (an
LRU-style list that identifies the most recent reads), as
shown in Figure 4.D Tablecontains the log of all redi-
rected data, including the following four important vari-
ables. D OffsetandS Offset indicate the offsets of the
redirected data in the degraded RAID set and the surro-
gate RAID set, respectively.Lengthindicates the length
of redirected data andD Flag indicates whether the redi-
rected data is the redirected write data from the user ap-
plication (D Flag is set to be true) or the redirected data
from the degraded RAID set to the surrogate RAID set
(D Flag is set to be false). R LRU is an LRU list that
stores the information (D offsetandLengthof read data)
of the most recent read requests. Based on RLRU, pop-
ular read data can be identified and redirected to the sur-
rogate RAID set.

Since WorkOut focuses on outsourcing user I/O work-
loads during reconstruction and does not modify the ex-
isting reconstruction algorithm, how to perform the re-
construction requests remains the job of the reconstruc-

tion module, which is dependent upon the specific recon-
struction algorithm and thus not shown in this paper.

During reconstruction, all write requests are redirected
to the surrogate RAID set after determining whether they
should overwrite their previous location or write to new
location according to DTable. Whereas, for each read
request, DTable is first checked to determine whether
the read data is in the surrogate RAID set. If the read
request does not hit DTable, it will be served by the de-
graded RAID set. Whether the fetched read data is pop-
ular and should be redirected to the surrogate RAID set
are indicated by RLRU. If a read request hits RLRU,
the read data is considered popular and redirected to the
surrogate RAID set, and the corresponding data informa-
tion is inserted into DTable. If the entire targeted read
data is already in the surrogate RAID set, the read request
will be served by the surrogate RAID set. Otherwise, if
only a portion of the read data is in the surrogate RAID
set, that is, it partially hits DTable, the read request will
be split and served by both the sets. In order to make
the best of the allocated space for the redirected data and
improve the performance, the redirected data is laid out
as sequentially as possible in the surrogate RAID set.

The redirected write data is only temporarily stored
in the surrogate RAID set and thus should be reclaimed
back to the newly recovered RAID set (i.e., the for-
merly degraded RAID set) after the reconstruction pro-
cess completes. Since the redirected read data is already
in the degraded RAID set, it needs not be reclaimed as
long as logs of such data are removed from DTable to
indicate that the data in the surrogate RAID set is in-
valid. In order not to affect the performance of the newly
recovered RAID set, the priority of the reclaim process
is set to be the lowest, which will not affect the reliability
of the redirected data as explained in Section 3.5.

During the reclaim period, all requests to the newly re-
covered RAID set must be checked carefully in DTable
for the purpose of data consistency. If a write request hits
D Table and its DFlag is true, meaning that it rewrites
the old data that is still in the surrogate RAID set, the cor-
responding log in DTable must be deleted before writ-
ing the data to the correct location on the newly recov-
ered RAID set, to prevent the new write data from be-
ing overwritten by the reclaimed data. In addition, if a
read request hits DTable and its DFlag is true, meaning
that the up-to-date data of the read request has not been
reclaimed back, the read request will be served by the
surrogate RAID set.

3.4 Design choices
WorkOut can redirect data to different persistent config-
urations of storage devices, such as a dedicated surrogate
RAID1 set, a dedicated surrogate RAID5 set and a live
surrogate RAID set.

5

Table 1: Comparisons of three optional surrogate RAID sets used in WorkOut.
Optional surrogate RAID set Space Overhead Performance Reliability Maintainability

A dedicated surrogate RAID1 set medium medium high simple
A dedicated surrogate RAID5 set high high high simple

A live surrogate RAID set low low medium-high complicated

A dedicated surrogate RAID1 set. In this case,
WorkOut stores the redirected data in two mirroring
disks, namely, a dedicated surrogate RAID1 set. The ad-
vantage of this design option is its high reliability, simple
space management and moderate space overhead, while
its disadvantage is obvious: relatively low performance
gain due to the lack of I/O parallelism.

A dedicated surrogate RAID5 set. In favor of relia-
bility and performance (access parallelism), a dedicated
surrogate RAID5 set can be deployed to store the redi-
rected data. The space management is simple while the
space overhead is relatively high.

A live surrogate RAID set. WorkOut can utilize the
free space of a live surrogate RAID set in a large-scale
storage system consisting of multiple RAID sets and
does not incur any additional device overhead that the
first two design options cannot avoid. In this case, Work-
Out gains high reliability owing to its redundancy, but re-
quires complicated maintenance. Due to the contention
between the redirected requests from the degraded RAID
set and the native I/O requests targeted at the live surro-
gate RAID set, the performance in this case is lower than
that in the former two design options.

The three design options are all feasible and can
be made available for system administrators to choose
from through the Administration Interface based on their
space overhead, performance, reliability and maintain-
ability requirements and tradeoffs, as summarized in Ta-
ble 1. In this paper, the prototype implementation and
performance evaluations are centered around the dedi-
cated surrogate RAID5 set, although sample results from
the other two design choices are also given to show the
quantitative differences among them.

3.5 Data consistency
Data consistency in WorkOut includes three aspects: (1)
Redirected data must be reliably stored in the surrogate
RAID set, (2) User reads must fetch the up-to-date data,
and (3) The key data structures should be safely stored
until the reclaim process completes.

First, in order to avoid data loss caused by a disk fail-
ure in the surrogate RAID set, all redirected write data in
the surrogate RAID set should be protected by a redun-
dancy scheme, such as RAID1 or RAID5. To simplify
the design and implementation, the redirected read data
is stored in the same manner as the redirected write data.
If a disk failure in the surrogate RAID set occurs, data
will no longer be redirected to the surrogate RAID set
and the write data that was already redirected should be
reclaimed back to the degraded RAID set or redirected

to another surrogate RAID set if possible. Our prototype
implementation adopts the first option.

During the reclaim period, the redirected data in the
surrogate RAID set is protected in exactly the same way
as normal data is protected in any RAID set of the same
level (RAID1 or RAID5). Given the reasonable assump-
tion that the reliability of the surrogate RAID set (RAID1
or RAID5) is at least as good as that of the newly recov-
ered RAID set, the redirected data will not be any more
likely to be lost (due to unrecoverable failures) on the
former than on the latter. Therefore, it is reasonable to
exclude the reclaim time from the reconstruction time in
the reliability evaluation of WorkOut.

Second, since the up-to-date data for a read request
can be stored either in the degraded RAID set or in the
surrogate RAID set if the data is popular or modified by a
previous write request during reconstruction, every read
request is first checked in DTable to determine whether
it should be served by the degraded RAID set, the surro-
gate RAID set or both (if the data is partially modified)
to keep the fetched data always up-to-date, until all the
redirected write data is reclaimed.

Finally, since the content of DTable cannot be lost
during the entire period when WorkOut is activated,
D Table must be stored in a non-volatile memory to pre-
vent data loss in the event of a power supply failure. For-
tunately, DTable is in general very small (see Section
4.8) and thus will not incur significant hardware cost.

4 Performance Evaluations
In this section, we evaluate the performance of WorkOut
through extensive trace-driven and benchmark-drivenex-
periments in a prototype implementation of WorkOut.

4.1 Prototype implementation
We have implemented WorkOut by embedding it into the
Linux Software RAID (MD) as a built-in module. In or-
der not to impact the RAID performance in the normal
mode, WorkOut is activated only when the reconstruc-
tion process is initiated. During reconstruction, WorkOut
tracks user I/O requests in themakerequestfunction and
issues them to the degraded RAID set or the surrogate
RAID set based on the request type and DTable.

By setting the reconstruction bandwidth range, MD
assigns different disk bandwidth to serve user I/O re-
quests and reconstruction requests and ensures that the
reconstruction speed is confined within the set range
(i.e. between the minimum and maximum reconstruction
bandwidth). For example, if the reconstruction band-
width range is set to be the default of 1MB/s-200MB/s,

6

MD will favor the user I/O requests as much as possible
while it ensures that the reconstruction speed is at least
1MB/s. Under heavy I/O workloads, MD will keep the
reconstruction speed at approximately 1MB/s but allows
it to be much higher than 1MB/s when the I/O intensity is
low. At one extreme when there is no user I/O, the recon-
struction speed will be roughly equal to the disk trans-
fer rate (e.g., 78MB/s in our prototype system). Equiva-
lently, theminimum reconstruction bandwidthof XMB/s
(e.g., 1MB/s, 10MB/s, 100MB/s) refers to a reconstruc-
tion range ofXMB/s-200MB/s in MD. When the mini-
mum reconstruction bandwidth is set to 100MB/s, which
is not obtainable for most disks, MD utilizes any disk
bandwidth available for the reconstruction process.

To better examine the WorkOut performance on the
existing RAID reconstruction algorithms, we incorporate
WorkOut into MD’s default reconstruction algorithm PR,
and PRO-powered PR (PRO for short) that is also imple-
mented in MD. PR (Pipeline Reconstruction) [23] takes
advantage of the sequential property of track retrievals
to pipeline the reading and writing processes. PRO
(Popularity-based multi-threaded Reconstruction Opti-
mization) [38, 39] allows the reconstruction process to
rebuild the frequently accessed areas prior to other areas.

4.2 Experimental setup and methodology

We conduct our performance evaluation of WorkOut on
a platform of server-class hardware with an Intel Xeon
3.0GHz processor and 1GB DDR memory. We use
2 Highpoint RocketRAID 2220 SATA cards to house
15 Seagate ST3250310AS SATA disks. The rotational
speed of these disks is 7200 RPM, with a sustained trans-
fer rate of 78MB/s, and the individual disk capacity is
250GB. A separate IDE disk is used to house the operat-
ing system (Fedora Core 4 Linux, kernel version 2.6.11)
and other software (MD and mdadm). For the foot-
print of the workloads, we limit the capacity of each
disk to 10GB in the experiments, which does not notice-
ably affect the conclusions of this paper. In our proto-
type implementation, we use the main memory to sub-
stitute a battery-backed RAM for simplicity and for the
fact that DTable’s space overhead is very small and
the latter’s performance is roughly the same as the for-
mer. Moreover, since battery-backed RAM has become
a de factostandard form of NVRAM for storage con-
trollers [7, 16, 17], the write penalty due to DTable up-
dates can be negligible.

Generally speaking, there are two models for trace re-
play in trace-driven experiments: open-loop and closed-
loop [26, 34]. In an open-loop model, new I/O arrivals
are independent of I/O completions, while in an closed-
loop model, new I/O arrivals are only triggered by I/O
completions. In this paper, we use both the open-loop
model (trace replay with RAIDmeter [38, 39]) and the

Table 2: The trace characteristics.
Trace

Trace Characteristic
Write Ratio IOPS Aver. Req. Size(KB)

Fin1 67.18% 69 6.2
Fin2 17.61% 125 2.2
Web 0% 113 15.1

closed-loop model (TPC-C-like benchmark [40]) to eval-
uate the WorkOut performance. While the former has the
potential to overestimate the user response time measure
since the I/O arrival rate is independent of the underlying
system and thus can cause the request queue (the queuing
delay) to grow rapidly when the storage system is slow
and the request rate is high, the opposite is true for the
latter as the request arrival rate is dictated by the process-
ing speed of the underlying system and the request queue
is generally limited in length (i.e., equal to the number of
independent request threads).

The traces used in our experiments are obtained from
the Storage Performance Council [28, 37]. The two fi-
nancial traces (or Fin1 and Fin2) were collected from
OLTP applications running at a large financial institution
and the WebSearch2 trace (or Web) was collected from a
machine running a web search engine. The three traces
represent different access patterns in terms of write ratio,
IOPS and average request size, as shown in Table 2. The
write ratio of the Fin1 trace is the highest, followed by
the Fin2 trace, while the read-dominated Web trace ex-
hibits the locality property prominently. Since the Web
trace is too intense to be tolerated by our degraded RAID
set, we only use part of the Web trace attributed to device
zero while the part due to device one and two is ignored.
Moreover, to fully and evenly cover the address space
of the RAID set from the three traces that have limited
footprints, we scale up the address coverage of the I/O
requests by multiplying the address of each request with
an appropriate scaling factor (constant) without changing
the size of each request.

The trace-driven evaluation is based on RAIDme-
ter [38, 39] that is a block-level trace replay software
with functions of replaying traces and evaluating the user
response time of the storage device. The RAID recon-
struction performance is evaluated in terms of the fol-
lowing two metrics: reconstruction time and average user
response time during reconstruction.

We also use a TPC-C-like benchmark that is imple-
mented with TPCC-UVA [30] and the Postgres database
and generates mixed transactions based on the TPC-C
specification [40] to evaluate the WorkOut performance.
20 warehouses are built on the Postgres database with the
ext3 file system in the degraded RAID set. Transactions,
such as PAYMENT, NEWORDER, DELIVERY, gener-
ate read and write requests at the RAID level. To evaluate
the performance by various reconstruction schemes, we

7

Table 3: The reconstruction time results.
Traces

Reconstruction Time (second)
Off-line PR WorkOut+PR speedup PRO WorkOut+PRO speedup

Fin1 1121.75 203.13 5.52 1109.62 188.26 5.89
Fin2 136.4 745.19 453.32 1.64 705.79 431.24 1.64
Web 9935.6 7623.22 1.30 9888.27 7851.36 1.26

Table 4: The average user response time results.

Traces
Average User Response Time during Reconstruction (millisecond)

Normal Degraded PR WorkOut+PR speedup PRO WorkOut+PRO speedup
Fin1 7.92 9.52 12.71 4.43 2.87 9.83 4.58 2.15
Fin2 8.13 13.36 25.8 9.69 2.66 22.97 10.19 2.25
Web 18.46 26.95 38.57 28.35 1.36 35.58 29.12 1.22

compare the transaction rates (transactions per minute)
that are generated at the end of the benchmark execution.

4.3 Trace-driven evaluations
We first conduct experiments on a RAID5 disk array con-
sisting of 8 disks with a stripe unit size of 64KB, while
running PR, PRO and WorkOut-powered PR and PRO
respectively, to evaluate reconstruction times and aver-
age user response times driven by the three traces, un-
der the minimum reconstruction bandwidth of 1MB/s, as
shown in Table 3 and Table 4, respectively. We configure
a dedicated RAID5 disk array consisting of 4 disks with
a stripe unit size of 64KB as the surrogate RAID set.

From Table 3, one can see that WorkOut speeds up
the reconstruction time by a factor of up to 5.52, 1.64
and 1.30 for the Fin1, Fin2 and Web traces respectively.
The significant improvement achieved on the Fin1 trace,
with a reconstruction time of 203.13s vs. 1121.75s for
PR and 188.26s vs. 1109.62s for PRO, is because of the
fact that 84% (69% of writes plus 15% of reads) of the
requests are redirected away from the degraded RAID
set (see Figure 5), which enables the speed of the on-line
reconstruction to approach that of the off-line counter-
part. In our experiments, the off-line reconstruction time
is 136.4 seconds for PR in the same platform. Moreover,
WorkOut outsources 36% and 34% of user I/O requests
away from the degraded RAID set for the Fin2 and Web
traces, which is much fewer than that for the Fin1 trace,
thus reducing the reconstruction time accordingly.

From Table 4, one can see that, compared with PR,
WorkOut speeds up the average user response time by a
factor of up to 2.87, 2.66 and 1.36 for the Fin1, Fin2 and
Web traces respectively. The average user response times
achieved by WorkOut are even better than that in the
normal or degraded mode for the Fin1 and Fin2 traces.
The reasons why WorkOut achieves significant improve-
ment on response times are threefold. First, a signifi-
cant amount of requests are redirected away from the de-
graded RAID set during reconstruction, as shown in Fig-
ure 5. The response times of requests redirected to the
surrogate RAID set are no longer affected by the recon-
struction process that competes for the available band-
width with user I/O requests on the degraded RAID set.
Second, redirected data is laid out as sequentially as pos-

69%

15%15% 21%
34%

0%

20%

40%

60%

80%

100%

Fin1 Fin2 Web

Pe
rce

nta
ge
 (%

 of
 to

tal
)

(N
o r

ed
ire

ct
wr

ite
)

Write
Read

Figure 5: Percentage of redirected requests for WorkOut,
under the minimum reconstruction bandwidth of 1MB/s.

sible in the surrogate RAID set, thus further speeding
up the user response time. Third, since many requests
are redirected away from the degraded RAID set, the I/O
queue on the degraded RAID set is reduced accordingly,
thus reducing the response times of the remaining I/O re-
quests served by the degraded RAID set. Therefore, the
average user response time with WorkOut is much lower
than that without WorkOut, especially for the Fin1 trace.

From Table 3 and Table 4, one can also see that
WorkOut-powered PRO performs similarly to WorkOut-
powered PR. The reason is that WorkOut has redirected
all write requests and popular read requests to the surro-
gate RAID set, thus depleting the amount of popularity
of I/O workloads remained in the degraded RAID set that
can be exploited by PRO. Based on this observation, in
the following experiments, we only compare WorkOut-
powered PR (or WorkOut) with PR and PRO.

4.4 Sensitivity study
The WorkOut performance is influenced by several im-
portant factors, including available reconstruction band-
width, the size of the degraded RAID set, the stripe unit
size, and the RAID level. In what follows we study
their sensitivity to and impact on WorkOut quantitatively
through trace-driven results of the Fin2 trace due to space
limit and the fact that other traces show similar trends as
the Fin2 trace.

Reconstruction bandwidth. To evaluate how the
minimum reconstruction bandwidth affects the recon-
struction performance, we conduct experiments that
measure reconstruction times and average user response
times as a function of different minimum reconstruction
bandwidth, 1MB/s, 10MB/s and 100MB/s, respectively.
Figure 6 plots the experimental results on a RAID5 disk

8

0
100
200
300
400
500
600
700
800

1MB/s 10MB/s 100MB/s

Re
co
ns
tru

cti
on

 T
im

e (
s) PR

PRO
WorkOut

(a) Reconstruction time

0
200
400
600
800
1000
1200
1400
1600

1MB/s 10MB/s 100MB/s

Av
era

ge
 R
esp

on
se

Ti
me

 (m
s) PR

PRO
WorkOut

(b) Average user response time

Figure 6: Comparisons of reconstruction times and aver-
age user response times with respect to different min-
imum reconstruction bandwidth (1MB/s, 10MB/s and
100MB/s) driven by the Fin2 trace.

array consisting of 8 disks with a stripe unit size of 64KB
driven by the Fin2 trace.

From Figure 6(a), one can see that, with a lower min-
imum reconstruction bandwidth, WorkOut speeds up the
reconstruction time more significantly than with a higher
minimum reconstruction bandwidth. The reason is that
the reconstruction process exploits all the available disk
bandwidth when the reconstruction bandwidth is higher,
thus leaving very small room for the reconstruction time
to be improved.

From Figure 6(b), in contrast, the user response time
increases rapidly with the increasing minimum recon-
struction bandwidth both for PR and PRO, but much
more slowly for WorkOut. WorkOut speeds up the user
response time significantly, by a factor of up to 10.2 and
7.38 over PR and PRO respectively when the minimum
reconstruction bandwidth is set to 100MB/s. From this
viewpoint, the user response time with WorkOut is much
less sensitive to the minimum reconstruction bandwidth
than that without WorkOut. In other words, if the recon-
struction bandwidth is set very high or the storage sys-
tem is reliability-oriented, meaning that the reconstruc-
tion process is given more bandwidth to favor the system
reliability, the user response time improvement by Work-
Out will be much more significant. Moreover, for PR and
PRO, the user response time during reconstruction is so
long that it will likely violate SLA and thus become un-
acceptable to the end users.

Number of disks. To examine the sensitivity of Work-
Out to the number of disks of the degraded RAID set,
we conduct experiments on RAID5 disk arrays consist-
ing of different number of disks (5, 8 and 11) with a
stripe unit size of 64KB under the minimum reconstruc-
tion bandwidth of 1MB/s, driven by the Fin2 trace. Fig-
ure 7 shows the experimental results with respect to the
different numbers of disks for PR, PRO and WorkOut.

From Figure 7(a) and 7(b), one can see that, for all the
three approaches, the reconstruction time increases while
the user response time decreases with the increase in the
number of disks of the degraded RAID set. The reason
is that more disks in a RAID set not only imply a larger
RAID group size and thus more disk read operations by

0
100
200
300
400
500
600
700
800
900

5 8 11

Re
co
ns
tru

cti
on

 T
im

e (
s)

PR
PRO
WorkOut

(a) Reconstruction time

0
5
10
15
20
25
30
35
40
45

5 8 11

Av
era

ge
 R
esp

on
se

Ti
me

 (m
s) PR

PRO
WorkOut

(b) Average user response time

Figure 7: Comparisons of reconstruction times and av-
erage user response times with respect to the number of
disks (5, 8, 11) driven by the Fin2 trace.

0

300

600

900

1200

1500

RAID10 RAID6

Re
co
ns
tru

cti
on

 T
im

e (
ms

) PR
WorkOut

(a) Reconstruction time

0
5
10
15
20
25
30
35
40

RAID10 RAID6

Av
era

ge
 R
esp

on
se

Ti
me

 (m
s) PR

WorkOut

(b) Average user response time

Figure 8: Comparisons of reconstruction times and aver-
age user response times with respect to different RAID
levels (10, 6) driven by the Fin2 trace.

a construction request, but also higher parallelism for the
I/O process. However, WorkOut is less sensitive to the
number of disks than PR and PRO.

Stripe unit size. To examine the impact of the stripe
unit size, we conduct experiments on a RAID5 disk array
consisting of 8 disks with stripe unit sizes of 16KB and
64KB respectively, driven by the Fin2 trace. The experi-
mental results show that WorkOut outperforms PR and
PRO in both the reconstruction time and average user
response time for both the two stripe unit sizes. More-
over, the reconstruction times and average user response
times of WorkOut are almost unchanged, suggesting that
WorkOut is not sensitive to the stripe unit size.

RAID level. To evaluate WorkOut with different
RAID levels, we conduct experiments on a RAID10 disk
array consisting of 4 disks and a RAID6 disk array con-
sisting of 8 disks with the same stripe unit size of 64KB
under the minimum reconstruction bandwidth of 1MB/s,
driven by the Fin2 trace. In the RAID6 experiments, we
measure the reconstruction performance when two disks
fail concurrently.

From Figure 8, one can see that WorkOut speeds up
both the reconstruction times and average user response
times for the two disk arrays. The difference in the
amount of improvement on reconstruction time and user
response time is caused by the different user I/O inten-
sities on the RAID10 and RAID6 disk arrays that have
different numbers of disks. The user I/O intensity on
individual disks in the RAID10 disk array is obviously
higher than that in the RAID6 disk array, thus making
the reconstruction time in the RAID10 disk array higher
than that in the RAID6 disk array.

9

0
5
10
15
20
25
30
35
40
45

Fin1 Fin2 Web

Av
era

ge
 R
esp

on
se

Ti
me

 (m
s) Dedicated RAID1

Dedicated RAID5
Live RAID5
PR

Figure 9: A comparison of average user response times
for different types of surrogate RAID set.

On the other hand, since each read request to the failed
disks in a RAID6 disk array must wait for its data to be
rebuilt on-the-fly, the user response time is severely af-
fected for PR, while this performance degradation is sig-
nificantly alleviated by WorkOut due to its external I/O
outsourcing. For the RAID10 disk array, however, the
situation is quite different, where the read data can be di-
rectly returned from the surviving disks instead of need-
ing to be rebuilt on-the-fly, which explains why WorkOut
does not provide the same amount of improvement on the
user response time for RAID10 as it does for RAID6.

4.5 Different design choices for the surrogate
RAID set

All experiments reported up to this point in this paper
adopt a dedicated surrogate RAID5 set. To examine
the impact of different types of surrogate RAID set on
the WorkOut performance, we also conduct experiments
with a dedicated surrogate RAID1 set (two mirroring
disks) and a live surrogate RAID set (replaying the Fin1
trace on a RAID5 disk array consisting of 4 disks). Sim-
ilar to the experiments conducted in the PARAID [41]
and write off-loading [27] studies, we reserve the 10%
portion of storage space at the end of the live RAID5 set
to be used by WorkOut to store the redirected data. The
degraded RAID set is a RAID5 disk array composed of 8
disks with a stripe unit size of 64KB and under the mini-
mum reconstruction bandwidth of 1MB/s.

The experimental results show that the reconstruction
times of WorkOut are almost the same for the three types
of surrogate RAID sets and outperform PR as expected,
shown in Table 3, since WorkOut outsources the same
amount of requests during reconstruction. Whereas, the
user response times are somewhat different, as shown in
Figure 9. The dedicated surrogate RAID5 set results in
the best user response times for the three traces.

From Figure 9, one can see that the dedicated surro-
gate RAID sets (both RAID1 and RAID5) outperform
the live surrogate RAID set in user response time. The
reason is that all disk resources in the former are dedi-
cated to serving the redirected requests, while in the lat-
ter the redirected requests must compete for the resources
with the native I/O requests on the live RAID set, caus-
ing the disk heads to seek back and forth to serve the
two different types of requests, and thus increasing the

0%
20%
40%
60%
80%
100%
120%

N
or
m
al
iz
ed
 T
ra
ns
ac
tio

n
R
at
e

Normal
Degraded
PR
PRO
WorkOut

(a) Transaction Rate

0

2000

4000

6000

8000

10000

12000

Re
co
ns
tru

cti
on

 Ti
me

 (s
)

(b) Reconstruction time

Figure 10: Comparisons of reconstruction times and
transaction rates driven by the TPC-C-like benchmark.

response time of the redirected requests. The redirected
requests also increase the overall I/O intensity on the live
surrogate RAID set and affect its performance. Our ex-
perimental results show that the performance impact on
the live surrogate RAID set is 43.9%, 23.6% and 36.8%
on average when the degraded RAID set replays the Fin1,
Fin2 and Web traces, respectively. The experimental re-
sults are consistent with the comparisons in Table 1.

4.6 Benchmark-driven evaluations

In addition to trace-driven experiments, we also conduct
experiments on a RAID5 disk array consisting of 8 disks
with a stripe unit size of 64KB driven by the TPC-C-
like benchmark under the minimum reconstruction band-
width of 1MB/s.

From Figure 10(a), one can see that PRO performs al-
most the same as PR due to the random access charac-
teristics of the TPC-C-like benchmark. As WorkOut out-
sources all write requests that are generated by the trans-
actions, both the degraded RAID set and surrogate RAID
set serve the benchmark application, thus increasing the
transaction rate. WorkOut outperforms PR and PRO in
terms of transaction rate, with an improvement of 46.6%
and 36.9% respectively. It also outperforms the origi-
nal system in the normal mode (the normalized baseline)
and the degraded mode, with an improvement of 4.0%
and 22.6% respectively.

On the other hand, since the TPC-C-like benchmark is
highly I/O intensive, all disks in the RAID set are driven
to saturation, thus the reconstruction speed is kept at
around its minimum allowable bandwidth of 1MB/s for
PR and PRO. As shown in Figure 10(b), the reconstruc-
tion times for PR and PRO are similar, at 9835 seconds
and 9815 seconds, respectively, while that of WorkOut
is 8526 seconds, with approximately 15% improvement
over PR and PRO. The main reason why WorkOut gains
much less in reconstruction time with the benchmark-
driven experiments than with the trace-driven experi-
ments lies in the fact that the very high I/O intensity of
the benchmark application constantly pushes the disk ar-
ray to operate at or close to its saturation point, leaving
very little disk bandwidth for the reconstruction process
even with some of the transaction requests being out-
sourced to the surrogate RAID set.

10

0

2000

4000

6000

8000

10000

Fin1 Fin2 Web

Re
-sy

nc
hr
on

iza
tio

n T
im

e (
s) Original

WorkOut

(a) Re-synchronization time

0
5
10
15
20
25
30
35

Fin1 Fin2 Web

Av
era

ge
 R
esp

on
se

Ti
me

 (m
s) Original

WorkOut

(b) Average user response time

Figure 11: Comparisons of re-synchronization times and
average user response times.

4.7 Re-synchronization with WorkOut
To demonstrate how WorkOut optimizes other back-
ground support RAID tasks such as RAID re-
synchronization, we conduct experiments on a RAID5
disk array consisting of 8 disks with a stripe unit size
of 64KB under the minimum re-synchronization band-
width of 1MB/s, driven by the three traces. We configure
a dedicated RAID5 disk array consisting of 4 disks with
a stripe unit size of 64KB as the surrogate RAID set. The
evaluation results of re-synchronization times and aver-
age user response times during re-synchronization are
shown in Figure 11(a) and Figure 11(b), respectively.

Although the re-synchronization process performs
somewhat differently from the reconstruction process,
the re-synchronization requests also compete for the disk
resources with user I/O requests. By redirecting a signifi-
cant amount of user I/O requests away from the RAID set
during re-synchronization, WorkOut can reduce both the
re-synchronization times and user response times. The
results are very similar to that in the reconstruction ex-
periments, so are the reasons behind them.

4.8 Overhead analysis
Memory overhead. To prevent data loss, WorkOut
uses non-volatile memory to store DTable, thus incur-
ring extra memory overhead. When the minimum re-
construction bandwidth is set to 1MB/s, the reconstruc-
tion time is the longest and the amount of redirected
data is the largest, thus consuming correspondingly the
largest amount of memory. In the above experiments
on the RAID5 disk array with individual disk capacity
of 10GB, the maximum memory overheads are 0.14MB,
0.62MB and 1.69MB for the Fin1, Fin2 and Web traces,
respectively. However, the memory overhead incurred
by WorkOut is only temporary and will be removed after
the reclaim process completes. With the rapid increase
in cache size and decrease in cost of non-volatile mem-
ories, this memory overhead is arguably reasonable and
acceptable to the end users.

Implementation overhead. WorkOut contains 780
lines of added or modified code to the source code of
the Linux software RAID (MD), with most lines of code
added to md.c and raidx.c while 37 lines of data struc-
ture code added to mdk.h and raidx.h. Since most of

the added code is independent of the underlying disk ar-
ray layout, they are easy to be shared by different RAID
levels. Moreover, the added code is not interactive with
the reconstruction module, so it is easy to be modified
to optimize the other background support RAID tasks,
only needing to modify the corresponding triggered flag
of WorkOut. Due to this independent characteristic of the
WorkOut module, it is portable to other software RAID
implementations in other operating systems.

5 Related Work
Reconstruction algorithms for RAID-structured stor-
age systems, such as DOR (Disk-Oriented Reconstruc-
tion) [12], PR [23], PRO [38] and others [3, 13, 15,
21, 42, 43], have been extensively studied. However,
they mostly focus on optimizing the reconstruction work-
flow [12, 23] or reconstruction sequence [3, 38] inside
a single RAID set and try to achieve a trade-off be-
tween the reconstruction bandwidth and the I/O serv-
ing bandwidth to satisfy the requirements of end users.
By utilizing the file system’s semantic knowledge, Si-
vathanu et al. proposed a live-block recovery method in
D-GRAID [36] that only reconstructs live data to the hot
spare disk from the viewpoint of file systems.

By reorganizing the data layout of RAID, the recon-
struction performance can be improved. Parity declus-
tering [13] decreases the parity group size to boost scal-
able RAID rebuild rates. The client-driven rebuild ap-
proach [42] based on a per-file RAID layout allows the
clients to rebuild files in parallel, thus achieving better
recovery performance. In large-scale distributed stor-
age systems consisting of hundreds of thousands of disk
drives, FARM [43] exploits excess disk capacity to re-
duce the recovery time, but still faces the bandwidth
competition between the recovery and user I/O requests.

WorkOut, however, focuses on outsourcing I/O work-
loads away from the degraded RAID set during recon-
struction, and, to the best of our knowledge, optimizes
the write-intensive workloads that are by and large ig-
nored by existing reconstruction approaches [38]. More-
over, WorkOut is orthogonal to and can be easily incor-
porated into most existing reconstruction approaches to
accelerate the reconstruction process and alleviate the
performance degradation simultaneously. More impor-
tantly, it can also be extended to improve the perfor-
mance of other background support RAID tasks.

Our study is inspired by the write off-loading [27] and
data migration [2, 20, 22, 25, 41] techniques but with
distinctively different characteristics as shown in Table5.
First, write off-loading [27] redirects write requests at the
block level from one volume to another, to significantly
prolong the idle period for one volume disks to spin down
for a longer time to improve energy efficiency. Second,
data migration [25], defined as moving data from one

11

Table 5: A comparison of systems related to WorkOut.

Scheme Purpose Environment
Data Migration

What When Where

Write off-loading [27]
Energy
efficiency

Enterprise storage
systems

Write data
Write-dominated
period

From spin-down volumes
to spin-up volumes

PARAID [41]
Energy
efficiency

Single RAID set All data Gear shifting
From spin-down disks to
active disks

Data reallocation [2] Performance Multidisk systems All data
Dynamic
to workloads

From busy disk/volumes
to less busy ones

Cuckoo [22] Performance Clustering servers
Frequently-read,
rarely-updated files

N/A
From busy servers onto
others

User-centric
migration [20]

Performance
Networked storage
systems

Data that is currently
read or written

Migration on access
From busy devices to the
least busy ones

WorkOut
Reliability &
performance

Systems with
multiple RAID sets

Write data and
popular read data

Redirect on demand
during reconstruction

From a degraded RAID set
to a surrogate RAID set

storage device to another for the purpose of load bal-
ancing (or load concentration), failure recovery, system
expansion, or other reasons, has been used to improve
the energy efficiency [41] and the storage system per-
formance, such as data reallocation in the products of
EMC’s Symmetrix family of disk array [2], read request
offloading in Cuckoo [22] and the user-centric data mi-
gration in networked storage systems [20].

Different from write off-loading and data migration,
WorkOut, for the purpose of improving the on-line
reconstruction performance, temporarily redirects the
write data and popular read data from the degraded RAID
set to a surrogate RAID set during reconstruction and re-
claims the redirected write data back to the newly recov-
ery RAID set after the reconstruction process completes.

6 Future Work
WorkOut is an ongoing research project. There is still a
rich design space to explore and room to further optimize
WorkOut. Possible directions for future work include,
but are not limited to the following.

Extendibility. Due to the complicated failure char-
acteristics of RAID-structured storage systems, in addi-
tion to the RAID reconstruction and re-synchronization,
some other background support RAID tasks, such as disk
scrubbing and block-level backup and snapshot, are per-
formed to prevent data loss and protect data integrity.
Very similar to the case of the RAID reconstruction, ex-
ternal I/O workloads have a great impact on the perfor-
mance of these support RAID tasks, and vice versa. We
will conduct experiments to measure the impact of Work-
Out on these tasks under more benchmarks.

Free space on a live surrogate RAID set. In the cur-
rent implementation, we configure a reserved space in-
stead of the free space in a live RAID set as the surrogate
RAID set, which can be impractical and inflexible. Uti-
lizing the free space in a live RAID set at the file system
level is complicated as the file system must be engaged to
discover, assign, protect and manage the free space. To
make WorkOut more transparent to the file system, and
more effectively utilize the free space in a live surrogate

RAID set, it would be desirable for WorkOut to obtain
the liveness information at the block level. We will ex-
plore the live block techniques [35] and apply them in
WorkOut to improve its performance.

7 Conclusion
In this paper, we propose a novel scheme, calledWork-
Out (I/O WorkloadOutsourcing), for significantly boost-
ing the RAID reconstruction performance, which uses a
request redirection technique to outsource a significant
amount of I/O requests away from the degraded RAID
set to a surrogate RAID set during reconstruction, thus
significantly speeding up the reconstruction time and
user response time.

We carried out a comprehensive performance evalua-
tion of WorkOut by implementing a lightweight proto-
type of WorkOut in the Linux software RAID and con-
ducting a number of trace-driven and benchmark-driven
experiments. The experimental results demonstrate that,
compared with the existing reconstruction algorithms PR
and PRO, WorkOut speeds up the reconstruction time by
a factor of up to 2.87, with an average of 2.09, and speeds
up the average user response time by a factor of up to
5.89, with an average of 2.88, simultaneously.

In conclusion, this paper makes the following main
contributions:

• We propose WorkOut to outsource I/O workloads
away from the degraded RAID set during recon-
struction, thus significantly improving the on-line
reconstruction performance.

• We conduct comprehensive experiments on our
lightweight prototype implementation to evaluate
the WorkOut performance and its sensitivity to a
number of workloads and system parameters.

• We provide useful design insight and guidance for
storage system designers and administrators by ex-
ploiting three WorkOut design options based on
their space overhead, performance, reliability, and
maintainability trade-offs.

• Importantly, we demonstrate how WorkOut can
be easily deployed to improve the performance of
other background support RAID tasks such as re-
synchronization.

12

References
[1] M. Arlitt and C. Williamson. Web Server Workload Character-

ization: The Search for Invariants. InSIGMETRICS’96, May.
1996.

[2] R. Arnan, E. Bachmat, T. K. Lam, and R. Michel. Dynamic Data
Reallocation in Disk Arrays.ACM Transactions on Storage, 3(1),
2007.

[3] E. Bachmat and J. Schindler. Analysis of Methods for Scheduling
Low Priority Disk Drive Tasks. InSIGMETRICS’02, 2002.

[4] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk Drives.
In SIGMETRICS’07, Jun. 2007.

[5] A. Brown and D. A. Patterson. Towards Availability Benchmarks:
A Case Study of Software RAID Systems. InUSENIX’00, Jun.
2000.

[6] L. Cherkasova and G. Ciardo. Characterizing Temporal Locality
and its Impact on Web Server Performance. Technical Report
HPL-2000-82, Hewlett Packard Laboratories, Jul. 2000.

[7] EMC storage products. http://www.emc.com/products/category/
storage.htm.

[8] G. Gibson. Reflections on Failure in Post-Terascale Parallel Com-
puting. Keynote. InICPP’07, Sep. 2007.

[9] B. S. Gill. On Multi-level Exclusive Caching: Offline Optimality
and Why promotions are better than demotions. InFAST’08, Feb.
2008.

[10] J. Gray. Rules of Thumb in Data Engineering. Keynote Address.
In ICDE’00, Feb. 2000.

[11] J. L. Hennessy and D. A. Patterson.Computer Architecture: A
Quantitative Approach. Fourth edition, 2006.

[12] M. Holland. On-Line Data Reconstruction in Redundant Disk
Arrays. PhD thesis, Carnegie Mellon University, Apr. 1994.

[13] M. Holland and G. Gibson. Parity Declustering for Continuous
Operation in Redundant Disk Arrays. InASPLOS’92, Oct. 1992.

[14] M. Holland, G. Gibson, and D. P. Siewiorek. Architectures and
Algorithms for On-Line Failure Recovery in Redundant Disk Ar-
rays. Journal of Distributed and Parallel Databases, 2(3):295–
335, Jul. 1994.

[15] R. Hou, J. Menon, and Y. Patt. Balancing I/O Response Time and
Disk Rebuild Time in a RAID5 Disk Array. InHICSS’93, 1993.

[16] HP Disk Storage Systems. http://h18006.www1.hp.com/storage/
disk storage/index.html.

[17] IBM Disk Storage Systems. http://www-03.ibm.com/systems/
storage/disk/.

[18] Iometer. http://sourceforge.net/projects/iometer.

[19] W. Jiang, C. Hu, Y. Zhou, and A. Kanevsky. Are Disks the Dom-
inant Contributor for Storage Failures? A Comprehensive Study
of Storage Subsystem Failure Characteristics. InFAST’08, Feb.
2008.

[20] S. Kang and A. L. N. Reddy. User-Centric Data Migration in
Networked Storage Systems. InIPDPS’08, Apr. 2008.

[21] H. H. Kari, H. K. Saikkonen, N. Park, and F. Lombardi. Analysis
of repair algorithms for mirrored-disk systems.IEEE Transac-
tions on Reliability, 46(2):193–200, 1997.

[22] A. J. Klosterman and G. Ganger. Cukoo: Layered clustering for
NFS. Technical Report CMU-CS-02-183, Carnegie Mellon Uni-
versity, Oct. 2002.

[23] J. Y.B. Lee and J. C.S. Lui. Automatic Recovery from DiskFail-
ure in Continuous-Media Servers.IEEE Transaction on Parallel
and Distributed Systems, 13(5):499–515, May. 2002.

[24] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-Miner: Mining
Block Correlations in Storage Systems. InFAST’04, Mar. 2004.

[25] C. Lu, G. A. Alvarez, and J. Wilkes. Aqueduct: Online Data
Migration with Performance Guarantees. InFAST’02, Jan. 2002.

[26] M. P. Mesnier, M. Wachs, R. R. Sambasivan, J. Lopez, J. Hen-
dricks, G. R. Ganger, and D. O’Hallaron. //TRACE: Parallel
Trace Replay with Approximate Causal Events. InFAST’07, Feb.
2007.

[27] D. Narayanan, A. Donnelly, and A. Rowstron. Write Off-
Loading: Practical Power Management for Enterprise Storage.
In FAST’08, Feb. 2008.

[28] OLTP Application I/O and Search Engine I/O. UMass Trace
Repository. http://traces.cs.umass.edu/index.php/storage/storage.

[29] D. A. Patterson, G. Gibson, and R. H. Katz. A Case for Redun-
dant Arrays of Inexpensive Disks (RAID). InSIGMOD’88, Jun.
1988.

[30] J. Piernas, T. Cortes, and J. M. Garcı́a. TPCC-UVA: A
free, open-source implementation of the TPC-C Benchmark.
http://www.infor.uva.es/ diego/tpcc-uva.html. 2005.

[31] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure Trends in a
Large Disk Drive Population. InFAST’07, Feb. 2007.

[32] A. Riska and E. Riedel. Disk Drive Level Workload Characteri-
zation. InUSENIX’06, Jun. 2006.

[33] B. Schroeder and G. Gibson. Disk Failures in the Real World:
What Does an MTTF of 1,000,000 Hours Mean to You? In
FAST’07, Feb. 2007.

[34] B. Schroeder, A. Wierman, and M. Harchol-Balter. Open Versus
Closed: A Cautionary Tale. InNSDI’06, May. 2006.

[35] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Life or Death at Block-Level. In
OSDI’04, Dec. 2004.

[36] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C.
Arpaci-Dusseau, and R. H. Arpaci-Dusseau. Improving Storage
System Availability with D-GRAID. InFAST’04, Mar. 2004.

[37] Storage Performance Council.
http://www.storageperformance.org/home.

[38] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang,
and Z. Song. PRO: A Popularity-based Multi-threaded Recon-
struction Optimization for RAID-Structured Storage Systems. In
FAST’07, Feb. 2007.

[39] L. Tian, H. Jiang, D. Feng, Q. Xin, and X. Shu. Implementa-
tion and Evaluation of a Popularity-Based Reconstruction Op-
timization Algorithm in Availability-Oriented Disk Arrays. In
MSST’07, Sep. 2007.

[40] TPC-C specification. http://www.tpc.org/tpcc/.

[41] C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and
G. Kuenning. PARAID: The Gear-Shifting Power-Aware RAID.
In FAST’07, Feb. 2007.

[42] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,
J. Small, J. Zelenka, and B. Zhou. Scalable Performance of the
Panasas Parallel File System. InFAST’08, Feb. 2008.

[43] Q. Xin, E. L. Miller, and T. J. E. Schwarz. Evaluation of Dis-
tributed Recovery in Large-Scale Storage Systems. InHPDC’04,
Jun. 2004.

[44] Q. Xin, E. L. Miller, T. J. E. Schwarz, D. D. E. Long, S. A. Brandt,
and W. Litwin. Reliability Mechanisms for Very Large Storage
Systems. InMSST’03, Apr. 2003.

13

