
A Performance Model and Space Allocation Schemes for SSDs

USENIX FAST 2009 Submission Version

Abstract
The recently introduced Solid State Drives (or Disks)
(SSDs) have started to replace hard drives in laptop com-
puters. The server market is also looking for an oppor-
tune time to deploy SSDs because of the many merits
that they possess. Even though disk scheduling algo-
rithms and file systems of today have been optimized to
exploit the characteristics of hard drives, relatively little
attention has been paid to model and exploit the charac-
teristics of SSDs. In this paper, we consider the use of
SSDs from the file system standpoint. To do so, we de-
rive a simple performance model for the SSD. Based on
this model and SSDs’ inherent characteristic that reads
are constant, while writes are not, we devise two file sys-
tem space allocation schemes for SSDs. Through real
implementations on Linux and using three SSD products
available in the market, we show that substantial perfor-
mance improvements can be achieved for a wide range
of workloads. We show that for most of the workloads
that we experiment with, the execution time is reduced
to half to one-third of the original ext2 file system.

1 Introduction
The recently introduced Solid State Drives (or Disks)
(SSDs) are slowly, but surely catching the interest of
consumers. They are starting to replace hard drives in
laptop computers and are serious contenders in server
computers as well due to its many favorable character-
istics inherited from Flash memory that are the build-
ing blocks of SSDs [1, 2, 8]. With no mechanical parts,
unlike the hard drive, SSDs are light, shock-resistant,
noiseless, and consumes considerably less power.

Though interest regarding SSDs has started to rise,
they have mostly been directed to the internals of the
SSD [3, 12]. Our interest rests on how the file system
can make better use of SSDs. Even though disk schedul-
ing algorithms and file systems of today have been opti-
mized to exploit the characteristics of hard drives, rela-
tively little attention has been paid to model and exploit
the characteristics of SSDs from the file system stand-
point.

In this paper, we derive a simple performance model
for the SSD that, in essence, is identical to that of the
hard drive. The model introduces a notion of a focal fac-
tor that provides guidance in allocating space in the file

system. Using this model and SSDs’ inherent character-
istic that reads are constant, while writes are not, we de-
vise two file system space allocation schemes for SSDs.
Through real implementations on Linux and using three
SSD products available in the market, we show that sub-
stantial performance improvements can be achieved for
a wide range of workloads. By employing the space al-
location schemes that we propose, for most of the work-
loads, the execution time is reduced to half to one-third
of the original ext2 file system. In one case, execution
time of roughly 1300 seconds when using the original
allocation scheme is reduced to around 200 seconds.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the basics characteristics of Flash
memory storage and SSDs as well as the related works.
In Section 3, we derive write cost models for the hard
drive and the SSD. Based on the implications of the
models, we devise two new space allocation schemes for
SSDs in Section 4. In Sections 5 and 6 we present the ex-
perimental environment and discuss the results obtained
from the experiments. Then, we conclude with a sum-
mary and directions for future work in Section 7.

2 SSD Background and Related Works
In this section, we present background information as
well as previous works related to Flash memory and
SSDs that pertain to our study.

2.1 Flash memory and SSD basics
The storage medium of an SSD is Flash memory. Hence,
it inherits most of the essential properties of Flash mem-
ory. Though both NOR type and NAND type Flash
memory could be used, because of its low cost-per-bit,
the NAND Flash memory is widely used in high capac-
ity Flash memory storage such as SSDs and USB drives.

A NAND Flash memory chip has multiple blocks and
each block has a set of pages. Typically, a block size
is 16∼256KB and a page size is 0.5∼4KB. Data are
read/written from/to in page units. It takes 20∼25µsec
to read a page and 200∼300µsec to write a page within
a Flash chip (excluding data transmission time) [25, 26].
Data once written to a page cannot be modified with-
out erasing the block containing the page. An erase
operation takes the longest time, specifically, around
1.5∼2msec. To accommodate the asymmetric unit sizes

USENIX FAST 2009 Submission Version 1



(a) General Merge (b) Switch Merge

Figure 1: Merge operations of an FTL

and times for read, write, and erase operations at the
Flash memory chip level and provide a readable/writable
sector disk interface, Flash memory storages employ a
complex software module called the Flash Translation
Layer (FTL) [9, 19].

To achieve high performance and large capacity, an
SSD has numerous Flash memory chips and SRAM
and SDRAM buffers controlled by a microprocessor [3].
The SRAM buffer stores data for the processor and the
SDRAM buffer stores the Flash memory data that is re-
quested. SSDs also employ FTLs to control and sched-
ule all operations of these chips and buses. Multiple
read/write requests stored in the SDRAM buffer can
be served simultaneously on multiple buses and chips
when possible. In most SSDs, multiple Flash memory
chips comprise a single logical Flash memory chip. All
same numbered blocks in all the chips form a logical
block, and all same numbered pages in these blocks form
a logical page. As data can be read/written from/to
physical pages of a logical page in parallel, this logi-
cal union improves performance of SSDs as RAID does
with hard drives. An important role of an FTL would
be to exploit the multiple chips and buses so as to maxi-
mize the parallelism among these resources. As multiple
chips share a bus, commands and data transfer to/from
each chip on a bus occurs in an interleaved manner and,
thus, parallel operations of multiple chips and buses are
called chip-level and bus-level interleaving, respectively.
Only through these interleaving operations can the per-
formance of an SSD exceed that of a single Flash mem-

ory chip.

2.2 Mapping in FTL
Another important task of the FTL is to map sectors
to Flash memory storage. The mapping technique of
choice can have a profound effect on the behavior of
Flash memory storage such as SSDs.

The two basic forms of mapping are page mapping
and block mapping. Low capacity NOR Flash memory
cards have used page mapping in their FTLs [9], while
many high capacity NAND Flash memory storages such
as USB drives and SSDs have used block mapping [13].
Hybrid approaches have also been suggested [17, 30].
Since our interest is in SSDs, hereafter, we first concen-
trate on block mapping.

A physical block in Flash memory holds a fixed num-
ber of sectors (Ns). In block mapping, these sectors are
typically placed in pages within the block in an ordered
manner. The map contains a logical block number and
physical block number pair. To read a sector, the FTL
calculates the logical block number by dividing the sec-
tor number by Ns. Then it looks up the map to convert
the logical block number to a physical block number.
Then, since sectors are placed in order, finding the sec-
tor we want is straightforward. However, in real sys-
tems, writes make use of log blocks as we will explain
shortly. Hence, to locate sectors, the log blocks are first
searched before the physical block is checked.

Writing a sector is more complicated. Consider Fig-
ure 1(a)(i). To modify a sector within a data block b,

USENIX FAST 2009 Submission Version 2



where b is a logical block number, the FTL writes the
new sector data to a page of the log block. Thereafter,
subsequent writes for sectors of data block b are directed
to a page in this log block. Figure 1(a)(ii) shows the re-
sults after sectors 4 and 5 of the same logical block are
modified twice.

Eventually, when the pages in the log block runs out
or when, based on the block recycling policy, the FTL
decides to retrieve the log block, a merge operation that
consolidates the original data block and the log block
happens. Specifically, the merge operation retrieves an
empty block (generally by erasing a block with obsolete
data) and copying all valid sectors to it from the old data
block (sectors 6 and 7 of block b) and the log block (the
most recent sectors 4 and 5 of the log block) as shown
in Figure 1(a)(iii). After copying the sectors, the old
empty block now becomes the new data block. The old
data block and the log block become empty blocks that
will be used as a log block or copy-target block in the
future. The roles of the blocks are switched by updating
the information in the map. This form of merging is
referred to as the general merge.

Next, consider the case where writes occur in se-
quence. For instance, consider the initial state of Fig-
ure 1(b)(i) where sectors 0 through 7 have been stored.
Now, a sequential write of sectors 4 through 7 are re-
quested. These writes are written to a log block as be-
fore, as shown in Figure 1(b)(ii).

Now consider the merge operation. In this case, when
a merge has to occur, we do not need to copy the four
sectors to an empty block as was done for general merge.
Instead, all that needs to be done is to update the infor-
mation in the map to reflect that a switch has occurred.
That is, the log block is now the data block and the old
data block is now obsolete as depicted in Figure 1(b)(iii).
This type of merge is called a switch merge. Switch
merge eliminates copying of pages, hence is much more
efficient.

Kim et al. introduced the log block scheme that was
just discussed [13]. As FTL design is an important fac-
tor in SSD design, work on hybrid mapping, that is,
schemes that combine block mapping and page map-
ping, has also been conducted. Observing that Kim et
al.’s work has a weakness with random writes, Lee et
al. propose a hybrid scheme called FAST (Full Asso-
ciative Sector Translation) that uses sector mapping in
log blocks, while block mapping is used for other data
blocks [17]. Later, Yoon et al. further improve the log
block scheme through heuristic based selection of block
mapping and page mapping schemes for each logical
block [30]. Instead of the merge operation, Lee et al. in-
troduce the migration operation that is more efficient for
repeated write patterns, and they show that write cost can
be significantly reduced through cost-based selection of

migration and merge operations [14]. Finally, contrary
to the conventional approach, Birrel et al. propose a
pure page mapping scheme based FTL for the SSD that
is optimized for random write patterns, but would incur
higher costs [6]. A real implementation of this design,
however, is not known yet.

2.3 Other related works
There are some recent works related to Flash memory
and SSDs that consider issues other than the FTL. Lev-
enthal discusses the changing landscape of memory hi-
erarchy in computer systems due to Flash memory stor-
age [18]. Other than an alternate to conventional disks,
making use of Flash memory in various components of
a computer system such as a booting device and disk
caching media have also been studied [11, 20]. Kim
and Ahn show that block level LRU ordering increases
the chance of switch merge in SSDs [12]. Agrawal
et al. gives a taxonomy of the many design choices
that are available to SSD designers and analyzes how
these choices would affect performance through simu-
lations [3]. They conclude that SSD lifetime and per-
formance is highly workload sensitive. Finally, the en-
terprise database community has been an ardent advo-
cate of adopting SSDs to boost performance and to save
energy. Lee and Moon show that Flash memory aware
design of algorithms can improve database application
performance on Flash memory storages [15]. Also, case
studies by Lee et al. show that by simply replacing hard
drives with SSDs for the transaction log, rollback seg-
ments, and temporary table spaces, performance of a
database application increases up to an order of mag-
nitude in some cases [16].

3 Write Cost Models
In this section, we derive write cost models for file sys-
tems when the underlying storage is a hard drive and an
SSD. (As read cost is constant for SSDs, we do not con-
sider the read cost model.) The file systems that we con-
sider are those that take the Overwrite approach [29]. In
deriving the model we assume that repeated references
are filtered in buffer caches or disk caches and write re-
quests are issued altogether by something like the sync
operation from the file system. We first derive the cost
model for the hard drive, and then, based on this model
derive a model for the SSD.

3.1 Hard drive write cost model
To derive a new cost model, we start off from the sim-
ple performance model of what Wang et al. refer to
as the Overwrite approach [29]. This is the traditional
approach where new data is overwritten on top of old
copies.

USENIX FAST 2009 Submission Version 3



A simple performance model for writing a sector us-
ing Overwrite in a hard drive is given as T1sect =
Tpos + S

B where Tpos is the sum of the average seek time
and the average rotational latency, B is the write band-
width of the disk, and S is the sector size in bytes [29].
In reality, however, writes to disks do not occur indi-
vidually. While each application may do so, requests to
the disk are issued through a sync operation from the
file system. Thus, they will be requested in groups. As-
suming n write requests are requested together, we can
generalize T1sect as follows. First is the worst case sce-
nario where every write request goes to a different cylin-
der from the previous one. In this case, the performance
cost model will be nT1sect, the worst performance that
can be achieved. In the best case scenario the write cost
to write all n sectors to the same cylinder can be mod-
eled as Tnsect = Tpos+n S

B where 1 ≤ n ≤ C, where C
is the number of sectors in a cylinder. (If n is larger than
C, the request can be regarded as two independent sub-
requests without compromising the model. Hence, we
do not consider this situation any further.) In fact, maxi-
mum bandwidth would be achieved when n = C. Even
so, most file systems making use of hard drives cannot
utilize this full bandwidth even though efforts are made
to localize relevant files and metadata to the same cylin-
der group.

In reality, the n sector write requests that are made
together are dispersed among the many cylinder groups.
Let us denote R as the average number of sectors that
are requested for writing to disk at each time, that is, at
each sync. As a file system, in general, cannot always
write the R requests to the same cylinder, we introduce
the focal factor, f , where 1

R ≤ f ≤ 1, which refers
to the proportion of write requests that are directed to a
particular cylinder. Then, we can generalize the time for
one sector write at each particular cylinder as follows:

Tmagdisk =
Tpos + fR S

B

fR
=

Tpos

fR
+

S

B
(1)

where R ≤ C and 1
R ≤ f ≤ 1.

In file systems that take the Overwrite approach, f
will generally be much smaller than 1 because relevant
files and metadata will not always be able to be placed
within the same cylinder group.

3.2 SSD write cost model
In this subsection, we derive the write cost model when
the file system takes the Overwrite approach using an
SSD as its underlying storage.

Observe the write performance shown in Figure 2.
This figure shows the response time for each block write
request of the corresponding block size when request-
ing a total of 1GB to one of the SSDs that we describe
later. (For the 8K block size, we show only part of the

results as the excessive number of data points for the
whole graph makes the graph difficult to comprehend.
However, the trend presented here repeats itself through-
out the write sequence.) These values were those ob-
tained by devising an application to synchronously write
raw data directly to the SSD. The y-axis in the figures
is the response time in milliseconds, while the x-axis is
the request sequence. The request sequence of the lower
figures is sequential, that is, blocks are requested in se-
quence starting from 0, and the upper figures are for ran-
dom request sequences. Observe from the lower graphs
of Figure 2(a) and (b) that a thick band along the x-axis
forms meaning that the majority of requests are serviced
in that time frame. (Ignore Figure 2(c) for now as we
will come to this figure later in Section 3.3.) For block
size of 8KB, the band forms around the 200µsec range
(which we could not show clearly due to the scale and
resolution) and for the 1MB block size it forms near the
12 millisecond range. This increase is due to the size of
the request and the limited bandwidth available. Then,
there are numerous ”spikes”, that is, response times that
are out-of-band. These spikes tend to be as low as a
few milliseconds to as high as a few tens of millisec-
onds. Contrasting the upper and lower figures, we see
that for the sequential writes, these spikes are few. How-
ever, when the writes are random, we see a much higher
number of spikes of a wider range. This observation is
quite similar to one that would be observed in a hard
drive. With random writes, positioning delay will be
more variant than for sequential writes.

It is difficult to derive the exact reasons for each of
these spikes as there are many factors that influence the
design of an SSD [3]. However, based on our under-
standing of Flash memory and FTL software described
in Section 2, we know that write operations incur merge
operations to make available free blocks. Hence, we can
conjecture with high confidence that the key factor that
induces such spikes is closely related to the merge oper-
ation. Depending on the merge operation, different re-
sponses can occur. Thus, with much simplification, we
consider the spikes to be equivalent to the merge cost;
the shorter spikes being those incurred by the simple
switch merge, while the larger spikes being for those of
general merges with numerous copy operations.

The key observation here is that there is an analogy
between the merge times (Tmerge) of an SSD and the
positioning time Tpos of a hard drive. Based on this,
we make a similar argument as was described in the
previous subsection. Using the same notations, that is,
B, the write bandwidth of an SSD and S, the sector
size in bytes, we can argue that the worst case write
performance model to write a single sector in SSD is
T1sect = Tmerge + S

B .
A similar argument can be made for the best case with

USENIX FAST 2009 Submission Version 4



(a) 8K (b) 1M (c) 4M

Figure 2: Appearances of merge spikes mainly due to erase operations for particular block sizes (random writes:
upper figures; sequential writes: lower figures)

SSDs. Since a merge operation is inevitable, the best
performance will happen when the n sectors are written
with overhead for only a single merge operation. Hence,
the write cost to write all n sectors can be modeled as
Tnsect = Tmerge + n S

B where 1 ≤ n ≤ L, where L is
the number of sectors in a ”cylinder” of an SSD.

Now the question that arises here is that of L. What
is L? In a hard drive, this was simply the cylinder group
size, which could be easily visualized as a hardware con-
cept and something determined from the hardware. In an
SSD, there is no concept of a cylinder. (Though this no-
tion is represented when partitioning the SSD, this does
not, in any way, match to any physical characteristics as
in the hard drive.) We will refer to this cylinder coun-
terpart in the hard drive as the logical block in SSD, and
for now, let us just say that for every SSD this L exists.
We will later show how this L can be obtained.

So, given the performance model above, we can gen-
eralized as we did with the hard drive. Again, let us
denote R as the average number of sectors that are re-
quested for writing at each disk write, that is, at each
sync. As a file system may not be able to always write
the R requests to the same logical block, we again intro-
duce f , the focal factor, where 1

R ≤ f ≤ 1, which refers
to the proportion of write requests that are directed to a
particular logical block. Then, just like the hard drive,
we can generalize the write cost function for a single
sector write to a particular logical block in an SSD as
follows:

TSSD =
Tmerge + fR S

B

fR
=

Tmerge

fR
+

S

B
(2)

where R ≤ L and 1
R ≤ f ≤ 1.

Though the model is simple, it suffices to guide us in
developing a new space allocation scheme for SSDs.

3.3 Implications of the model
The write cost model for SSDs that we just derived gives
us insights for optimizing file systems and disk schedul-
ing algorithms for SSDs. At first glance, write behav-
ior of an SSD seems to be the same as a magnetic disk.
For example, the models imply that sequential writes are
preferable to random writes in both the hard drive and
the SSD. This might imply that file systems that make
use of an LFS-style write, which collects modified data
in memory chunks and then writes to disk altogether,
might also be an interesting topic that should be inves-
tigated as SSDs become popular. Unfortunately, this is
beyond the scope of this paper as we limit our focus to
file systems using the Overwrite approach.

The thing to note here is that based on the write cost
model derived, there are features in SSDs that may be
exploited to improve performance. Specifically, first,
note that given a logical block (which is discussed in
more detail below), controlling f is more amenable in
SSDs as read cost, which we can safely assume to be
constant irrelevant to location, is no longer a factor to be

USENIX FAST 2009 Submission Version 5



considered. Hence, blocks (that is, multiple sectors from
the file system viewpoint) may be placed anywhere in-
stead of at particular cylinders as is done for hard drives.
Hence, devising a scheme to increase f under the Over-
write approach is feasible.

The second thing to note is that of logical blocks.
Though we described a logical block of an SSD to be
analogous to a cylinder of a hard drive, a logical block
does not posses a concrete notion of a ”cylinder” as in
hard drives. Hence, the size of a logical block is a unit
that may be freely determined by the file system. The
question is, then, how to choose this logical block size.

For this let us return to Figure 2. As discussed previ-
ously, Figure 2(a) and (b) shows spikes in response time
due to merge operations within the SSD. Now, note Fig-
ure 2(c) when the write block size is 4MB. In this figure
we do not observe any large intermittent spikes. This is
true for both the sequential and random requests. This
tells us that, ideally, there is an ”optimal” size that max-
imizes the utility of the resources that the SSD has, pos-
sibly leading to maximized performance. Hence, when
at all possible, all writes should be made at this size. We
refer to a block of this size to be the logical block. In the
next section, we discuss the empirical aspect of a logical
block.

4 Space Allocation for SSD
This section describes the space allocation schemes that
we develop. In order for these schemes to work, we need
to make concrete the notion of a logical block. To do this
we start out with more of logical blocks.

4.1 The logical block
Ideally, a logical block of an SSD is the write unit where
write cost is optimized. That is to say, if every write
could be made in logical block units, then the minimum
number of merge operations for writing the given blocks
are incurred as evidenced in Figure 2(c).

Many design decisions affect the performance of
SSDs [3, 12]. To optimize performance FTL design-
ers take great efforts to design FTL software to make
full use of all available hardware resources and features
such as the planes, chips, busses, and buffers through
interleaving and parallelism. Finding the logical block
size through product specifications is virtually impossi-
ble due to the complicated interactions between hard-
ware and software, and more so as this information is
proprietary and undisclosed.

The logical block size, though, can be obtained
through a simple set of experiments as follows. First,
we open the device file that maps with the SSD with
the O SYNC option. Then, starting from a small write
block size that is a power of 2, say 4KB, we do the fol-
lowing. First, sequentially write 1GB into the device

file obtaining its throughput. Then, do the same thing
again, only this time writes are done randomly making
sure there is no overlap in the requests so that all 1GB
is written to. (1GB is a rather ad hoc value chosen such
that all log blocks managed by the FTL are safely con-
sumed. In current implementations of SSDs, 1GBs is a
fairly safe size.) The throughput is obtained here as well.
The throughputs for the sequential and random writes
are compared. If the values are close enough, then 4KB
is the logical block size, and we are done. (In our case,
we consider the two numbers to be close enough if the
whole numbers of the reported numbers are the same.)
Otherwise, we double the write size and start the pro-
cess over. This is done until we find a write size where
the sequential and random write throughputs meet the
terminating condition.

Figure 3 shows results after going through the pro-
cess just described starting from a write size of 4KBs
for three types of SSDs that we use to validate our study.
(We describe the SSDs in detail later.) Note how the ran-
dom write throughput converges towards the sequential
write throughput eventually becoming the same at some
point. Each of the figures in Figure 2 represent a point in
Figure 3(c), that is, the Mtron SSD. With write perfor-
mance for sequential and random requests converging at
the 4MB block size as shown in Figure 3(c), we observe
that merge overhead minimizes as was observed in Fig-
ure 2(c).

4.2 Design of space allocation schemes
Now that the notion of a logical block has been clari-
fied, we can now view the file system space as a collec-
tive sequence of logical blocks. Given this viewpoint,
in this subsection, we propose two new space alloca-
tion schemes for file systems that employ SSDs based
on the performance model presented in the previous sec-
tion. Note from Equation 2 that in order to reduce the
write cost the focal factor f should be increased as the
other parameters, including R, are all fixed values.

The key idea of the schemes that we propose is sum-
marized in Figure 4. There are five files A, B, C, D, and
E and space is allocated as shown with each subscript
representing a block or metadata of that file. Represent-
ing files as sets, we have file A = {A1, A2, A3}, B =
{B1, B2} and so on. We then have a new set of write re-
quests A3, A4, A5, C5, C4, C3, E2, E3, E4, E5 arriving
at sync. Of these, A3, C4, C3 are to existing blocks.

Figure 4(a) depicts the traditional scheme of allocat-
ing space for new blocks. Each new block is allocated
to the cylinder group where the metadata and the rest of
the file it belongs to resides. The key idea in the scheme
that we propose is to allocate all the new blocks to the
logical block that has the most free blocks as depicted in
Figure 4(b). That is, blocks A4, A5, C5, E2, E3, E4, E5

USENIX FAST 2009 Submission Version 6



(a) SanDisk (b) Samsung (c) Mtron

Figure 3: Finding the logical block size

are all allocated to the same logical block. By so doing,
we increase the focal factor, f . This does not incur any
penalty for reads as reads in SSDs are constant, unlike
hard drives. Note that writes to existing blocks are done
in overwrite fashion in both schemes.

Specifically, the first allocation scheme is the Greedy-
Space scheme. The name comes from the fact that the
scheme takes a greedy approach and allocates the logical
block with the most free space when space is needed. It
simply keeps track of how much free space is available at
each logical block. When applications make new write
requests, the file system selects the logical block with
the most free space for space allocation. Once a logical
block has been selected, then for subsequent new writes,
space is allocated from the same logical block until all
free space is consumed. By sending new write request
sequences to the same logical block, the Greedy-Space
scheme maximizes the focal factor f on the next sync.

Unlike the hard drive environment this approach does
not need to consider the geometrical adjacency of logi-
cal blocks, that is, the selected logical blocks need not
be consecutive as there is no performance penalty for
jumping between logical blocks as there would be in a
hard drive when moving between cylinders. The only
requirement is that the write requests are grouped within
the logical block boundary.

A limitation of the Greedy-Space scheme, however, is
that it incurs bookkeeping overhead. For single SSDs of
today the overhead is only a few hundred KBs (as we
show later in Section 5). However, capacity of SSDs is
growing at a rapid pace, and if we consider RAID-like
systems with high capacity, then this overhead may not
be negligible. Also, the file system needs to continu-
ously keep a sorted list of blocks based on the amount of
free space available, which incurs computational over-
head.

Our second space allocation scheme, which we call
the Clock-Space scheme is a scheme that is more
amenable for real-life deployment. Instead of keeping

track of every logical block in the system, here, each
logical block is checked one at a time. The name of
the scheme comes from its similarity to the the Clock
page replacement algorithm where the clock hand moves
from one page to the next in clockwise order. As the
write requests arrive and new space has to be allocated,
the scheme starts out by moving the clock hand to the
next logical block. At this logical block, it checks to see
if the number of occupied blocks (multiple sectors) is
below some threshold value. If not, then the clock hand
moves on until the condition is satisfied. Once the log-
ical block has been selected, the current write requests
and write requests following thereafter are allocated to
this logical block until it fills up.

(a) Traditional scheme

(b) Proposed scheme

Figure 4: Example of space allocation schemes

Let us now describe how the threshold value, which
is set dynamically depending on the load of the sys-
tem, is determined. For this, we borrow from a

USENIX FAST 2009 Submission Version 7



model proposed in regards to LFS. Specifically, to se-
lect a segment for cleaning the notion of average seg-
ment occupancy (ASO) and the best segment occupancy
(BSO) are introduced and their relationship, ASO =
(1−BSO)/ln(1/BSO) is derived [21]. This relationship
essentially says that given that segments are occupied on
average by ASO on the whole, the segments that are least
occupied are those that occupy BSO space, and these
should be selected for cleaning. Through simulations,
Wang et al. later verify that this relationship is quite ac-
curate [29].

We take this result and apply it to our threshold value.
As we can easily find the average load of logical blocks
on the whole system (that is, ASO), the threshold value
is set to the BSO value. That is, by selecting logical
blocks with load lower than the BSO value, we are se-
lecting blocks with light loads.

5 Experimental Environments
In this section, we describe the environment in which all
our experiments were conducted. Then, we describe the
implementation details of the Greedy-Space and Clock-
Space schemes within the environment.

5.1 The platform

Table 1: SSDs used in the experiments
Manufacturer & Part # Capacity Interface

SanDisk SDS5C-032G-102500 32G SATA

Samsung MCCOE64G5MPP-0VA 64G SATA

Mtron MSD-SATA3025-032 32G SATA

The environment in which the experiments are con-
ducted is the Linux operating system version 2.6.23.1
running on an Intel Core 2 Duo 2.20Ghz CPU with 2GB
of memory. The SSDs that we consider are listed in Ta-
ble 2.

Each of these products use proprietary hardware and
software designs in their products, though a flavor of the
hardware schemas and FTL related design issues may
be guessed upon [3, 22, 30]. We emphasize again that it
is difficult, if not impossible, to know the exact details
of the hardware and software design in real products, let
alone how the software and hardware interact.

5.2 Implementation of the schemes
The implementation of the Greedy-Space scheme is
straightforward. The Linux file system space is divided
into block groups (which is Linux jargon for cylinder
groups). These block groups are divided into logical
blocks determined by the empirical method described in
Section 4. The logical block size (LBS) for the San-
Disk, Samsung, and Mtron SSDs turn out to be 4MB,

8MB, and 4MB, respectively. Hence, depending on the
SSD used, each block group is divided into some spe-
cific number of logical blocks.

Table 2: Memory overhead for Greedy-Space scheme
SSD No. of Entries Total Overhead

(Capacity/LBS) (Entry size: 36B)
SanDisk 8K (32G/4M) 36×8K = 288KB
Samsung 8K (64G/8M) 36×8K = 288KB

Mtron 8K (32G/4M) 36×8K = 288KB

Greedy-Space maintains all the logical blocks in or-
dered fashion using the Red-Black tree data structure
provided in Linux, so that the block with the most free
space may be efficiently found. We also keep a hash ta-
ble to efficiently find a logical block. Associated with
each logical block is a 36B data structure consisting of
information such as the logical group number, the offset
with the logical block, and pointers for the data struc-
ture.

Hence, the overhead for maintaining this information
for the Greedy-Space scheme for each of the SSDs can
be calculated as shown in Table 2. Given the capacity
of the disk and the logical block size (LBS), the number
of entries that needs to be managed can be calculated
by dividing the capacity by the LBS. As overhead for
each entry is 36 bytes, the total overhead is obtained by
multiplying 36 to the number of entries. The hash ta-
ble managed in block group units adds another 10KB of
overhead (which we did not include in Table 2).

The implementation of the Clock-Space scheme is
more platform specific. As mentioned previously, Linux
manages file system space in block groups, which in our
experiments are composed of 4KB blocks. To manage
the 4KB blocks in block groups, ext2 keeps a bit map of
the usage of these blocks, and this bit map also fits in one
4KB block. Hence, when the clock hand of the Clock-
Space scheme moves from one logical block to the next,
it is much more efficient to read the whole block group
bit map altogether than to read a particular number of
bits within the bit map block. Once the block group bit
map is read, we take the number of bits that comprise
the logical block and calculate their load. For example,
for a SanDisk SSD, since a block is 4KB in ext2 and
the logical block is 4MB, 1024 bits comprise the logical
block. Of these 1024 bits, let us say that we counted 256
reset bits (that is, 256 unused blocks), then the load of
this logical block is 0.25. This value is compared to the
threshold value.

In the previous section we described how the ASO
and BSO values are used to determine the threshold.
However, in a real system, floating point calculations
should be avoided for optimized performance. Hence,

USENIX FAST 2009 Submission Version 8



even though the exact BSO numbers are available [24],
we choose to make use of gross approximations of these
numbers instead when deciding whether to pass or use
a particular logical block. The numbers that we use are
shown in Table 3. In particular, for ASO values between
the given range we use the ceiling threshold value. For
example, if the ASO value is 0.45, then the threshold
value is set to 0.2.

Table 3: Threshold values used in Clock-Space imple-
mentation (ASO: Average Segment Occupancy, BSO:
Best Segment Occupancy)

ASO 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

BSO 0.1 0.1 0.1 0.1 0.2 0.3 0.45 0.6 0.8

6 Experimental Results
In this section, we present the results of the experiments
performed on the platform described in the previous sec-
tion. The subsections are divided according to the work-
load that we used for the experiments.

6.1 Postmark Benchmark: Type I

Table 4: Parameters of Postmark benchmark: Type I
Workload No. of files File size Transactions

(Subdirectories)

FSL 20,000 (200) 0.5KB−10KB 200,000
CVFS-Large 5,000 (50) 512B−328072B 20,000

The Postmark benchmark, which models workloads
of large Internet servers such as systems used for elec-
tronic mail, netnews, and web based services, has been
widely used to evaluate disk based file system perfor-
mance [10]. The Postmark benchmark creates a speci-
fied number of files and directories of a particular size
range. After creating the files, the benchmark executes a
specified number of transactions where each transaction
is a pair of file operations that either creates or deletes a
file and then appends to an existing file in 512B units or
reads another existing file in its entirety.

Instead of generating our own set of Postmark bench-
marks based on parameters of our choice, we choose to
make use of two Postmark benchmarks used in previous
studies. One is used in this subsection and the other in
the next subsection. In all our Postmark experiments, we
use Postmark version 1.51.

For the first set of Postmark benchmarks, which we
denote as Type I, we set the Postmark parameters to
those used by Traeger et al. in their study on the qual-
ity of benchmarks used in performance evaluation stud-
ies [28]. They make use of three benchmarks that were
used in previous studies, two of which are identical to

the ones used previously [4, 27] and one that is a modi-
fication of the one used by Soules et al. [27]. Here, we
take two of these benchmarks, FSL and CVFS-Large;
though we have experimented with the third benchmark
CVFS, we omit this because it is too small and does
not provide any unique insight. The parameters of the
FSL and CVFS-Large benchmarks are summarized in
Table 4. Also, the I/O unit is set to 4KB, and all other
parameters not stated here are set to default values.

The results are presented in Figures 5 and 6, where
the y-axis is the elapsed time (in seconds) to execute
the benchmark, while the x-axis is the utilization of the
disk observed from the file system standpoint. (Note
that the y-axis scales are all different.) The utilization
is initialized by first completely filling up the file system
with files whose size range between 1KB and 16MB,
then randomly selecting and deleting these files until the
desired utilization is met. This was done to randomly
spread out the valid blocks. For all experiments of the
same utilization, the same files are deleted. We make
the following observations from these results.

Even though the three SSDs show varying perfor-
mance results, we observe that both the Greedy-Space
and Clock-Space schemes perform substantially better
than the original ext2. In most cases, the elapse time
is reduced to around one-third of the original scheme,
and in the best case, the original elapsed time of roughly
1300 seconds is reduced to around 200 seconds. Greedy-
Space and Clock-Space perform better than the original
scheme irrespective of utilization. Furthermore, the per-
formance of the two proposed schemes remain quite sta-
ble for all utilizations, while the original scheme can be
somewhat sensitive as exemplified by the results shown
in Figure 5(b) and (c). Between the Greedy-Space and
Clock-Space schemes, the Greedy-Space scheme gener-
ally performs slightly better.

A somewhat strange observation can be found in Fig-
ure 5(b) and (c) where performance actually improves as
utilization increases. This, at first glance, is contrary to
conventional belief. However, we must note that utiliza-
tion here is that of the file system and not the SSD. In
SSDs, the FTL has its own view of what blocks are valid
and what are not. When a sector is deleted in the file sys-
tem, this knowledge is not reflected into the SSD until
that specific sector gets overwritten. Hence, utilization
from the SSD standpoint would be nearly 100% for ev-
ery utilization data point because of the way the file sys-
tem is aged. Hence, the SSD is not directly influenced by
the file system utilization, but rather, it is strongly influ-
enced by the focal factor. In these results, as utilization
gets higher from the ext2 standpoint, it may be inadver-
tently allocating sectors close together because there is
less room to maneuver, thereby increasing f , resulting
in improved performance.

USENIX FAST 2009 Submission Version 9



(a) SanDisk (b) Samsung (c) Mtron

Figure 5: Postmark benchmark: Type I (FSL)

(a) SanDisk (b) Samsung (c) Mtron

Figure 6: Postmark benchmark: Type I (CVFS-Large)

6.2 Postmark Benchmark: Type II

Table 5: Parameters of Postmark benchmark: Type II
Workload File size Number of files Transactions
SS 9-15KB 10,000 100,000
SL 9-15KB 200,000 100,000
LS 0.1-3MB 1,000 20,000
LL 0.1-3MB 4,250 20,000

In their study on the effectiveness of optimizations at
various layers of the I/O path, Riska et al. use 4 sets
of Postmark benchmarks to represent a wide variety of
workloads [23]. This is done by varying the number of
files and the working set size; and this is the second set
of Postmark benchmarks that we use to evaluate the pro-
posed schemes. The number of files and the file sizes
used as parameters to generate the workload are sum-
marized in Table 5 with all other parameters set to the
default values except for I/O size that is set to 4KB.

The two letters used for the name of the workload rep-
resent the size of files and the working set size, which
is controlled by the number of files. That is, SS rep-
resents the Postmark benchmark that is set to generate
small files and a small working set, while SL refers to
one that generates small files but a large working set, and
so on. All the experiments were done with utilization set

to 0%, that is, just after format.

Figure 7 shows the results where the x-axis is the
workload type and the y-axis is the elapsed time in sec-
onds. Similarly to the Postmark Type I benchmarks the
Greedy-Space and Clock-Space schemes perform sub-
stantially better the the original scheme.

There are two exceptions in the results, however.
Specifically, with the SS workload for SanDisk and
Mtron, the original scheme performs better than the
Greedy-Space and Clock-Space schemes. It is diffi-
cult to pinpoint exactly the reason behind this dispar-
ity. However, we conjecture that the main reason for
this is due to the effect of locality, which becomes more
prominent for a smaller working set. As the working set
is small (and with only a small number of these files),
for the original scheme, most writes are concentrated to
the front part of the block group. That is, block group
management data and file/directory data are likely be-
ing serviced within a single logical block. For the pro-
posed schemes, where as block group management data
is allocated to the logical block at the head of the block
group, file and directory data would be dispersed to a
separate logical block increasing overhead. Now for the
Samsung SSD, since the logical block size is 8MB, it is
doing a better job of containing the bookkeeping infor-
mation and data blocks in the same logical block, hence
the better performance.

USENIX FAST 2009 Submission Version 10



(a) SanDisk (b) Samsung (c) Mtron

Figure 7: Postmark benchmark: Type II

(a) SanDisk (b) Samsung (c) Mtron

Figure 8: Flexible I/O benchmark

6.3 Flexible I/O Benchmark

The third benchmark is the Flexible I/O (FIO) bench-
mark. FIO is another I/O benchmark that has previ-
ously been used for performance studies, though it has
not been used as prevalently as the Postmark bench-
mark [5, 7]. This benchmark was originally made as
a benchmark and a stress verification tool. It provides
many parameters that can be set to test various forms
of I/O. Table 6 shows our parameters of choice with all
other parameters aside from these set to default values.

Table 6: Parameters of Flexible I/O Benchmark
Number of jobs 10
File size 700MB
Number of files 1000
I/O depth 1
I/O engine sync
Buffered unbuffered
I/O type randread/randwrite
R/W unit 4KB

We choose this benchmark to verify aspects of per-
formance that are not reported by the Postmark bench-
mark. Of the many numbers that are reported by FIO, we
present two graphs. The first is shown in Figure 8, which
show the total elapsed time for reads and writes for the

three SSDs when the experiments are started with uti-
lizations of 30%, 50%, and 70%. The numbers reported
are the averages of the 10 jobs of the benchmark. The
second graph, Figure 9, shows the distribution of the re-
sponse times for the read and write operations observed
while executing the benchmark on the Mtron SSD. The
x-axis shows the elapsed time to execute the operation
and the y-axis represents the rate of requests that com-
plete in between the previous x value and this x value.
For example, in Figure 9(b), we see that the ratio is
approximately 60% for 750µsec in the Greedy-Space
scheme. This is to say that approximately 60% of all
writes were greater than 500µsec (which is the previous
x value) and less than or equal to 750µsec.

From Figure 8, we make the same observation that
write performance is substantially better with the two
schemes that we propose than the original ext2 scheme.
More importantly, we observe that the assumption that
we made about read operations, that is, that reads will
be the same irrespective of the placement policy, holds.
This is further supported by Figure 9. From Figure 9(a)
we observe that all reads take less than 250µsec irrespec-
tive of the allocation scheme. Note that 250µsec was the
minimum value reported by FIO (which is rather coarse)
and that this is the elapsed time observed by FIO, not
the time spent in the Flash chip. Though these numbers
together with the read results Figure 8 show that for all

USENIX FAST 2009 Submission Version 11



SSDs and allocation schemes, read time is within a rea-
sonably predictable range.

From Figure 9(b), for write operations, we observe
that the majority of writes for the original scheme is hap-
pening at the 1∼2msec range. From this, we can de-
duce that many general merge operations that incur mul-
tiple copy operations and possibly an erase operation is
happening. This is in contrast to the numbers for the
Greedy-Space and Clock-Space schemes where the ma-
jority of the writes are below the 1msec range with more
of the Greedy-Space scheme writes having smaller val-
ues. As an erase operation within a chip generally takes
more than a millisecond, we can safely deduce that for
these write operations a merge that incurs an erase is not
happening. From these results, we can conclude that by
employing the proposed schemes the number of merge
operations incurring erase operations is being drastically
reduced.

Finally, for the Samsung and Mtron results of Fig-
ure 8, we see that write time is taking less than the read
time. This is because of the 4KB request size. For
reads of this size, all reads are being done synchronously
disallowing any form of interleaving that is essential in
improving throughput. Though writes are synchronous
for this benchmark as well, it seems that the SSDs are
buffering the requests and then making multiple writes
to chips through interleaving. This is evidenced by the
fact that many of the writes have higher response times
than reads as shown in Figure 9. This means that though
individually the writes are taking longer, since many
of them are being serviced together through interleav-
ing, the elapsed time does not add up, but rather over-
lap. Hence, the overall elapsed time is considerably less.
As the Greedy-Space and Clock-Space schemes increase
the focal factor, there is also more chances for interleav-
ing, hence more of the writes respond better than the
original scheme.

7 Conclusion
We have considered the use of Solid State Drives (Disks)
(SSDs) that have recently been introduced into the mar-
ket. With no mechanical parts, these devices have been
commended for possessing interesting features such as
being lightweight, shock-resistant, noiseless, and con-
suming low power. However, there have been little in-
terest in making efficient use of SSDs in terms of per-
formance. In this paper, we attempted to model the
characteristics of SSD write performance from the file
system standpoint. In so doing, a simple performance
model was derived that gave insight to how space allo-
cation should be done. Based on this observation and
making use of a characteristic unique to SSDs, we pre-
sented the Greedy-Space and Clock-Space space alloca-
tion schemes.

(a) Read response time

(b) Write response time

Figure 9: FIO benchmark read/write response time dis-
tribution

Through real implementations in the Linux ext2 file
system and using three SSD products available in the
market, we performed a wide range of experiments with
the Postmark and Flexible I/O benchmarks. For all the
benchmarks, we observed substantial performance im-
provements when employing the two allocation schemes
that we proposed compared to the original scheme in the
ext2 file system. For most of the workloads, the execu-
tion time is reduced to half to one-third of the original
ext2 file system. In one case, execution time of roughly
1300 seconds when using the original allocation scheme
is reduced to around 200 seconds.

There are still much to be done. First, we need to look
more closely at the logical block size. We mentioned
that ideally the logical block size should bring about the
optimal performance. Whether this is true in practice, or
whether an optimal size really exists at all needs to be in-
vestigated. Second, observations of our results indicate
that locality may play a factor in performance even in
SSDs. Whether this is true or not, and if so, whether this
could be incorporated to our schemes is a question that
warrants investigation. Finally, our model indicates that
an LFS-style file system could be beneficial. Whether
that should be the LFS scheme itself or something to-
tally new tailored to SSDs is an interesting question that
should also be pursued.

USENIX FAST 2009 Submission Version 12



References
[1] IBM Blade Server Product Specification, 2008.

http://www-03.ibm.com/systems/bladecenter/.

[2] Intel Introduces Solid-State Drives for Notebook
and Desktop Computers. Intel News Release,
2008. http://www.intel.com/pressroom/.

[3] N. Agrawal, V. Prabhakaran, T. Wobber, J. D.
Davis, M. Manasse, and R. Panigrahy. Design
Tradeoffs for SSD Performance. In Proceedings
of the 2008 USENIX Annual Technical Conference,
2008.

[4] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
File System to Trace Them All. In Proceedings of
the USENIX Conference on File and Storage Tech-
nologies (FAST ’04), pages 129–143, 2004.

[5] J. Axboe. Fio - flexible io tester.
http://freshmeat.net/projects/fio/.

[6] A. Birrell, M. Isard, C. Thacker, and T. Wob-
ber. A Design for High-Performance Flash Disks.
SIGOPS Operating Systems Review, 41(2):88–93,
2007.

[7] N. Gupta. IO Containment. In Proceedings of
the Linux Symposium, pages 151–161, Ottawa,
Canada, 2008.

[8] W. Hutsell. Using SSDs to Boost
Legacy RAID and Database Performance.
http://www.storagesearch.com/, 2004.

[9] Intel Co. Understanding the Flash Translation
Layer (FTL) Specification, 1998.

[10] J. Katcher. PostMark: A New Filesystem Bench-
mark. Technical Report TR3022, Network Appli-
ance, 1997.

[11] T. Kgil, D. Roberts, and T. Mudge. Improving
NAND Flash Based Disk Caches. In Proceed-
ings of the 35th ACM International Symposium
on Computer Architecture (ISCA ’08), pages 327–
338, 2008.

[12] H. Kim and S. Ahn. BPLRU: A Buffer Man-
agement Scheme for Improving Random Writes
in Flash Storage. In Proceedings of the 6th
USENIX Conference on File and Storage Tech-
nologies (FAST’08), pages 1–14, 2008.

[13] J. Kim, J. M. Kim, S. H. Noh, S. L. Min, and
Y. Cho. A Space-efficient Flash Translation Layer
for CompactFlash Systems. IEEE Transactions on
Consumer Electronics, 48(2):366–375, 2002.

[14] J. Lee, S. Kim, H. Kwon, C. Hyun, S. Ahn, J. Choi,
D. Lee, and S. H. Noh. Block Recycling Schemes
and their Cost-based Optimization in Nand Flash
Memory based Storage System. In Proceedings of

the 7th ACM & IEEE International Conference on
Embedded Software (EMSOFT ’07), pages 174–
182, 2007.

[15] S.-W. Lee and B. Moon. Design of Flash-Based
DBMS: An in-page Logging Approach. In Pro-
ceedings of the 2007 ACM International Confer-
ence on Management of Data (SIGMOD ’07),
pages 55–66, 2007.

[16] S.-W. Lee, B. Moon, C. Park, J.-M. Kim, and S.-W.
Kim. A Case for Flash Memory SSD in Enterprise
Database Applications. In Proceedings of the 2008
ACM International Conference on Management of
Data (SIGMOD ’08), pages 1075–1086, 2008.

[17] S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee,
S. Park, and H.-J. Song. A Log Buffer-based Flash
Translation Layer using Fully-associative Sector
Translation. ACM Transactions on Embedded
Computing Systems, 6(3):18, 2007.

[18] A. Leventhal. Flash Storage Memory. Commu-
nunications of the ACM, 51(7):47–51, 2008.

[19] M-Systems. Flash-Memory Translation Layer for
NAND Flash (NFTL).

[20] J. Matthews, S. Trika, D. Hensgen, R. Coulson, and
K. Grimsrud. Intel R©Turbo Memory: Nonvolatile
Disk Caches in the Storage Hierarchy of Main-
stream Computer Systems. ACM Transactions on
Storage, 4(2):1–24, 2008.

[21] J. Menon. A Performance Comparison of RAID-
5 and Log-Structured Arrays. In Proceedings of
the IEEE Symposium on High-Performance Dis-
tributed Computing, pages 167–178, 1995.

[22] Mtron Co. Solid State Drive MSD-SATA3025
Product Specification, 2007.

[23] A. Riska, J. Larkby-Lahet, and E. Riedel. Evaluat-
ing Block-level Optimization through the IO Path.
In Proceedings of the 2007 USENIX Annual Tech-
nical Conference, pages 1–14, 2007.

[24] J. T. Robinson. Analysis of Steady-state Seg-
ment Storage Utilizations in a Log-structured File
System with Least-utilized Segment Cleaning.
SIGOPS Operating Systems Review, 30(4):29–32,
1996.

[25] Samsung Electronics Co. 512M x 8Bit / 256M
x 16Bit NAND Flash Memory (K9K4GXXX0M)
Data Sheets, 2003.

[26] Samsung Electronics Co. 1G x 8Bit / 2G x
8Bit NAND Flash Memory (K9L8G08U0M) Data
Sheets, 2005.

[27] C. A. Soules, G. R. Goodson, J. D. Strunk, and
G. R. Ganger. Metadata Efficienty in Versioning

USENIX FAST 2009 Submission Version 13



File Systems. In Proceedings of the USENIX Con-
ference on File and Storage Technologies (FAST
’03), pages 43–58, 2003.

[28] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright.
A Nine Year Study of File System and Storage
Benchmarking. ACM Transactions on Storage,
4(2):1–56, 2008.

[29] W. Wang, Y. Zhao, and R. Bunt. HyLog: A High
Performance Approach to Managing Disk Layout.
In Proceedings of the 3rd USENIX Conference on
File and Storage Technologies (FAST ’04), pages
145–158, 2004.

[30] J. H. Yoon, E. H. Nam, Y. J. Seong, H. Kim, B. S.
Kim, S. L. Min, and Y. Cho. Chameleon: A High
Performance Flash/FRAM Hybrid Solid State Disk
Architecture. IEEE Computer Architecture Letters,
7(1):17–20, 2008.

USENIX FAST 2009 Submission Version 14


