MixedStore: An Enterprise-scale Storage System Combining
Solid-state and Hard Disk Drives*

Abstract $34 billion annually and is continually on the rise [45].

Flash memory overcomes some key shortcomings of HDM4anufacturers of HDDs have been successful in ensuring
including faster access to non-sequential data (when not gstained performance improvements while substantially
graded by garbage collection (GC) overheads) and lowfinging down the price-per-byte. As an example, during
power consumption. Given the complementary propeil€ past decade, the maximum internal data rate (IDR) for
ties of HDDs and Solid State Disks (SSDs) in terms diard disks has witnessed a 20-fold increase resulting from
cost, performance, and lifetime, the current consensi@Provements in rotational speeds (RPM) and storage den-
among several storage experts is to view SSD not as a piies; seek times have improved by a factor of 4 over the
placement for HDD but rather as a complementary devié@me period. However, there are several shortcomings in-
within the storage hierarchy. Unlike the use of DRAM foherent to HDDs that are becoming harder to overcome as
caching/buffering, however, certain idiosyncrasies o§tla We move into faster and denser design regimes. First, de-
make their integration into HDD-based systems non-trivia¥igners of HDDs are finding it increasingly difficult to fur-
Flash memory suffers from limits on its reliability, is anther improve the RPM (and hence the IDR) due to prob-
order of magnitude more expensive than the disk, and cms of dealing with the resulting increase in power con-
be sometimes even slower than the HDD (due to excessRmption and temperature [6, 16, 26]. Second, any fur-
GC induced by high intensity of random writes). We dether improvement in storage density—another way to in-
sign and evaluate a simplified hybrid system caldided- crease the IDR—is increasingly harder to achieve and re-
Storeto provide: (a) improved capacity planning techniqueduires significant technological breakthroughs such as per
to administrators of such hybrid systems with the overafendicular recording [41, 32, 7]. Third, and perhaps most
goal of operating withirtost-budgetand (b) improved per- Serious, despite a variety of techniques employing caching
formancel/lifetime guarantees during episodes of deviatioPre-fetching, scheduling, write-buffering, and thoseenas
from expected workloads through innovative mechanisn®§ improving parallelism via replication (e.g., RAID), the
such asadaptive wear-leveling, write-regulation and frag_mechamcal movement involved in the operation of HDDs
mentation busting We imp|ement a simulator for Mixed- can severely limit the performance that hard disk based Sys-
Store and evaluate its efficacy using a Variety of We|[.ems are able to offer to workloads with significant random-
regarded enterprise_sca|e Storage traces. As an illivstrat€ss and/or lack of |Oca”ty. SpeCiﬁC to our interest in this
example, MixedStore is able to reduce the average systBgPer, in an enterprise-scale systewonsolidation(e.g., as
response time by about 71% as compared to a HDD-bad@@Posed/explored in [14]) can result in the multiplexing
system for an enterprise scale random-write dominant Faf unrelated workloads imparting/exaggerating the random
nancial Trace [38]. A preliminary investigation of adagtiv N€ss and/or lack of locality in their aggregate [14, 15].
wear-leveling allows us to extend the useful lifetime of SSD Alongside improvements in HDD technology, significant
by about 33% in the presence of unanticipated bursts in I/@jvances have also been made in various forms of solid-
thus opening up new challenges in the design of efficieatate memory such as NAND flash [2], magnetic RAM
wear-leveling algorithms for the SSD controller. (MRAM) [39], phase-change memory (PRAM) [18], and
Ferroelectric RAM (FRAM) [43]. Solid-state memory of-
fers several advantages over hard disks: lower access laten
cies for random requests, lower power consumption, lack
Hard disk drives (HDDs) have been the preferred medfa]lc noise, and higher robustness to vibrations and tempera-

. . ure. In particular, recent improvements in the design and
for data storage in enterprise-scale storage systemswvor se

. : rformance of NAND flash memory (simpflashhence-
eral decades. The disk storage market totals approximat 0F¥th) have resulted in its becomingyéopugbrain many em-

*Name of storage system changed to ensure anonymity. bedded and consumer devices. Small form-factor HDDs

1 Introduction




g
8

Cifefime of Flash in MixedStore —— — Disk (Sequential) — Disk (Sequential)

—— Disk (Random) —— Disk (Random)
-o- Flash (Sequential) -o- Flash (Sequential)
- - Flash (Random) - - Flash (Random)

g
8

I
g
8
o o
o o~

Disk's Useful Lifetime
(5 Years)

8
8
Lifetime (Year)

w

Throughput (MB/s)
S
©

L]
Throughput (MB/s)
=

Average Response Time (ms)
5

g
8
BN

3
8

100 200 300 400 500 600 512B 1K 15K 2K 25K 3K 35K 4K 5128 1K 15K 2K 25K 3K 35K 4K
Transfer Request Size Transfer Request Size

Seq.Read  Seq.Write Rand. R Rand. Write 1/Os per Second

(a) Access Latency (b) Lifetime (c) Read Throughput (d) Write Thiqaut

Figure 1: A comparison of the performance and lifetime ctiarastics of representative SSD and HDD. although MTTFs
for HDDs tend to be of the order of several decades, recetysisndas established that other factors (such as replateme
with next, faster generation) implies a much shorter adtigdime [42] and hence we assume a nominal lifetime of 5 gear
in the enterprise.

have already been replaced by flash in some consumer déth each other. Flash technology possesses a humber of
vices like music players, PDAs, digital cameras, etc. Flagtliosyncrasies that have hindered the SSD from replacing
has, however, only seen limited success in the enterpri¢DD in the general enterprise markdfirst, it is evident
scale storage market [30]. Although (i) the aforementiondtiat there exists a huge gap between the Cost/GB of HDDs
advances in flash technology and (ii) its dropping cost-pesnd SSDs! Secondunlike HDD or DRAM, SSDs possess
byte [10] had led several storage experts to predict the ia-huge asymmetry between the speeds at which reads and
evitable demise of HDDs [11], flash has so far not been ablgites may be performed. As a result, the throughput a flash
to make inroads into the enterprise-scale storage market®vice offers a write-dominant workload is lower than for a
the extent expected [30]. read-dominant workloadThird, flash technology restricts
the locations on which writes may be performed—a flash
location must beerasedbefore it can be written—Ileading
to the need for a garbage collector (GC) for/within an SSD.
e will elaborate on these properties of flash in Section 2.

Solid-state Drives. Borrowing a few sentences from an
excellent paper on this topic by Leventhal [30The brunt

of the effort to bring flash to primary storage has taken th rtain workload characteristics (specifically, the

form of solid-state disks (SSDs), flash memory package randomness), exacerbate GC overheads, thereby signif-
hard-drive form factors and designed to supplant convely: o n ’ y sig
icantly slowing down the SSD—even to an extent where

tional drives. This technique is alluring because it regsir . | )
no changes to software or other hardware components, g pperates slower than a HDD! [27]Finally, to further

t . . e
the cost of flash per gigabyte, while falling quickly, isIstiIcorm:)l'c""te matters, unlike HDDs, SSDs have a life-time
far more than hard drives. Only a small number of appliz

that is limited by the number of erases performed. There-
cations have performance needs that justify the expens

Qre, excessive writing to flash, while potentially usefor f
We will use the term&SDandflashinterchangeably in the e overall performance of flash-based storage system, may
rest of this paper. As evidence of this, major storage ve

limit its lifetime. This becomes an important concern in
dors producing flash-based large-scale storage systefms S%%eir;tﬁgpnse-scale employing fiash if its workload is write
as RamSan-500 from Texas Memory Systems, Symmet '
DMX-4 from EMC, ioDrive from ioFusion, etc. are cater-yjixedstore: Motivation. From the above description,

ing only a select class of applications such as large databdsshoyid be clear that SSDs are fairly complex devices.
servers rather than the general enterprise storage marketrpqir peculiar properties related to cost, performancd, an

lifetime make it difficult for a storage system designer to

’ Media H Acc‘sz)ﬂme Lifetime ‘ CO(SS;;GB‘ neatly fit them between HDD and DRAM. To illustrate
DRAM 0.0 N/A 125 the complexity of the relationship between HDD and SSD,
SSD_ || (45) Read, (200) Write] 10K-1M Erase Cycles| 25 we present results from a simple experiment in Figure 1.
HDD 5500 MTTF=1.2Mhr 3

As has been observed in other recent research, under cer-
in workload conditions, an SSD can perform worse than
e HDD [27]. A look at Figures 1(a),(c),(d) provides
an illustration of such behavior and calls for careful de-

Table 1:Performance, lifetime, cost comparison among differeriﬁ
storage media. [30].

Table 1 presents a comparison of the performance, life- 1A similar gap exists between SSD and DRAM. Furthermore, itds pr
time. and cost of representative HDDs. SSDs. and DRAiﬂcted to worsen in the near future: up to a factor of 13 by Z01.0This

. h . . rules out major changes in the role played by DRAM in futuréesys that
used in the enterprise. There are several important imp mploy SSDs. DRAM will continue to retain both of its importantes

Cation_s Of_hOW these properties of these devices (Specimted to caching and buffering. Therefore, we will not canethese two
cally, in this context, those of HDDs and SSDs) compargvices in the rest of this paper.



sign to gainfully utilize them in conjunction with HDDs prototype, MixDC would have two components: (a) an
in the enterprise. The degrading lifetime with increased enhanced block device driver that employs online statis-
write-intensity, as shown in Figure 1(B)may result in  tical performance and lifetime models for SSD (and a
premature replacement of these devices, adding to deployperformance model for HDD) to dynamically partition
ment/procurement/administrative costs. Finally, the low incoming workload among the SSD and HDD, and (b)
throughput offered by SSDs to random write-dominated two algorithms within the SSD controller (specifically,
workloads (Figure 1(d)), which are frequently encountered within the FTL layer) including reduction of fragmenta-
in enterprise-scale systems [27], necessitates intatl jogr- tion within the flash (fragmentation buster) and a novel
titioning of data in such hybrid environments while ensur- concept ofadaptive wear-levelingAs an illustrative re-
ing that the management costs do not overwhelm the persult of our empirical evaluation of the efficacy of MixDC,
formance improvements. As we shall see, unlike the HDD, it was able to prolong the life of flash device in Mixed-
flash-based devices require a longer history to be incorpo-Store by about 33% in the face of an unexpected increase
rated into a performance predictor. As a simple example,in I/O activity.

a large number of random writes may experience good re-Finally, we present preliminary ideas on how MixCP and
sponse time but eventually the GC induced by the resultingMixDC could act in concert and present an initial valida-
fragmentation could result in requests coming much later totion of all components of MixedStore.

see degraded performance. Modeling these characteristics

is an unexplored area and a significant part of our work as

well as the foundation of the overall functioning of Mixed-R0ad-map. The rest of this paper is organized as follows.
Store. In Section 2, we present the basics of flash memory technol-

ogy and discuss relevant related work. Section 3 provides a
Research Contributions. This paper makes the following bird’s eye-view of the overall MixedStore architecture and
specific contributions. how its two components, the Capacity Planner and the Dy-

) o ) namic Controller, interact. In Sections 4 and 5, we describe
* We propose MixedStore, a simplified hybrid storage sygnq evaluate these two components individually as well as

tem containing only one each of an HDD and a SSD shafjhen acting together. Finally, we present concluding re-
ing the 1/0 bus. Besides this hardware, MixedStore comyarks in Section 6.

prises: (i) acapacity planner(MixCP henceforth) that

makes long-term resource provisioning decisions for the

expected workload; it is designed to optimize the co

of equipment that needs to be procured to meet desired Background and Related Work

performance and lifetime needs for the expected work-

load and (ii) adynamic controller(MixDC henceforth) 2.1 Background on Flash

whose goal is to operate the system in desirable per- . ]

formancellifetime regimes in the face of deviations dasics of Flash Memory Technology. Flash is a unique

short time-scales in workload from those anticipated b§torage device since unlike the HDD and volatile memories,

MixCP. which provide read and write operations, it also provides an
e We develop simple statistical models that MixCP enffase operatiori36]. Salient operational characteristics of

ploys. These models are used in conjunction with Mixedh€S€ operations are as follows: Erase operations are per-

Sim, 3 (a simulator we have developed for MixedStoréormed at the granularity of Block which is composed of

by enhancing DiskSim [12]) to validate the efficacy ofmultiple pages A page is the granularity at which reads

MixCP for a variety of well-regarded real-world storagend writes are performed. Each page on flash can be in

to administrators of hybrid storage systems when makirgge/érased When no data has been written to a page, it is

provisioning decisions. As an illustrative result, MixCPN the erased state. A write can be done only to an erased

is able reduce the cost of MixedStore by planning a welR2ge, changing its state to valid. Out-of-place updatastres

provisioned system for a realistic random-write dominarf@ Certain written pages whose entries are no longer valid.

workload (Financial Trace [38]) while ensuring similarThey are called invalid pages.

performance as compared to an over-provisioned systemErase operations (1.5ms) are significantly slower than
e We implement MixDC in our simulator. In a MixedStorereads/writes. Additionally, write latency can be highearth
read latency by up to a factor of 4-5. The lifetime of flash

2We have picked a lifetime of 5 years for a HDD just for illusivat memory is limited by the number of erase operations on
purposes. An excellent study of the useful lifetimes of disksed on data jtg cells. Each memory cell typically has a lifetime of
fé?g;(:ﬁ?"l;]”terpnse'sca'e systems appears in a paper bpesignrand 11\ erase operations [9]. Thusear-levelingtech-

3Although our simulator is ready for sharing with other resbars, we niques [22, 24, 31] are used to delay the wear-out of the
are unable to provide its URL due to double-blinded reviee Tiame of  first flash block. The granularity at which wear-leveling is
out simulator has been changed to preserve anonymity. Howewigw-  carried out impacts the variance in the lifetime of individ-
ers interested in our code and data are welcome to approacituther 3] plocks and also the performance of flash. The finer the
permission of the chairs. granularity, the smaller the variance in lifetime.




The Flash Translation Layer (FTL). The FTL is a soft-
ware layer which translates logical addresses from the file

system into physical addresses between file system anc ° ' )
physical flash memories. FTL helps in emulating flash as g ‘
a normal block device by performing out-of-place updates = (ot )

which in turn helps to hide the erase operation in flash. The () ) py—— |
mapping tables and other data structures manipulated by the | ©"o

FTL are stored in a small, fast SRAM. These FTLs can be T
implemented at different granularities of how large an ad- (a) MixedStore (b) Hybrid disk

dress space a single entry in the mapping table captures.

Page-based FTLs map the logical page number of the fggure 2: lllustration of a MixedStore system and a hybrid
guest sent to the device from the upper layers such as filisk.

system to any physical page on flash. However, such trans-

lation requires a large mapping table to be stored in SRAM.

At the other extreme, in a block-level FTL scheme, onlidybrid Disks. Samsung and Microsoft [40] have devel-
the logical block number is translated into a physical blooped/deployed hybrid hard disks for laptops. Figure 2
number whereas the logical page number offset within tielows two possible configurations of MixedStore. Although
block remains fixed. The size of the mapping table is r@ur focus in this paper is on the former configuration, we ex-
duced by a factor dblock size/page sizd28KB/2KB=64) pect many ideas developed here to be of use in systems with
as compared to page-level FTL. However, since a given lolgybrid disks. Booting time and resuming process from disk
ical page may now be placed in only a particular physicaélave been improved by overlapping the time for spinning up
page within each block, the possibility of finding such aisk drive with the booting process from flash memaory.
page decreases. Bisson et al. [5] have explored the use of a flash-based

To address the shortcomings of the above two extrerh&/RAM as a write buffer to reduce write latency of hard
mapping schemes, researchers have come up with a vaisks for desktop environments. They employ I/O redirec-
ety of alternatives. Although many schemes have been pf§n to reduce seeking overhead from disk by directing re-
posed [19, 8, 28, 23, 29]' they share one fundamental d@uests Ilkely to incur Iong seeks to the on-disk NVRAM.
sign principle. They are aybrid between page-level andWe view the MixDP component of our system as concep-
block-level schemes. They logically partition their blsck tually close to Bisson et al.'s work and would be interested
into two groups Data B|ock9ndLog/Update BlocksData in comparing MixDP with their I/O redirection technique in
blocks form the majority and are mapped using the b|ockhe future. A key difference is that our flash model (devel-
level mappmg scheme whereas the |og blocks are maprjﬁ@f)d in Section 4) additionally captures the fragmentation
using a page-|eve| mappmg Sty|e_ In related research , \Mhln flash (Caused by random Writes) and incorporates it
have developed a novel page-based FTL scheme which ifito its redirection decision-making. This mechanism will
lizes temporal locality in workloads to overcome the shorke described in Section 5.
comings of the original page-based scheme by storing onl -~ )

a subset of mappings (likely to be accessed) on the limitE¢@sh-specific Improvements. Flash Translation Layer
SRAM and stores the remainder on the flash device itseff TL) iS one of core-engines in a flash-based SSD. The
A paper describing this FTL is currently under review. Wétate-of-the-art FTLs [8, 28, 23, 29] are based on log-buffe

employ this FTL scheme in our current research. based approaches and optimize performance by trying to re-
duce costly GC overheads. Another orthogonal approach of

exposing flash based devices to the file system has been pro-

posed. JFFS2 [21] and YAFFS2 [47] are the most popular
2.2 Related Work file systems optimized for flash memories. Kim et al. [25]

have developed a flash device buffer management scheme
Flash as Cache and Write-Buffer. A lot of research has to reduce fragmentation caused by random writes. More-
been conducted to improve performance of HDDs usingver, different SSD designs including interleaving redsies
non-volatile memory. eNVy [46] uses non-volatile memto obtain parallelism and ganging etc. have been proposed
ory for data storage wherein battery-backed SRAM is used improve flash device performance [37].
to reduce the write overhead. HERMES [35] uses magnetic
RAM to reduce the overhead of frequently and randomlylash in the Enterprise. Sun Micro-systems has pro-
accessing meta-data. MEMS [44] has also been exploitpdsed a storage architecture incorporating flash-based SSD
to improve disk performance. Moreover, storage architeas intent-log devices and read caches providing improved
ture in which flash memory is used as a conventional diglerformance along with reduced power consumption [30].
cache has already been proposed in [33] Our work go€hey propose to use their ZFS file system as an interface
beyond merely using flash as a cache/write-buffer—rather these SSDs.We view Sun’s proposed hybrid architec-
than treating flash assubordinate to the diskMixedStore ture as the closest in essence to MixedStore and believe that
views these asomplementargtorage media. the models and techniques developed here are worth imple-
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Figure 4: Capacity Planning for Financial Trace [38].
Figure 3 depicts the interaction between various compestatic” denotes a static data-partitioning policy wherritev
nents of MixedStore. In this study, we utilize a simplifieqequests larger than 4KB are assumed to be sequential and
model of an enterprise-scale storage system consisting of @ serviced by the HDD and others are serviced by SSD.

single HDD and a single SSD connected to the same gy, ayare” denotes an intelligent data partitioning pyli
bus. We will deal with more complex configurations Con(described in Section 4 developed by us

sisting of RAID arrays etc. in the future work.
MixedStore consists of two major components:
(i) a long-term resource provisioning tool (MixCP)
for system administrators to optimize the procurerequests (using a performance predictor) as well as ensure
ment/deployment/maintenance costs while adhering to thiggh level of performance from the SSD (performance of
performance budgets (specific to workloads) and lifetim®SD degrades with fragmentation of data on the device).
budgets, and (ii) a short term dynamic controller (MixDCYhus, MixDC is implemented at the 1/O driver level and
which is part of the MixedStore internal structure. needs to interact with the SSD controller to perfadap-
MixCP utilizes statistical models for performance antdive wear-levelingandfragmentation bustingn the real pro-
lifetime to determine the optimal SSD capacity (we assuntetype, these techniques will be implemented as split mod-
a static HDD size for our study) for different workloadsules ( similar to back-end and front-end drivers in Xen [4])
Figure 4 demonstrates the improvement in performance anih the controller residing withing MixDC while the work-
reduction in cost using MixCP along with dynamism awaring thread(module) present in the SSD. Analogous to adap-
performance predictor. However, workloads are known tive wear-leveling whose primary purpose is to improve
exhibit deviations from predicted behavior [] and hence wB8SD'’s lifetime, MixDC contains a write-regulator which
require MixDC to dynamically control the partitioning ofcan reduce the intensity of requests to SSD during periods



Workloads Average(KRBe)quest SIZTS‘ Read (%)‘ Sequentiality (%) Average Request Inter—arrlverl

Time (ms)
Financial (OLTP) [38] 4.38 9.0 2.0 133.50
Cello99 [17] 5.03 35.0 1.0 41,01
TPC-H (OLAP) [48] 12.82 95.0 18.0 155.56

Table 2: Enterprise-Scale Workload Characteristics.

of high 1/0 activity. We describe the functionality and predeployment costs, ensuring system reliability etc. For the
liminary evaluations of all these mechanisms in Section 5purpose of our study, we try and minimize the deployment

For evaluation purposes, we have developed our ownst (in terms of $/GB) subject to a combination of both
simulator called MixedSim (name changed to ensureperformance and re-deployment constraints. We use aver-
anonymity). The simulator has been built by enhancingge system response time as a metric of MixedStore’s per-
Disksim [13], a well-regarded HDD simulator. MixedSimformance and term this metric as the systeResformance
is designed with a modular architecture with the capabilitBudget As described in Section 2, the blocks in SSDs be-
to model a holistic flash-based storage environment. It @@me unreliable beyond 10K-1M erase cycles. This poses a
able to simulate different storage sub-system componesignificant challenge for a system administrator whose ob-
including device drivers, controllers, caches, flash desjic jective is to keep system re-deployment frequency and costs
and various interconnects. In our integrated simulator, wmder control. We capture these objectives in terms of a
add the basic infrastructure required for implementing tHefetime Budgefor the system, which is the time between
internal operations (page read, page write, block erasg esuccessive capacity planning decisions and equipment pro-
of a SSD. The core FTL engine is implemented to prazurement/installation.
vide virtual-to-physical address s translations alonchwit We formulate our capacity planning problem as a means
a garbage collection mechanism. We use a novel pag#-minimizing the cost of acquiring/installing MixedStore
based FTL scheme for our evaluation (paper describing thidile meeting the administrator/workload-specified perfo
scheme is under review). mance Ppyaqe:) @and useful lifetime budgetl(zyqge:). Let

We use realistic enterprise scale workloads (refer to Té’ssp indicate the cost of flash based SSDs and@ng p
ble 2 for their description) and some synthetic traces fandicate the cost of HDDs in MixedStore. Then the total
experimentation. We simulate IBM Ultrastar 36Z15 as thKlixedStore cosCi;izecasiore IS the sum of these individual
HDD and a 32GB 2.5” SATA Solid State Drive from Supercosts.
Talent [3] in MixedSim. (Note that the specification avail- Equation 1 shows the formal description of capacity
able for SSDs are insufficient to completely model thenplanning.
For example, the SRAM cache size and the FTL is un-

known. Thus, we make suitable assumptions for these pg: . . ChtisedStore Subject to{ Pprrizedstore = PBudget
e ore

rameters.) Lyizedstore = LBudget(l)

4 Capacity Planning WhereCiyizedstore=Cssp + CHpD

Given the large price gap between SSDs and HDDs, it ist is easily seen that the above optimization problem re-
useful to be able to determine appropriate capacities sethéluces to minimizing the cost of SSD for fixed size of HDD
devices for the workload the system expects to support. \@&ailable in a MixedStore system.
define this process of determining the right size of devices However, the performance and lifetime of flash based
in MixedStore agapacity planning SSD is highly dependent on not only the workload charac-
As illustrated in Figure 4, both under-provisioning anderistics but also the internal intricacies of flash suches d
over-provisioning of flash memory leads to inefficient storSign of FTL, efficiency of GC etc. This provides a mandate
age utilization, thus adversely impacting the cost-toetfien for the design of a robust capacity planner (MixCP) tool for
ratio for MixedStore. Therefore, the goal of capacity plarSe by storage system designers. In the next sub-sections,
ning is to minimize this discrepancy so that overall storagie describe the statistical models utilized by MixCP to pro-
investment cost can be optimized. vision SSDs in MixedStore.

4.1 Problem Formulation 4.2 Modeling Performance and Lifetime of

o . o o Flash Memory for MixCP
The objective of capacity planning is to minimize the cost of
MixedStore (deployment, management, maintenance etd/ employ a "black-box” modeling approach for estimating
while meeting the service level agreements. These camgiven SSD’s useful lifetime and performance. Our model
straints can vary from guaranteeing some minimum peaemakes no assumptions about the inner configurations (such
formance requirements to reducing management and es FTL employed, SRAM cache size etc.). We do find its
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Figure 5: Validation of performance and lifetime models pamed with values measured using MixedSim.

efficacy varies depending on the internals of the SSD. Fexperiment with a multiple linear regression based model.
example, the predictor performs better with our page-basbgon finding this model unsatisfactory, we move towards a
like FTL than other state-of-the-art hybrid FTLs. We do naslightly more complicated multiple log-linear model [20.
elaborate on these here due to space constraints. For t@a be represented as

purpose, we need to identify statistically significant work

load characteristics that impact the SSD’s lifetime and per = ,

formance. Performance is directly impacted by data frag- 10g(Rav,) = a0 + Z“ *Wang (1) + € )
mentation caused by random writes which invoke costly =t

GC operations. Moreover, high write intensity increases wWhere (V..,,) represents the the average of a particular
the number of erase operations required to reclaim invaNeprkload characteristic selected from a set of n parameters
space on flash, thus reducing lifetime of blocks. Basdtiscussed earlier (Section 4.2) anid a small error. The co-

on these observations, we consider the following workloafficients o, a1, ... ,a,,) are estimated during the learning
characteristics as significant independent variablesavd) Phase of the experiments.

erage read/write ratio, (ii) spatial locality captured Iret
form of average sequentiality among requests, (iii) avera
request inter-arrival time, (iv) average request size, (&hd
flash utilization defined as the ratio of the working set siz
to the total flash size. We install probes in MixedSim t
capture data relating to the above parameters.

{{ifetime Model. Erase rate (block erases per second) de-
oted byE,. 4, represents the lifetime of a flash device since
ach block typically has a life of about 10K-1M erase cy-
es [9]. As in the case of performance modeling, we start
y fitting a multiple linear regression model. Again, we ob-
serve that a multiple log-linear regression techniquej-sim
4.3 Methodology: Regression Based Model- lar to th_e one used for per_forma_mce budget is able to model
. the lifetime budget. The similarity between the two models
Ing arises from the fact that higher response times are a functio

Using multiple linear regression, we first find significanPf 9arbage collection which require block erases and hence
predictor variables which affect the variables being pre;3t31pactl|fet|me. Thus, the lifetime model can be represgnte
dicted: (i) average system response time (ms) for perfc#>

mance budget, (ii) average block erase rate (erases/9econd n

for lifetime budget. We start with the general approach in 108(Eavg) = bo + Zbi Wang (i) + ¢ ?)
multiple regression of finding significant predictor vatih

while plugging in as many predictor variables as we can h s the th ¢ deul
think of. In order to avoid multicollinearity problems, we WN€r€ Waug) represents the the average of a particular

also perform correlation analysis on predictor variabtes yv_orkload chargcteristic_selected frqm a set of n parameters
ensure that they are all independent variables. discussed earlier (Section 4.2) anis a small error. The

coefficients §o, b1, ... ,b,,) are estimated during the learning
Performance Model. We use average /O system refhase of the experiments.

sponse timef,.,4) as a predictor of flash performance. 1/0

system response time represents the time interval betwng Modeling Results and Validation

the issuance of request to the SSD by the 1/O driver and its

completion natification to the driver. Itincludes queuirgzd In this sub-section, we describe the experimental results
lay, bus delay and controller overhead in the device. We finsith our modeling methodology. Then, we validate our

i=1
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Figure 6: Capacity Planning

’ Index ‘ Sequerjtiality‘ Request Size| Utilization [ Inter-Arrival ‘ liable to errors. Arguably, by incorporating more informa-
(Ratio) (Sectors) (Ratio) (ms) . . .

. 010 . s N tion about flash internals we can improve our model further.
W2 570 16.90 089 =590 However, as explained in_ Section _3, for MixedStorg, having
W3 0.30 115.71 0.94 80.24 a reasonably accurate MixCP suffices so long as MixDC can
w4 0.70 115.44 0.58 319.74 H H H :
WE 003 — e 16440 handle the inaccuracies in the former models. To summarize

our validation, we have demonstrated the possibility of de-
veloping a performance and lifetime estimation methodol-
Table 3: Some of the synthetic write-only workload®9Y with reasonable accuracy with simple linear regression
(W1,W2,W3,W4) used to train the performance and lifgNodels.

time models and a realistic Financial Trace workload

[38](W5) used for evaluating the models. 4.5 Evaluation

models by comparing against the actual values measured _____ Lifetime (Y1) _
using MixedSim. We generate a large number of synthetic|  workioad || V" Grousioned| FIRCE [ Undefitaysioned
traces by varying workload characteristics described @1 Se | Financial Trace 52.69 7.29 2.67

tion 4.2 to train the models and randomly select 900 of these__TPC-H 97.50 2165 -

traces to form our training set. The adjusted R-sqddse

found to be around 90% for both the multiple |og_|ineaﬂ—ab|e. 4. Lifetime observations With different approaches. A
models [20]. The average error rate is about 25% for tHock is assumed to possess 10K reliable erase cycles.
training set.

In this subsection we compare the performance of

Validation. We validate our performance and IIfetlme|\/||ch Capacity p|anner with other generic Capacity p|an_
models by comparing their results with the corresponghing methodologies which either under-provision or over-
ing values measured using MixedSim. Table 3 showsovision the flash capacity in MixedStore. For evaluation
the salient characteristics of some of the synthetic anid r?’urposes we use realistic enterprise scale workloads whose
workloads. We choose write-only synthetic traces for vakalient characteristics are shown in Table 2.
idation since flash performs very well for read dominant Taple 4 shows the flash device lifetime for various ca-
workloads. Moreover, lifetime is not an issue for such workya ity planning techniques with dynamism-aware data par-
loads since they encounter very few erase operations. k@bning policy for different workloads. TPC-H is read
W2, the error in the performance model is only about 4%ominant and hence performance budget is of greater con-
whereas it rises to about 21% for W3 which has the highem than lifetime. For Financial trace which is a write-
est erase rate and response time values (owing to large ggminant workload, we observe that under-provisioning ca-
quest sizes and low inter-arrival times) in the traces showgacity would necessitate flash device replacement within 3
For the Financial trace [38], the observed performance @sars and hence would impact the overall lifetime budget of
well as lifetime errors are about 55%. The major cause RfixedStore. We want the flash device to last till around the
this discrepancy is that our black-box model assumes no {Rsefy| life of disk (approximately 5 years) and both over-
formation about the internal state of the flash and henceggyisioning and MixCP are able to achieve this mandate.

4Adjusted R-square defines the proportion of variabilityt taac- Over-prOV|S|on|_ng flash capacity ShOUId, reduce the re-
counted for by a statistical model. Unlike R-square it onlgréases if dUESt response times from flash device since the garbage
a newly added predictor, statistically improves an existiraglel collection overheads will be reduced and hence improve
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Figure 7: Capacity planning for financial-like trace [38]e\¥icrease arrival rate by orders of 2 as shown in legends.

MixedStore performance as compared to MixCP. We olthus work in synchronization with MixCP.

serve that the performance benefits accrued with this extra

flash are much less as compared to the increased cost due . .

to larger flash. As shown in Figure 7(b), for read—dominarg Dynamic Controller- MixDC

TPC-H [48], both MixCP and over-provisioned models pro- _ ) ) ) _ )
vide similar performance. This can be directly attributelf? this Section, we investigate a variety of techniques whic

to the fact that read-oriented workloads have very smdlf!P operate MixedStore within or close to desirable perfor
amount of writes, thus the garbage collector is invokedanCce; cost, lifetime budgets despite unanticipated asng

very infrequently and the service patterns remain simild Workloads.

for both the capacity planning methodologies. Even for

the write-dominant Financial trace, Figure 7(a) shows th&t1  Short-Term  Performance Prediction
MixCP performs much better than a static over-provisioning

scheme. However, if dynamism-aware data partitioner is Model for SSD

utilized along with an over-provisioned flash, we observe ghe performance of the SSD is highly dependent on the
slight improvement in performance as compared to MixCRyorkload incident on it. Since out-of-place updates are per

But this small improvement comes at additional costs @é6rmed on the flash, GC resulting from fragmentation has
bigger flash memory. Thus, the cost-to-benefit ratio advan important impact on response time. We build upon our
cates the use of MixCP for capacity planning in enterprigearning from capacity planning and try to develop time-
scale systems. scale performance models suitable for MixDP.

Although the large-body of work on modeling disk per-
formance is of use here, there are certain salient novel as-
pects of flash operation that MixDP’s SSD model must cap-
Workloads are known to exhibit variation from their preture. Perhaps the most important such feature is that unlike
dicted behavior. In such circumstances, capacity plaa-disk,an SSD performance model needs to incorporate a
ning alone is not sufficient to meet the lifetime and pemuchlonger history, since a large enough number of ran-
formance budgets. Figure 7(a)-(b) show the impact of imlom writes (that might themselves experience good perfor-
creased arrival rate on performance and lifetime budgets fmance) might cause fragmentation over time and the result-
a write-dominant workload. If the system designer had pring GC invocation would then degrade the performance of
visioned the system at point A to keep the flash lifetimeequests that arrive much later the.
around a disk’s useful life while satisfying the performanc Again we start with identifying the crucial workload char-
needs, these guarantees do not hold if the workload changaseristics which play a major role. However, contrary & th
With higher intensity of writes, the garbage collector is inearlier MixCP performance model here we work with a slid-
voked more often; thus degrading the system'’s performandeg window of requests. This sliding window acts as a short
Moreover, it results in higher number of block erases, reduterm history of requests and enable us to make fair short
ing the flash lifetime. Thus, we require additional sophistterm decisions. The main workload characteristics used in
cated data partitioning mechanisms which can dynamicallye model are: (iAverage Read to write ratiof a window
adapt to these changing workload environments. In the neftrequests, (iiSpatial locality—average sequentiality of a
section, we describe some techniques employed by our dyindow of requests, (iiilRequest inter-arrival timeand (iv)
namic controller (MixDC) to meet the various budgets an@urrent request size

4.6 Challenges in Capacity Planning
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Figure 8: Performance of MixedStore compared with a dislg-and a SDD-only system.

Since this performance model needs to make predictions

. . ) 10 [Dynanism-Aware Prediction Model

about the performance of requests in the immediate future, < Last Value Prediction Model -~ 1.
and as seen how performance depends on long-term history, £ 5 ‘ ! S RN I N
we need to capture and preserve certain aspects aithe 2 o i1, A J5\V
rent stateof the flash device. However, this information ‘§ N iRl A
about state of the flash device might require information g ) ) I A
about SSD internals that may not be feasible (e.g., in the ® 10
SSD that MixedStore assumes). 300 320 340 360 380 400

In order to build a feasible as well as efficient black- (a) Financial

box performance model, we use the history of previous de-

vice service times as an indicator of flash device state. For . Dynanisii Aware Prediction Model
simplicity, we use the average of the service timgs, (). E 5| astyauePredcon Hode
Moreover, we use system response tini&, (. ..:) as a =
measure of flash device performance. Thus, our multiple € ;
linear regression model can be represented as % sl
@
Rcu'r'rent :“CO + CIWwindow + CQSavg +e€ 300 320 340 360 380 400
Request Count x 10
Savg = S(7))/w
a9 (2 1)/ (b) TPCH
=

where¢ is a small eror and Figure 9: Comparison of our dynamic SSD performance

prediction model with a simple last value-based prediction
The coefficientsdy, ci, ¢2) are estimated during a learn-model.

ing/training phase of our experiment which consists of half

of the workload. We believe converting our learning-based

prediction technigue can be easily adapted to operateeynliRence shows much small error rate.

although we do not evaluate that here. We integrate our SSD prediction model with an admit-

tedly simple disk performance predictor. We use a model
5.2 Evaluation with Dynamism-Aware Per- based on the average response time observed during the

formance Prediction Model training phase to predict disk performance. The dynamic

controller (MixDC) partitions write requests depending on
We use the Financial trace [38] and TPC-H [48] workload tthe least response times predicted by the SSD and HDD
validate our model. Contrary to our performance predictonodels. MixDC maintains a table to store information about
for MixCP, our empirical evaluation suggests a simpler muthe current location of data (device id) and updates it when-
tiple linear regression to be satisfactory. For Financadé, ever some data is migrated from one device to the other. The
we observe the measured R-square value to be 98%. Wean up of dirty data (old version) is scheduled during idle
compare the accuracy of our model with a simple baselineperiods. Read requests are always serviced from the device
alast value-basegrediction model for SSD which uses thewhich contains the data. Frequently read small sized data is
last service time value as its prediction. Figure 9 demomigrated to the flash in the background during idle periods.
strates the superior prediction quality of our model fobotWe refer the reader to research on analyzing and predicting
TPC-H and Financial trace. Our model is able to predigteriods of idleness in storage workloads (specifically,-find
the state of the flash better than the last value predictor aings of heavy-tailed inter-arrival times in enterpriselsc

Wwindow 1S the workload during window
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Figure 10: (a) Performance improvement of MixDC with fragradion buster. (b) Sustained improved performance
(consistently reduced response times) obtained usingiatation buster.

workloads that imply the presence of significant idle perivice since the effective mapping tables are present within
ods along with those of intense activity) and do not incothe device and are not exposed to outer systems. Thus, only
porate a specific policy into our current MixedStore desigm. part of the flushing mechanism, specifically the scheduler
Figure 8(a) illustrates the performance of MixedStore ircan be implemented with MixDC. In order to decide which
corporating the prediction models in MixDC with respectlata needs to be flushed, the device controller needs to pin
to a disk-only and flash-only system for the random writthe pages causing this fragmentation. We maintain a LRU
dominant Financial trace. Although flash is good for seflLeast Recently Used) list of the valid pages using the log-
vicing most requests, but it shows extremely high responimal page number of the requests. This represents the cold
time for some requests (due to extensive garbage collgctiaiata on flash and its migration to disk does not have any ma-
which should to be serviced by the disk. MixedStore iprimpact on MixedStore’s performance. When the idle pe-
able to reduce the average system response time by abded kicks in, the fragmentation buster directs the flash-con
71% as compared to a disk-only system. The zoomed-in ttesller to start flushing the data fragments. A small DRAM-
quests in Figure 8(b) reflect the performance of the predibased buffer needs to be maintained so that any request to
tion model as it is able to accurately distinguish the retjuegshe data being migrated can be serviced. Since we flush
which could be serviced faster by flash as compared to diskostly cold data, such requests are rare. Moreover, since
We believe that with a more sophisticated disk performandais activity can be delayed until an idle period is avaigbl
prediction model we can further improve the performande this work we consider it a pure background activity that
of MixDP and this is part of our future work. does not interfere with the real workload and hence we ig-
nore its possible degrading effects on overall performance
. . In order to simulate fragmentation busting, we use an of-
5.3 Fragmentation Busting fline profiling approach in which we are able to identify the
dgile periods in the workloads and hence schedule flushing
n. As shown in Figure 10(a), about 2% more requests get
ﬁrviced with fragmentation buster as compared to a MixCP

intensity of (mostly random write) requests that induces GENIY dynamic controller. Although the gap in average val-
Prior to this sudden burst we see a long activity of smates doesn’t seem much, but fragmentation buster’s real role

random requests being quickly serviced from the SSD. T?in reducing the tail of the CDFi.e., reducing the num-

We observe in Figure 10(b) that the response times S
spike up in the region between requests 2000 to 8000.
major reason for this sudden poor performance is the hi

results in developing fragmentation on the device and hen gr of request§ that experience extremely poor performanpe
requiring costly merge operations [25]. In order to preve fgure 1O_(b) |IIustra_1tes hOW fragmen_tanon buster helps in
such fragmented zones on flash, we try to develop a flushifig'©thening the spikes in response times.
methodology calledrragmentation Busting

Workloads are known to exhibit periods of idleness b,95.4 Write Regulation
tween bursts of requests [34]. Lot of research has gone into
developing techniques to identify and utilize these idle-pe We pointed out to one of the challenges in capacity planning
ods. Specifically, Mi et al. [34] categorized workloads lwhseas the unpredictability in workloads. In this section, we de
on idle periods into tail-based, body-based and body+talop techniques for handling sudden unanticipated bursts
based. We utilize their work to schedule flushing of fragn requests.
mented data from flash to the disk. The reader should noteA prolonged and/or recurring period of unanticipated ran-
that this is unlikely to be gainfully implemented using alom writes detrimental impact on lifetime of flash We ex-
black-box approach. It requires co-operation from the deeriment with a simple write regulator that detects incegas
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Average Ratio of Requests [ Average System| novel idea to the best of our knowledge—which like the

Techni E Rat Serviced by Flash R Ti . .
SNl Erasesisec) (FashiRlashiDek)| - me | write regulator monitors the erase rate of blocks and dur-
MixCP 0.16 0.69 115 ing periods of prolonged unanticipated write activity, co-
MixCP (Redzs) 0.12 0.54 156 ; ;
MhCP (Roda) 5 o o ordinates with the flash controller to prevent the extraesas

caused by wear-leveling by temporarily halting the lewglin
algorithm. Once normal I/O activity starts, it allows the de
vice to revert to its wear-leveling mechanism.

Figure 11 shows the impact of our adaptive wear-leveler

1/0 activity and consistently monitors the expected flash Ii O" the financial trace With m(_)dified inter-arfival “”_‘es to
through tk):e lifetime modeI)/of MixCP. Whenpviolations aréesemble a workload with periods of unpredicted high 1/0

detected it starts to regulate the writes being sent to flgsh %qttrl]vny. T he SSDt IS ?‘SS;‘]'T“E‘I’ tobeina drzprtesint?nve_ state
over-riding the decisions made by the performance mo |th regions containing highly accessed data (hot regions)
in MixDC. and others with infrequently accessed data (cold data) as

found in prior experiments. This results in wear-leveler be

We experiment with two models of a static write rate reqh called to uniformly maintain the erase level of all bleck
ulator that pick 25% or 50% (uniformly at random) of th 9 . rmiy . . .
owever, with MixDC equipped with our adaptive wear-

requests being sent to flash and redirects them to HDD dur- : e 0 i
ing periods of higher-than-expected I/O intensity. Let Jj veler we observe an improved lifetime of about 33%, de

call these policiesieds; and Redso, respectivelyFor this aying the need for replacement and reducing re-deployment

experiment, we synthesize a workload with similar Chaic_osts. This enables MixDC to achieve the lifetime guaran-

acteristics as Financial Trace but with periods of reducd§eS &S Projected by MixCP; hence both our capacity plan-

inter-arrival time between requests. Table 5 shows that néngli?;?mdeygirg'C:ﬁg:;ﬁgﬁ;?gf da(:t;; tigdlejrirr]etrz:rizleir\:]e-
are able to reduce the flash block erase rate by about 2 5 P getary req

while reducing the requests being serviced by flash by abcﬁﬁsed on them.

21% usingRedss. An additional 19% reduction in the erase

rate is observed usingedso. However, it results inanin- 6 Concluding Remarks

crease of 0.83ms in average system response time. Thus,

the rate of write regulation must be chosen judiciously so d&his research was based on the emerging consensus among
to meet the performance budget while ensuring that lifetinseveral storage experts that in the foreseeable futurl, wit
guarantees are satisfied. the exception of certain specialized domains, SSDs should
be used as a complementary device to HDDs in enterprise-
scale storage hierarchy. We attempted to address two prob-
lems in a simplified version of such a hybrid system con-
sisting of one HDD and one SDD sharing the 1/O bus. First,
we developed an online capacity planner caN&gCP that

Table 5:Evaluation of Write Regulation.

5.5 Adaptive Wear-Leveling

o used statistical models to meet the performance and life-
T o ﬁ\ “%mm%c time requirements of SSDs and HDDs to provide storage
g X%\ % % &:X administrators with guidelines on provisioning such a sys-
8 LY A tem in a cost-effective manner. Second, we developed a dy-
P SEEAY % namic controllerMixDC, that used shorter time-scale SDD
g ""‘;;:n\ % and HDD models along with regulation of write rate to the
5 oo A s N \ SDD and a novel idea of adaptive wear-leveling within the
£ Lo = SDD to operate the storage system within regions of de-
ER- 8 ! ; sirable cost, performance, and lifetime budgets. We eval-
g icetoma Vewiiele 2 uated these systems using a simulator (MixedSim) devel-
s | et Wearerliozt) oped by us using a variety of well-regarded benchmarks.
T e (Seconds x 1000 We found that MixedStore is able to reduce the average sys-
tem response time by about 71% as compared to a HDD-
Figure 11: Adaptive Wear-Leveling based system for a enterprise-scale Financial trace. More-

over, our innovative adaptive wear-leveling mechanism was

Wear-leveling (described in Section 3 requires swappir@p!€ t0 prolong the life of SSDs by about 33% in the pres-
of data between blocks which have high erase count wiif"ce of unanticipated increase in I/O intensity. In essence
blocks which have relatively lower erase count. This swaU" résearch opened up new vistas for not only designing

ping operation results in additional erase operations kvhi@ Well-provisioned enterprise-scale storage system sbnsi

reduce the lifetime of blocks These extra erases start jo pi29 0f SSDs and HDDs but also established a need for re-

a significant role towards the end of a flash device’s life adaoking at th_e design of SSDs to incqrporate some i””O"‘?'
indeed accelerate its death. tive mechanisms such as fragmentation buster and adaptive

We propose amdaptive wear-leveling mechanisra wear-leveler.
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