
MixedStore: An Enterprise-scale Storage System Combining
Solid-state and Hard Disk Drives∗

Abstract
Flash memory overcomes some key shortcomings of HDDs
including faster access to non-sequential data (when not de-
graded by garbage collection (GC) overheads) and lower
power consumption. Given the complementary proper-
ties of HDDs and Solid State Disks (SSDs) in terms of
cost, performance, and lifetime, the current consensus
among several storage experts is to view SSD not as a re-
placement for HDD but rather as a complementary device
within the storage hierarchy. Unlike the use of DRAM for
caching/buffering, however, certain idiosyncrasies of flash
make their integration into HDD-based systems non-trivial.
Flash memory suffers from limits on its reliability, is an
order of magnitude more expensive than the disk, and can
be sometimes even slower than the HDD (due to excessive
GC induced by high intensity of random writes). We de-
sign and evaluate a simplified hybrid system calledMixed-
Storeto provide: (a) improved capacity planning techniques
to administrators of such hybrid systems with the overall
goal of operating withincost-budgetsand (b) improved per-
formance/lifetime guarantees during episodes of deviations
from expected workloads through innovative mechanisms
such asadaptive wear-leveling, write-regulation and frag-
mentation busting. We implement a simulator for Mixed-
Store and evaluate its efficacy using a variety of well-
regarded enterprise-scale storage traces. As an illustrative
example, MixedStore is able to reduce the average system
response time by about 71% as compared to a HDD-based
system for an enterprise scale random-write dominant Fi-
nancial Trace [38]. A preliminary investigation of adaptive
wear-leveling allows us to extend the useful lifetime of SSD
by about 33% in the presence of unanticipated bursts in I/O,
thus opening up new challenges in the design of efficient
wear-leveling algorithms for the SSD controller.

1 Introduction

Hard disk drives (HDDs) have been the preferred media
for data storage in enterprise-scale storage systems for sev-
eral decades. The disk storage market totals approximately

∗Name of storage system changed to ensure anonymity.

$34 billion annually and is continually on the rise [45].
Manufacturers of HDDs have been successful in ensuring
sustained performance improvements while substantially
bringing down the price-per-byte. As an example, during
the past decade, the maximum internal data rate (IDR) for
hard disks has witnessed a 20-fold increase resulting from
improvements in rotational speeds (RPM) and storage den-
sities; seek times have improved by a factor of 4 over the
same period. However, there are several shortcomings in-
herent to HDDs that are becoming harder to overcome as
we move into faster and denser design regimes. First, de-
signers of HDDs are finding it increasingly difficult to fur-
ther improve the RPM (and hence the IDR) due to prob-
lems of dealing with the resulting increase in power con-
sumption and temperature [6, 16, 26]. Second, any fur-
ther improvement in storage density—another way to in-
crease the IDR—is increasingly harder to achieve and re-
quires significant technological breakthroughs such as per-
pendicular recording [41, 32, 7]. Third, and perhaps most
serious, despite a variety of techniques employing caching,
pre-fetching, scheduling, write-buffering, and those based
on improving parallelism via replication (e.g., RAID), the
mechanical movement involved in the operation of HDDs
can severely limit the performance that hard disk based sys-
tems are able to offer to workloads with significant random-
ness and/or lack of locality. Specific to our interest in this
paper, in an enterprise-scale system,consolidation(e.g., as
proposed/explored in [14]) can result in the multiplexing
of unrelated workloads imparting/exaggerating the random-
ness and/or lack of locality in their aggregate [14, 15].

Alongside improvements in HDD technology, significant
advances have also been made in various forms of solid-
state memory such as NAND flash [2], magnetic RAM
(MRAM) [39], phase-change memory (PRAM) [18], and
Ferroelectric RAM (FRAM) [43]. Solid-state memory of-
fers several advantages over hard disks: lower access laten-
cies for random requests, lower power consumption, lack
of noise, and higher robustness to vibrations and tempera-
ture. In particular, recent improvements in the design and
performance of NAND flash memory (simplyflashhence-
forth) have resulted in its becoming popular in many em-
bedded and consumer devices. Small form-factor HDDs
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Figure 1: A comparison of the performance and lifetime characteristics of representative SSD and HDD. although MTTFs
for HDDs tend to be of the order of several decades, recent analysis has established that other factors (such as replacement
with next, faster generation) implies a much shorter actuallifetime [42] and hence we assume a nominal lifetime of 5 years
in the enterprise.

have already been replaced by flash in some consumer de-
vices like music players, PDAs, digital cameras, etc. Flash
has, however, only seen limited success in the enterprise-
scale storage market [30]. Although (i) the aforementioned
advances in flash technology and (ii) its dropping cost-per-
byte [10] had led several storage experts to predict the in-
evitable demise of HDDs [11], flash has so far not been able
to make inroads into the enterprise-scale storage market to
the extent expected [30].

Solid-state Drives. Borrowing a few sentences from an
excellent paper on this topic by Leventhal [30],“The brunt
of the effort to bring flash to primary storage has taken the
form of solid-state disks (SSDs), flash memory packaged in
hard-drive form factors and designed to supplant conven-
tional drives. This technique is alluring because it requires
no changes to software or other hardware components, but
the cost of flash per gigabyte, while falling quickly, is still
far more than hard drives. Only a small number of appli-
cations have performance needs that justify the expense”.
We will use the termsSSDandflashinterchangeably in the
rest of this paper. As evidence of this, major storage ven-
dors producing flash-based large-scale storage systems such
as RamSan-500 from Texas Memory Systems, Symmetrix
DMX-4 from EMC, ioDrive from ioFusion, etc. are cater-
ing only a select class of applications such as large database
servers rather than the general enterprise storage market.

Media
Access Time

Lifetime
Cost/GB

(µs) ($)

DRAM 0.9 N/A 125
SSD (45) Read, (200) Write 10K-1M Erase Cycles 25
HDD 5500 MTTF=1.2Mhr 3

Table 1:Performance, lifetime, cost comparison among different
storage media. [30].

Table 1 presents a comparison of the performance, life-
time, and cost of representative HDDs, SSDs, and DRAM
used in the enterprise. There are several important impli-
cations of how these properties of these devices (specifi-
cally, in this context, those of HDDs and SSDs) compare

with each other. Flash technology possesses a number of
idiosyncrasies that have hindered the SSD from replacing
HDD in the general enterprise market.First, it is evident
that there exists a huge gap between the Cost/GB of HDDs
and SSDs.1 Second, unlike HDD or DRAM, SSDs possess
a huge asymmetry between the speeds at which reads and
writes may be performed. As a result, the throughput a flash
device offers a write-dominant workload is lower than for a
read-dominant workload.Third, flash technology restricts
the locations on which writes may be performed—a flash
location must beerasedbefore it can be written—leading
to the need for a garbage collector (GC) for/within an SSD.
We will elaborate on these properties of flash in Section 2.
Certain workload characteristics (specifically, the presence
of randomness), exacerbate GC overheads, thereby signif-
icantly slowing down the SSD—even to an extent where
it operates slower than a HDD! [27].Finally, to further
complicate matters, unlike HDDs, SSDs have a life-time
that is limited by the number of erases performed. There-
fore, excessive writing to flash, while potentially useful for
the overall performance of flash-based storage system, may
limit its lifetime. This becomes an important concern in
an enterprise-scale employing flash if its workload is write-
intensive.

MixedStore: Motivation. From the above description,
it should be clear that SSDs are fairly complex devices.
Their peculiar properties related to cost, performance, and
lifetime make it difficult for a storage system designer to
neatly fit them between HDD and DRAM. To illustrate
the complexity of the relationship between HDD and SSD,
we present results from a simple experiment in Figure 1.
As has been observed in other recent research, under cer-
tain workload conditions, an SSD can perform worse than
the HDD [27]. A look at Figures 1(a),(c),(d) provides
an illustration of such behavior and calls for careful de-

1A similar gap exists between SSD and DRAM. Furthermore, it is pro-
jected to worsen in the near future: up to a factor of 13 by 2010[1]. This
rules out major changes in the role played by DRAM in future systems that
employ SSDs. DRAM will continue to retain both of its importantroles
related to caching and buffering. Therefore, we will not compare these two
devices in the rest of this paper.
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sign to gainfully utilize them in conjunction with HDDs
in the enterprise. The degrading lifetime with increased
write-intensity, as shown in Figure 1(b)2 may result in
premature replacement of these devices, adding to deploy-
ment/procurement/administrative costs. Finally, the low
throughput offered by SSDs to random write-dominated
workloads (Figure 1(d)), which are frequently encountered
in enterprise-scale systems [27], necessitates intelligent par-
titioning of data in such hybrid environments while ensur-
ing that the management costs do not overwhelm the per-
formance improvements. As we shall see, unlike the HDD,
flash-based devices require a longer history to be incorpo-
rated into a performance predictor. As a simple example,
a large number of random writes may experience good re-
sponse time but eventually the GC induced by the resulting
fragmentation could result in requests coming much later to
see degraded performance. Modeling these characteristics
is an unexplored area and a significant part of our work as
well as the foundation of the overall functioning of Mixed-
Store.

Research Contributions. This paper makes the following
specific contributions.

• We propose MixedStore, a simplified hybrid storage sys-
tem containing only one each of an HDD and a SSD shar-
ing the I/O bus. Besides this hardware, MixedStore com-
prises: (i) acapacity planner(MixCP henceforth) that
makes long-term resource provisioning decisions for the
expected workload; it is designed to optimize the cost
of equipment that needs to be procured to meet desired
performance and lifetime needs for the expected work-
load and (ii) adynamic controller(MixDC henceforth)
whose goal is to operate the system in desirable per-
formance/lifetime regimes in the face of deviations at
short time-scales in workload from those anticipated by
MixCP.

• We develop simple statistical models that MixCP em-
ploys. These models are used in conjunction with Mixed-
Sim, 3 (a simulator we have developed for MixedStore
by enhancing DiskSim [12]) to validate the efficacy of
MixCP for a variety of well-regarded real-world storage
traces. We expect MixCP to provide “rules-of-thumb”
to administrators of hybrid storage systems when making
provisioning decisions. As an illustrative result, MixCP
is able reduce the cost of MixedStore by planning a well-
provisioned system for a realistic random-write dominant
workload (Financial Trace [38]) while ensuring similar
performance as compared to an over-provisioned system.

• We implement MixDC in our simulator. In a MixedStore

2We have picked a lifetime of 5 years for a HDD just for illustrative
purposes. An excellent study of the useful lifetimes of disksbased on data
from real enterprise-scale systems appears in a paper by Schroeder and
Gibson [42]

3Although our simulator is ready for sharing with other researchers, we
are unable to provide its URL due to double-blinded review. The name of
out simulator has been changed to preserve anonymity. However, review-
ers interested in our code and data are welcome to approach us with the
permission of the chairs.

prototype, MixDC would have two components: (a) an
enhanced block device driver that employs online statis-
tical performance and lifetime models for SSD (and a
performance model for HDD) to dynamically partition
incoming workload among the SSD and HDD, and (b)
two algorithms within the SSD controller (specifically,
within the FTL layer) including reduction of fragmenta-
tion within the flash (fragmentation buster) and a novel
concept ofadaptive wear-leveling. As an illustrative re-
sult of our empirical evaluation of the efficacy of MixDC,
it was able to prolong the life of flash device in Mixed-
Store by about 33% in the face of an unexpected increase
in I/O activity.

• Finally, we present preliminary ideas on how MixCP and
MixDC could act in concert and present an initial valida-
tion of all components of MixedStore.

Road-map. The rest of this paper is organized as follows.
In Section 2, we present the basics of flash memory technol-
ogy and discuss relevant related work. Section 3 provides a
bird’s eye-view of the overall MixedStore architecture and
how its two components, the Capacity Planner and the Dy-
namic Controller, interact. In Sections 4 and 5, we describe
and evaluate these two components individually as well as
when acting together. Finally, we present concluding re-
marks in Section 6.

2 Background and Related Work

2.1 Background on Flash

Basics of Flash Memory Technology. Flash is a unique
storage device since unlike the HDD and volatile memories,
which provide read and write operations, it also provides an
erase operation[36]. Salient operational characteristics of
these operations are as follows: Erase operations are per-
formed at the granularity of ablock which is composed of
multiple pages. A page is the granularity at which reads
and writes are performed. Each page on flash can be in
one of three different states: (i)valid, (ii) invalid and (iii)
free/erased. When no data has been written to a page, it is
in the erased state. A write can be done only to an erased
page, changing its state to valid. Out-of-place updates result
in certain written pages whose entries are no longer valid.
They are called invalid pages.

Erase operations (1.5ms) are significantly slower than
reads/writes. Additionally, write latency can be higher than
read latency by up to a factor of 4-5. The lifetime of flash
memory is limited by the number of erase operations on
its cells. Each memory cell typically has a lifetime of
10K-1M erase operations [9]. Thus,wear-levelingtech-
niques [22, 24, 31] are used to delay the wear-out of the
first flash block. The granularity at which wear-leveling is
carried out impacts the variance in the lifetime of individ-
ual blocks and also the performance of flash. The finer the
granularity, the smaller the variance in lifetime.
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The Flash Translation Layer (FTL). The FTL is a soft-
ware layer which translates logical addresses from the file
system into physical addresses between file system and
physical flash memories. FTL helps in emulating flash as
a normal block device by performing out-of-place updates
which in turn helps to hide the erase operation in flash. The
mapping tables and other data structures manipulated by the
FTL are stored in a small, fast SRAM. These FTLs can be
implemented at different granularities of how large an ad-
dress space a single entry in the mapping table captures.
Page-based FTLs map the logical page number of the re-
quest sent to the device from the upper layers such as file
system to any physical page on flash. However, such trans-
lation requires a large mapping table to be stored in SRAM.
At the other extreme, in a block-level FTL scheme, only
the logical block number is translated into a physical block
number whereas the logical page number offset within the
block remains fixed. The size of the mapping table is re-
duced by a factor ofblock size/page size(128KB/2KB=64)
as compared to page-level FTL. However, since a given log-
ical page may now be placed in only a particular physical
page within each block, the possibility of finding such a
page decreases.

To address the shortcomings of the above two extreme
mapping schemes, researchers have come up with a vari-
ety of alternatives. Although many schemes have been pro-
posed [19, 8, 28, 23, 29], they share one fundamental de-
sign principle. They are ahybrid between page-level and
block-level schemes. They logically partition their blocks
into two groups -Data BlocksandLog/Update Blocks. Data
blocks form the majority and are mapped using the block-
level mapping scheme whereas the log blocks are mapped
using a page-level mapping style. In related research , we
have developed a novel page-based FTL scheme which uti-
lizes temporal locality in workloads to overcome the short-
comings of the original page-based scheme by storing only
a subset of mappings (likely to be accessed) on the limited
SRAM and stores the remainder on the flash device itself.
A paper describing this FTL is currently under review. We
employ this FTL scheme in our current research.

2.2 Related Work

Flash as Cache and Write-Buffer. A lot of research has
been conducted to improve performance of HDDs using
non-volatile memory. eNVy [46] uses non-volatile mem-
ory for data storage wherein battery-backed SRAM is used
to reduce the write overhead. HeRMES [35] uses magnetic
RAM to reduce the overhead of frequently and randomly
accessing meta-data. MEMS [44] has also been exploited
to improve disk performance. Moreover, storage architec-
ture in which flash memory is used as a conventional disk
cache has already been proposed in [33] Our work goes
beyond merely using flash as a cache/write-buffer—rather
than treating flash as asubordinate to the disk, MixedStore
views these ascomplementarystorage media.

I/O
Controller

I/O Bus

Disk 
Controller

Buffer Flash 
Controller Buffer

Array of 
NAND Flash

I/O
Controller

I/O Bus

Buffer

Array of 
NAND Flash

Hybrid
Controller

(a) MixedStore (b) Hybrid disk

Figure 2: Illustration of a MixedStore system and a hybrid
disk.

Hybrid Disks. Samsung and Microsoft [40] have devel-
oped/deployed hybrid hard disks for laptops. Figure 2
shows two possible configurations of MixedStore. Although
our focus in this paper is on the former configuration, we ex-
pect many ideas developed here to be of use in systems with
hybrid disks. Booting time and resuming process from disk
have been improved by overlapping the time for spinning up
disk drive with the booting process from flash memory.

Bisson et al. [5] have explored the use of a flash-based
NVRAM as a write buffer to reduce write latency of hard
disks for desktop environments. They employ I/O redirec-
tion to reduce seeking overhead from disk by directing re-
quests likely to incur long seeks to the on-disk NVRAM.
We view the MixDP component of our system as concep-
tually close to Bisson et al.’s work and would be interested
in comparing MixDP with their I/O redirection technique in
the future. A key difference is that our flash model (devel-
oped in Section 4) additionally captures the fragmentation
within flash (caused by random writes) and incorporates it
into its redirection decision-making. This mechanism will
be described in Section 5.

Flash-specific Improvements. Flash Translation Layer
(FTL) is one of core-engines in a flash-based SSD. The
state-of-the-art FTLs [8, 28, 23, 29] are based on log-buffer
based approaches and optimize performance by trying to re-
duce costly GC overheads. Another orthogonal approach of
exposing flash based devices to the file system has been pro-
posed. JFFS2 [21] and YAFFS2 [47] are the most popular
file systems optimized for flash memories. Kim et al. [25]
have developed a flash device buffer management scheme
to reduce fragmentation caused by random writes. More-
over, different SSD designs including interleaving requests
to obtain parallelism and ganging etc. have been proposed
to improve flash device performance [37].

Flash in the Enterprise. Sun Micro-systems has pro-
posed a storage architecture incorporating flash-based SSDs
as intent-log devices and read caches providing improved
performance along with reduced power consumption [30].
They propose to use their ZFS file system as an interface
to these SSDs.We view Sun’s proposed hybrid architec-
ture as the closest in essence to MixedStore and believe that
the models and techniques developed here are worth imple-
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Figure 3: Depiction of various components of MixedStore andhow they interact.

menting and evaluating in the context of their system.
Finally, to enhance flash-based DBMS, Lee et al., [27]

proposed an in-page logging approach to reduce random
write overhead by updating in-place in the database buffer
and hence reducing garbage collection overhead. A key
contribution in this paper is the observation that workloads
with extensive randomness can cause an SSD to perform
worse than a HDD. We find similar results in our evaluation
and build models that can capture this aspect of an SSD’s
operation.

3 Overview of HybridStore

Figure 3 depicts the interaction between various compo-
nents of MixedStore. In this study, we utilize a simplified
model of an enterprise-scale storage system consisting of a
single HDD and a single SSD connected to the same I/O
bus. We will deal with more complex configurations con-
sisting of RAID arrays etc. in the future work.

MixedStore consists of two major components:
(i) a long-term resource provisioning tool (MixCP)
for system administrators to optimize the procure-
ment/deployment/maintenance costs while adhering to the
performance budgets (specific to workloads) and lifetime
budgets, and (ii) a short term dynamic controller (MixDC)
which is part of the MixedStore internal structure.

MixCP utilizes statistical models for performance and
lifetime to determine the optimal SSD capacity (we assume
a static HDD size for our study) for different workloads.
Figure 4 demonstrates the improvement in performance and
reduction in cost using MixCP along with dynamism aware
performance predictor. However, workloads are known to
exhibit deviations from predicted behavior [] and hence we
require MixDC to dynamically control the partitioning of
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Figure 4: Capacity Planning for Financial Trace [38].
”Static” denotes a static data-partitioning policy where write
requests larger than 4KB are assumed to be sequential and
are serviced by the HDD and others are serviced by SSD.
”Dyn. aware” denotes an intelligent data partitioning policy
(described in Section 4 developed by us.

requests (using a performance predictor) as well as ensure
high level of performance from the SSD (performance of
SSD degrades with fragmentation of data on the device).
Thus, MixDC is implemented at the I/O driver level and
needs to interact with the SSD controller to performadap-
tive wear-levelingandfragmentation busting.In the real pro-
totype, these techniques will be implemented as split mod-
ules ( similar to back-end and front-end drivers in Xen [4])
with the controller residing withing MixDC while the work-
ing thread(module) present in the SSD. Analogous to adap-
tive wear-leveling whose primary purpose is to improve
SSD’s lifetime, MixDC contains a write-regulator which
can reduce the intensity of requests to SSD during periods
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Workloads Average Request Size Read (%) Sequentiality (%) Average Request Inter-arrival
(KB) Time (ms)

Financial (OLTP) [38] 4.38 9.0 2.0 133.50
Cello99 [17] 5.03 35.0 1.0 41.01

TPC-H (OLAP) [48] 12.82 95.0 18.0 155.56

Table 2: Enterprise-Scale Workload Characteristics.

of high I/O activity. We describe the functionality and pre-
liminary evaluations of all these mechanisms in Section 5.

For evaluation purposes, we have developed our own
simulator called MixedSim (name changed to ensure
anonymity). The simulator has been built by enhancing
Disksim [13], a well-regarded HDD simulator. MixedSim
is designed with a modular architecture with the capability
to model a holistic flash-based storage environment. It is
able to simulate different storage sub-system components
including device drivers, controllers, caches, flash devices,
and various interconnects. In our integrated simulator, we
add the basic infrastructure required for implementing the
internal operations (page read, page write, block erase etc.)
of a SSD. The core FTL engine is implemented to pro-
vide virtual-to-physical address s translations along with
a garbage collection mechanism. We use a novel page-
based FTL scheme for our evaluation (paper describing this
scheme is under review).

We use realistic enterprise scale workloads (refer to Ta-
ble 2 for their description) and some synthetic traces for
experimentation. We simulate IBM Ultrastar 36Z15 as the
HDD and a 32GB 2.5” SATA Solid State Drive from Super-
Talent [3] in MixedSim. (Note that the specification avail-
able for SSDs are insufficient to completely model them.
For example, the SRAM cache size and the FTL is un-
known. Thus, we make suitable assumptions for these pa-
rameters.)

4 Capacity Planning

Given the large price gap between SSDs and HDDs, it is
useful to be able to determine appropriate capacities of these
devices for the workload the system expects to support. We
define this process of determining the right size of devices
in MixedStore ascapacity planning.

As illustrated in Figure 4, both under-provisioning and
over-provisioning of flash memory leads to inefficient stor-
age utilization, thus adversely impacting the cost-to-benefit
ratio for MixedStore. Therefore, the goal of capacity plan-
ning is to minimize this discrepancy so that overall storage
investment cost can be optimized.

4.1 Problem Formulation

The objective of capacity planning is to minimize the cost of
MixedStore (deployment, management, maintenance etc.)
while meeting the service level agreements. These con-
straints can vary from guaranteeing some minimum per-
formance requirements to reducing management and re-

deployment costs, ensuring system reliability etc. For the
purpose of our study, we try and minimize the deployment
cost (in terms of $/GB) subject to a combination of both
performance and re-deployment constraints. We use aver-
age system response time as a metric of MixedStore’s per-
formance and term this metric as the system’sPerformance
Budget. As described in Section 2, the blocks in SSDs be-
come unreliable beyond 10K-1M erase cycles. This poses a
significant challenge for a system administrator whose ob-
jective is to keep system re-deployment frequency and costs
under control. We capture these objectives in terms of a
Lifetime Budgetfor the system, which is the time between
successive capacity planning decisions and equipment pro-
curement/installation.

We formulate our capacity planning problem as a means
of minimizing the cost of acquiring/installing MixedStore
while meeting the administrator/workload-specified perfor-
mance (PBudget) and useful lifetime budget (LBudget). Let
CSSD indicate the cost of flash based SSDs and andCHDD

indicate the cost of HDDs in MixedStore. Then the total
MixedStore costCMixedStore is the sum of these individual
costs.

Equation 1 shows the formal description of capacity
planning.

Minimize CMixedStore Subject to
{

PMixedStore ≥ PBudget

LMixedStore ≥ LBudget

(1)

WhereCMixedStore=CSSD + CHDD

It is easily seen that the above optimization problem re-
duces to minimizing the cost of SSD for fixed size of HDD
available in a MixedStore system.

However, the performance and lifetime of flash based
SSD is highly dependent on not only the workload charac-
teristics but also the internal intricacies of flash such as de-
sign of FTL, efficiency of GC etc. This provides a mandate
for the design of a robust capacity planner (MixCP) tool for
use by storage system designers. In the next sub-sections,
we describe the statistical models utilized by MixCP to pro-
vision SSDs in MixedStore.

4.2 Modeling Performance and Lifetime of
Flash Memory for MixCP

We employ a ”black-box” modeling approach for estimating
a given SSD’s useful lifetime and performance. Our model
makes no assumptions about the inner configurations (such
as FTL employed, SRAM cache size etc.). We do find its
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Figure 5: Validation of performance and lifetime models compared with values measured using MixedSim.

efficacy varies depending on the internals of the SSD. For
example, the predictor performs better with our page-based
like FTL than other state-of-the-art hybrid FTLs. We do not
elaborate on these here due to space constraints. For this
purpose, we need to identify statistically significant work-
load characteristics that impact the SSD’s lifetime and per-
formance. Performance is directly impacted by data frag-
mentation caused by random writes which invoke costly
GC operations. Moreover, high write intensity increases
the number of erase operations required to reclaim invalid
space on flash, thus reducing lifetime of blocks. Based
on these observations, we consider the following workload
characteristics as significant independent variables: (i)av-
erage read/write ratio, (ii) spatial locality captured in the
form of average sequentiality among requests, (iii) average
request inter-arrival time, (iv) average request size, and(v)
flash utilization defined as the ratio of the working set size
to the total flash size. We install probes in MixedSim to
capture data relating to the above parameters.

4.3 Methodology: Regression Based Model-
ing

Using multiple linear regression, we first find significant
predictor variables which affect the variables being pre-
dicted: (i) average system response time (ms) for perfor-
mance budget, (ii) average block erase rate (erases/second)
for lifetime budget. We start with the general approach in
multiple regression of finding significant predictor variables
while plugging in as many predictor variables as we can
think of. In order to avoid multicollinearity problems, we
also perform correlation analysis on predictor variables to
ensure that they are all independent variables.

Performance Model. We use average I/O system re-
sponse time (Ravg) as a predictor of flash performance. I/O
system response time represents the time interval between
the issuance of request to the SSD by the I/O driver and its
completion notification to the driver. It includes queuing de-
lay, bus delay and controller overhead in the device. We first

experiment with a multiple linear regression based model.
Upon finding this model unsatisfactory, we move towards a
slightly more complicated multiple log-linear model [20].It
can be represented as

log(Ravg) = a0 +

n
∑

i=1

ai · Wavg(i) + ǫ (2)

where (Wavg) represents the the average of a particular
workload characteristic selected from a set of n parameters
discussed earlier (Section 4.2) andǫ is a small error. The co-
efficients (a0, a1, ... ,an) are estimated during the learning
phase of the experiments.

Lifetime Model. Erase rate (block erases per second) de-
noted byEavg, represents the lifetime of a flash device since
each block typically has a life of about 10K-1M erase cy-
cles [9]. As in the case of performance modeling, we start
by fitting a multiple linear regression model. Again, we ob-
serve that a multiple log-linear regression technique, simi-
lar to the one used for performance budget is able to model
the lifetime budget. The similarity between the two models
arises from the fact that higher response times are a function
of garbage collection which require block erases and hence
impact lifetime. Thus, the lifetime model can be represented
as

log(Eavg) = b0 +

n
∑

i=1

bi · Wavg(i) + ǫ (3)

where (Wavg) represents the the average of a particular
workload characteristic selected from a set of n parameters
discussed earlier (Section 4.2) andǫ is a small error. The
coefficients (b0, b1, ... ,bn) are estimated during the learning
phase of the experiments.

4.4 Modeling Results and Validation

In this sub-section, we describe the experimental results
with our modeling methodology. Then, we validate our
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Figure 6: Capacity Planning

Index
Sequentiality Request Size Utilization Inter-Arrival

(Ratio) (Sectors) (Ratio) (ms)

W1 0.10 41.54 0.89 322.18
W2 0.70 16.90 0.89 79.90
W3 0.30 115.71 0.94 80.24
W4 0.70 115.44 0.58 319.74
W5 0.03 6.57 0.91 164.49

Table 3: Some of the synthetic write-only workloads
(W1,W2,W3,W4) used to train the performance and life-
time models and a realistic Financial Trace workload
[38](W5) used for evaluating the models.

models by comparing against the actual values measured
using MixedSim. We generate a large number of synthetic
traces by varying workload characteristics described in Sec-
tion 4.2 to train the models and randomly select 900 of these
traces to form our training set. The adjusted R-square4 is
found to be around 90% for both the multiple log-linear
models [20]. The average error rate is about 25% for the
training set.

Validation. We validate our performance and lifetime
models by comparing their results with the correspond-
ing values measured using MixedSim. Table 3 shows
the salient characteristics of some of the synthetic and real
workloads. We choose write-only synthetic traces for val-
idation since flash performs very well for read dominant
workloads. Moreover, lifetime is not an issue for such work-
loads since they encounter very few erase operations. For
W2, the error in the performance model is only about 4%
whereas it rises to about 21% for W3 which has the high-
est erase rate and response time values (owing to large re-
quest sizes and low inter-arrival times) in the traces shown.
For the Financial trace [38], the observed performance as
well as lifetime errors are about 55%. The major cause of
this discrepancy is that our black-box model assumes no in-
formation about the internal state of the flash and hence is

4Adjusted R-square defines the proportion of variability that is ac-
counted for by a statistical model. Unlike R-square it only increases if
a newly added predictor, statistically improves an existingmodel

liable to errors. Arguably, by incorporating more informa-
tion about flash internals we can improve our model further.
However, as explained in Section 3, for MixedStore, having
a reasonably accurate MixCP suffices so long as MixDC can
handle the inaccuracies in the former models. To summarize
our validation, we have demonstrated the possibility of de-
veloping a performance and lifetime estimation methodol-
ogy with reasonable accuracy with simple linear regression
models.

4.5 Evaluation

Workload

Lifetime (Yr)
Over Provisioned MixCP Under Provisioned

(2GB) (1GB) (0.5GB)
Financial Trace 52.69 7.29 2.67

TPC-H 97.50 21.65 -

Table 4: Lifetime observations with different approaches. A
block is assumed to possess 10K reliable erase cycles.

In this subsection we compare the performance of
MixCP capacity planner with other generic capacity plan-
ning methodologies which either under-provision or over-
provision the flash capacity in MixedStore. For evaluation
purposes we use realistic enterprise scale workloads whose
salient characteristics are shown in Table 2.

Table 4 shows the flash device lifetime for various ca-
pacity planning techniques with dynamism-aware data par-
titioning policy for different workloads. TPC-H is read
dominant and hence performance budget is of greater con-
cern than lifetime. For Financial trace which is a write-
dominant workload, we observe that under-provisioning ca-
pacity would necessitate flash device replacement within 3
years and hence would impact the overall lifetime budget of
MixedStore. We want the flash device to last till around the
useful life of disk (approximately 5 years) and both over-
provisioning and MixCP are able to achieve this mandate.

Over-provisioning flash capacity should reduce the re-
quest response times from flash device since the garbage
collection overheads will be reduced and hence improve
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Figure 7: Capacity planning for financial-like trace [38]. We increase arrival rate by orders of 2 as shown in legends.

MixedStore performance as compared to MixCP. We ob-
serve that the performance benefits accrued with this extra
flash are much less as compared to the increased cost due
to larger flash. As shown in Figure 7(b), for read-dominant
TPC-H [48], both MixCP and over-provisioned models pro-
vide similar performance. This can be directly attributed
to the fact that read-oriented workloads have very small
amount of writes, thus the garbage collector is invoked
very infrequently and the service patterns remain similar
for both the capacity planning methodologies. Even for
the write-dominant Financial trace, Figure 7(a) shows that
MixCP performs much better than a static over-provisioning
scheme. However, if dynamism-aware data partitioner is
utilized along with an over-provisioned flash, we observe a
slight improvement in performance as compared to MixCP.

But this small improvement comes at additional costs of
bigger flash memory. Thus, the cost-to-benefit ratio advo-
cates the use of MixCP for capacity planning in enterprise
scale systems.

4.6 Challenges in Capacity Planning

Workloads are known to exhibit variation from their pre-
dicted behavior. In such circumstances, capacity plan-
ning alone is not sufficient to meet the lifetime and per-
formance budgets. Figure 7(a)-(b) show the impact of in-
creased arrival rate on performance and lifetime budgets for
a write-dominant workload. If the system designer had pro-
visioned the system at point A to keep the flash lifetime
around a disk’s useful life while satisfying the performance
needs, these guarantees do not hold if the workload changes.
With higher intensity of writes, the garbage collector is in-
voked more often; thus degrading the system’s performance.
Moreover, it results in higher number of block erases, reduc-
ing the flash lifetime. Thus, we require additional sophisti-
cated data partitioning mechanisms which can dynamically
adapt to these changing workload environments. In the next
section, we describe some techniques employed by our dy-
namic controller (MixDC) to meet the various budgets and

thus work in synchronization with MixCP.

5 Dynamic Controller- MixDC

In this section, we investigate a variety of techniques which
help operate MixedStore within or close to desirable perfor-
mance, cost, lifetime budgets despite unanticipated changes
in workloads.

5.1 Short-Term Performance Prediction
Model for SSD

The performance of the SSD is highly dependent on the
workload incident on it. Since out-of-place updates are per-
formed on the flash, GC resulting from fragmentation has
an important impact on response time. We build upon our
learning from capacity planning and try to develop time-
scale performance models suitable for MixDP.

Although the large-body of work on modeling disk per-
formance is of use here, there are certain salient novel as-
pects of flash operation that MixDP’s SSD model must cap-
ture. Perhaps the most important such feature is that unlike
a disk,an SSD performance model needs to incorporate a
muchlonger history, since a large enough number of ran-
dom writes (that might themselves experience good perfor-
mance) might cause fragmentation over time and the result-
ing GC invocation would then degrade the performance of
requests that arrive much later the.

Again we start with identifying the crucial workload char-
acteristics which play a major role. However, contrary to the
earlier MixCP performance model here we work with a slid-
ing window of requests. This sliding window acts as a short
term history of requests and enable us to make fair short
term decisions. The main workload characteristics used in
the model are: (i)Average Read to write ratioof a window
of requests, (ii)Spatial locality—average sequentiality of a
window of requests, (iii)Request inter-arrival time, and (iv)
Current request size.
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Figure 8: Performance of MixedStore compared with a disk-only and a SDD-only system.

Since this performance model needs to make predictions
about the performance of requests in the immediate future,
and as seen how performance depends on long-term history,
we need to capture and preserve certain aspects of thecur-
rent stateof the flash device. However, this information
about state of the flash device might require information
about SSD internals that may not be feasible (e.g., in the
SSD that MixedStore assumes).

In order to build a feasible as well as efficient black-
box performance model, we use the history of previous de-
vice service times as an indicator of flash device state. For
simplicity, we use the average of the service times (Savg).
Moreover, we use system response time (Rcurrent) as a
measure of flash device performance. Thus, our multiple
linear regression model can be represented as

Rcurrent = c0 + c1Wwindow + c2Savg + ǫ

Savg =
(

w
∑

j=1

S(j)
)

/w

where,ǫ is a small error and

Wwindow is the workload during windoww

The coefficients (c0, c1, c2) are estimated during a learn-
ing/training phase of our experiment which consists of half
of the workload. We believe converting our learning-based
prediction technique can be easily adapted to operate online,
although we do not evaluate that here.

5.2 Evaluation with Dynamism-Aware Per-
formance Prediction Model

We use the Financial trace [38] and TPC-H [48] workload to
validate our model. Contrary to our performance predictor
for MixCP, our empirical evaluation suggests a simpler mul-
tiple linear regression to be satisfactory. For Financial trace,
we observe the measured R-square value to be 98%. We
compare the accuracy of our model with a simple baseline—
a last value-basedprediction model for SSD which uses the
last service time value as its prediction. Figure 9 demon-
strates the superior prediction quality of our model for both
TPC-H and Financial trace. Our model is able to predict
the state of the flash better than the last value predictor and
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Figure 9: Comparison of our dynamic SSD performance
prediction model with a simple last value-based prediction
model.

hence shows much small error rate.
We integrate our SSD prediction model with an admit-

tedly simple disk performance predictor. We use a model
based on the average response time observed during the
training phase to predict disk performance. The dynamic
controller (MixDC) partitions write requests depending on
the least response times predicted by the SSD and HDD
models. MixDC maintains a table to store information about
the current location of data (device id) and updates it when-
ever some data is migrated from one device to the other. The
clean up of dirty data (old version) is scheduled during idle
periods. Read requests are always serviced from the device
which contains the data. Frequently read small sized data is
migrated to the flash in the background during idle periods.
We refer the reader to research on analyzing and predicting
periods of idleness in storage workloads (specifically, find-
ings of heavy-tailed inter-arrival times in enterprise-scale
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Figure 10: (a) Performance improvement of MixDC with fragmentation buster. (b) Sustained improved performance
(consistently reduced response times) obtained using fragmentation buster.

workloads that imply the presence of significant idle peri-
ods along with those of intense activity) and do not incor-
porate a specific policy into our current MixedStore design.
Figure 8(a) illustrates the performance of MixedStore in-
corporating the prediction models in MixDC with respect
to a disk-only and flash-only system for the random write
dominant Financial trace. Although flash is good for ser-
vicing most requests, but it shows extremely high response
time for some requests (due to extensive garbage collection)
which should to be serviced by the disk. MixedStore is
able to reduce the average system response time by about
71% as compared to a disk-only system. The zoomed-in re-
quests in Figure 8(b) reflect the performance of the predic-
tion model as it is able to accurately distinguish the requests
which could be serviced faster by flash as compared to disk.
We believe that with a more sophisticated disk performance
prediction model we can further improve the performance
of MixDP and this is part of our future work.

5.3 Fragmentation Busting

We observe in Figure 10(b) that the response times SSD
spike up in the region between requests 2000 to 8000. The
major reason for this sudden poor performance is the high
intensity of (mostly random write) requests that induces GC.
Prior to this sudden burst we see a long activity of small
random requests being quickly serviced from the SSD. This
results in developing fragmentation on the device and hence
requiring costly merge operations [25]. In order to prevent
such fragmented zones on flash, we try to develop a flushing
methodology calledFragmentation Busting.

Workloads are known to exhibit periods of idleness be-
tween bursts of requests [34]. Lot of research has gone into
developing techniques to identify and utilize these idle peri-
ods. Specifically, Mi et al. [34] categorized workloads based
on idle periods into tail-based, body-based and body+tail
based. We utilize their work to schedule flushing of frag-
mented data from flash to the disk. The reader should note
that this is unlikely to be gainfully implemented using a
black-box approach. It requires co-operation from the de-

vice since the effective mapping tables are present within
the device and are not exposed to outer systems. Thus, only
a part of the flushing mechanism, specifically the scheduler
can be implemented with MixDC. In order to decide which
data needs to be flushed, the device controller needs to pin
the pages causing this fragmentation. We maintain a LRU
(Least Recently Used) list of the valid pages using the log-
ical page number of the requests. This represents the cold
data on flash and its migration to disk does not have any ma-
jor impact on MixedStore’s performance. When the idle pe-
riod kicks in, the fragmentation buster directs the flash con-
troller to start flushing the data fragments. A small DRAM-
based buffer needs to be maintained so that any request to
the data being migrated can be serviced. Since we flush
mostly cold data, such requests are rare. Moreover, since
this activity can be delayed until an idle period is available,
in this work we consider it a pure background activity that
does not interfere with the real workload and hence we ig-
nore its possible degrading effects on overall performance.

In order to simulate fragmentation busting, we use an of-
fline profiling approach in which we are able to identify the
idle periods in the workloads and hence schedule flushing
then. As shown in Figure 10(a), about 2% more requests get
serviced with fragmentation buster as compared to a MixCP
only dynamic controller. Although the gap in average val-
ues doesn’t seem much, but fragmentation buster’s real role
is in reducing the tail of the CDF, i.e., reducing the num-
ber of requests that experience extremely poor performance.
Figure 10(b) illustrates how fragmentation buster helps in
smoothening the spikes in response times.

5.4 Write Regulation

We pointed out to one of the challenges in capacity planning
as the unpredictability in workloads. In this section, we de-
velop techniques for handling sudden unanticipated bursts
in requests.

A prolonged and/or recurring period of unanticipated ran-
dom writes detrimental impact on lifetime of flash We ex-
periment with a simple write regulator that detects increased
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Technique
Average Ratio of Requests Average System

Erase Rate Serviced by Flash Response Time
(Erases/Sec.) (Flash/(Flash+Disk)) (ms)

MixCP 0.16 0.69 1.15
MixCP (Red25) 0.12 0.54 1.56
MixCP (Red50) 0.09 0.40 1.98

Table 5:Evaluation of Write Regulation.

I/O activity and consistently monitors the expected flash life
through the lifetime model of MixCP. When violations are
detected it starts to regulate the writes being sent to flash by
over-riding the decisions made by the performance model
in MixDC.

We experiment with two models of a static write rate reg-
ulator that pick 25% or 50% (uniformly at random) of the
requests being sent to flash and redirects them to HDD dur-
ing periods of higher-than-expected I/O intensity. Let us
call these policiesRed25 andRed50, respectively.For this
experiment, we synthesize a workload with similar char-
acteristics as Financial Trace but with periods of reduced
inter-arrival time between requests. Table 5 shows that we
are able to reduce the flash block erase rate by about 25%
while reducing the requests being serviced by flash by about
21% usingRed25. An additional 19% reduction in the erase
rate is observed usingRed50. However, it results in an in-
crease of 0.83ms in average system response time. Thus,
the rate of write regulation must be chosen judiciously so as
to meet the performance budget while ensuring that lifetime
guarantees are satisfied.

5.5 Adaptive Wear-Leveling
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Figure 11: Adaptive Wear-Leveling

Wear-leveling (described in Section 3 requires swapping
of data between blocks which have high erase count with
blocks which have relatively lower erase count. This swap-
ping operation results in additional erase operations which
reduce the lifetime of blocks These extra erases start to play
a significant role towards the end of a flash device’s life and
indeed accelerate its death.

We propose anadaptive wear-leveling mechanism—a

novel idea to the best of our knowledge—which like the
write regulator monitors the erase rate of blocks and dur-
ing periods of prolonged unanticipated write activity, co-
ordinates with the flash controller to prevent the extra erases
caused by wear-leveling by temporarily halting the leveling
algorithm. Once normal I/O activity starts, it allows the de-
vice to revert to its wear-leveling mechanism.

Figure 11 shows the impact of our adaptive wear-leveler
on the financial trace with modified inter-arrival times to
resemble a workload with periods of unpredicted high I/O
activity. The SSD is assumed to be in a representative state
with regions containing highly accessed data (hot regions)
and others with infrequently accessed data (cold data) as
found in prior experiments. This results in wear-leveler be-
ing called to uniformly maintain the erase level of all blocks.
However, with MixDC equipped with our adaptive wear-
leveler we observe an improved lifetime of about 33%, de-
laying the need for replacement and reducing re-deployment
costs. This enables MixDC to achieve the lifetime guaran-
tees as projected by MixCP; hence both our capacity plan-
ning and dynamic-controller tools act in tandem to achieve
the lifetime and performance budgetary requirements im-
posed on them.

6 Concluding Remarks

This research was based on the emerging consensus among
several storage experts that in the foreseeable future, with
the exception of certain specialized domains, SSDs should
be used as a complementary device to HDDs in enterprise-
scale storage hierarchy. We attempted to address two prob-
lems in a simplified version of such a hybrid system con-
sisting of one HDD and one SDD sharing the I/O bus. First,
we developed an online capacity planner calledMixCP that
used statistical models to meet the performance and life-
time requirements of SSDs and HDDs to provide storage
administrators with guidelines on provisioning such a sys-
tem in a cost-effective manner. Second, we developed a dy-
namic controller,MixDC, that used shorter time-scale SDD
and HDD models along with regulation of write rate to the
SDD and a novel idea of adaptive wear-leveling within the
SDD to operate the storage system within regions of de-
sirable cost, performance, and lifetime budgets. We eval-
uated these systems using a simulator (MixedSim) devel-
oped by us using a variety of well-regarded benchmarks.
We found that MixedStore is able to reduce the average sys-
tem response time by about 71% as compared to a HDD-
based system for a enterprise-scale Financial trace. More-
over, our innovative adaptive wear-leveling mechanism was
able to prolong the life of SSDs by about 33% in the pres-
ence of unanticipated increase in I/O intensity. In essence,
our research opened up new vistas for not only designing
a well-provisioned enterprise-scale storage system consist-
ing of SSDs and HDDs but also established a need for re-
looking at the design of SSDs to incorporate some innova-
tive mechanisms such as fragmentation buster and adaptive
wear-leveler.
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