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Abstract
The popularity of flash memory will soon bring much at-
tention to the criticism of file-system performance over
flash memory. This work is motivated by the modularity
designs in operating system components, such as bus and
device drivers. We propose a filter-driver-layered caching
design to resolve the performance gap among file sys-
tems and to improve their performance with the consid-
erations of flash memory characteristics. An efficient hy-
brid tree structure is presented to organize and manipu-
late the intervals of cached writes. Algorithms are pro-
posed in the merging, padding, and removing of the data
of writes. The effectiveness and data consistency of the
proposed approach are shown with some analysis study
of FAT-formatted and NTFS-formatted USB flash disks.
The proposed cohesive caching policy was implemented
as a filter driver in Windows XP/Vista for performance
evaluation. In the experiments, more than 10 times of
performance improvement was achieved in many cases,
when the cache size was only 64KB.

1. Introduction
There are two major designs for flash memory: NAND
and NOR. NAND flash memory is mainly for the imple-
mentation of storage systems, and NOR has good per-
formance in reads and supports XIP (eXecute-In-Place)
to run programs directly. As MLC NAND flash mem-
ory gains its momentum because of the cost issue, how
to retain the system performance has become a challeng-
ing issue, especially when the capacity of flash-memory
storage device grows very rapidly1. For example, the
time to program one page of MLC×2 flash memory is
800µs, while that of SLC flash memory is only 200µs
[4, 5]. The performance problem is further exaggerated
due to the behavior of file systems in the maintenance
of file meta data and directory information. A number of
writes of small sizes quickly result in performance de-
terioration of flash-memory-based file systems. Because
MLC flash memory can only accommodate a very lim-
ited number of erases over each block, all of the men-
tioned problems also have serious impacts on the en-
durance of flash-memory storage systems. Such observa-

1 There are two popular NAND flash memory designs: SLC (Single
Level Cell) flash memory and MLC (Multi-Level Cell) flash memory.
Each cell of SLC flash memory contains one-bit information, while
each cell of MLC×n flash memory contains n-bit information. The
endurance of a block of MLC×2 flash memory is only 10,000 erase
counts, compared to the 100,000 erase counts of its counterpart of SLC
flash memory.

tions motivate this research. That is to resolve the perfor-
mance gap among file systems and to improve their per-
formance with the considerations of flash memory char-
acteristics.

A NAND flash memory chip consists of many blocks,
and each block consists of a fixed number of pages. A
block is the smallest unit for erases, while a page is the
smallest unit for reads and writes. Each page of small-
block (/large-block) SLC flash memory can store 512B
(/2KB) data, and there are 32 (/64) pages per block. The
configuration of MLC×2 flash memory is the same as
large-block SLC flash memory, except that each block is
composed of 128 pages [5]. Because each page is write-
once, we do not overwrite data on each update. Instead,
data are written to free pages, and the old versions of
data are invalidated (or considered as dead). The update
strategy is called “out-place update”. In other words, any
existing data on flash memory could not be over-written
(updated) unless its corresponding block is erased. The
pages that store live data and dead data are called “valid
pages” and “invalid pages”, respectively. In the litera-
ture, there were a lot of excellent researches and imple-
mentations to explore different system architectures and
layer designs, e.g., [10, 22, 27, 36, 39], some exploited
large-scaled and energy-aware storage systems, e.g., [11,
15, 16, 41, 45], and some exploited data compression
and endurance enhancement for flash-memory storage
systems, e.g., [9, 12, 43]. Some exploited new indexing
structures for databases over flash-memory systems, e.g.,
[23, 24, 37, 38, 44]. Researchers also considered how to
improve the performance of NAND flash memory with
a SRAM cache, e.g., [21, 26, 32, 34], where OneNAND
by Samsung presented a simple but effective hardware
architecture to replace NOR with NAND and a SRAM
cache, e.g., [21, 34, 35].

In recently years, some excellent work [20, 25, 42]
proposed to add a write buffer in flash-memory devices
to improve their random write performance. However,
the write buffer will increase the hardware cost of flash-
memory devices (due to cost of RAM buffer), may dam-
age the integrity of file systems (due to power failures),
and is not aware of the characteristics of file systems.
One recent research direction is to adopt NAND flash
memory as the cache of hard disks or as the fast booting
devices of operating systems, e.g., [1, 2, 3, 6, 18, 30, 40].
Terrell et al. [19] proposed a design of flash-memory
storage systems with SRAM as its cache. Harari et al.
[17] proposed to cache data of writes to flash-memory
storage devices. In the approaches, cache is in the stor-

1



age devices for device performance improvement. Be-
sides, Bennett et al. [8] considered the merging of op-
erations of logical block area (LBA) ranges to improve
the system performance. Rosich et al. [33] proposed a
control system to cache data of writes, where the con-
trol system merges adjacent data blocks. Few results con-
sidered file system behaviors or designs. Different from
popular caching ideas proposed in the previous work
[8, 17, 19, 33], we are interested in the reducing of
the performance gap among different file systems and
their performance improvement with the considerations
of flash memory characteristics. This work is also mo-
tivated by the modularity designs in operating system
components, such as bus and device drivers.

In this paper, we propose a driver-layer caching pol-
icy, referred to as the cohesive caching, between the de-
vice driver and bus driver at the host computer. The de-
signs of bus and device drivers are considered as black
boxes. An efficient hybrid tree structure is presented to
organize and manipulate the intervals of cached writes.
Algorithms are proposed in the merging, padding, and
removing of the data of writes so that the amount of data
written to the storage devices is much reduced. The time
complexity in the searching, inserting, and deleting of
any cached write in the cache is O(lgn), where n is the
number of cached writes in the cache. With analysis of
USB-based FAT file systems, we show the effectiveness
of the proposed approach. The caching policy is imple-
mented as a filter driver in Windows XP/Vista. In the ex-
periments, more than 93% of the file copying time was
eliminated for USB-based FAT flash-memory file sys-
tems in the copying of Linux image files, when the cache
size was only 64KB.

The rest of this paper is organized as follows: Section
2 presents the system architecture and the motivation of
this paper. Section 3 presents the design of the driver-
layer cohesive caching policy and its manipulation algo-
rithms. Section 4 presents the behavior analysis of the
FAT file system and the USB mass storage device driver.
Section 5 summarizes the performance evaluation. Sec-
tion 6 is the conclusion.

2. System Architecture and Motivation
A storage medium is usually accessed by a host through
a device controller, where a device controller supports
primitive functions in accessing the corresponding medium,
such as reads and writes. Products may or may not
choose to pack storage media and their controllers to-
gether as devices (Please see Figure 1). Example prod-
ucts are MemoryStickT M , SecureDigitalT M , SmartMediaT M ,
and xDT M (and their card readers), as shown in Figure
1(b). CompactFlashT M , and USB Flash Drives(UFDs)
are other example products with controllers inside (Please
see Figure 1(a)). At the host side, a bus driver is to control
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a bus, e.g., the Universal Serial Bus (USB), to commu-
nicate with a device controller, and a device driver is an
implementation of the control mechanism for the corre-
sponding storage medium. Filter drivers are introduced
by modern operating systems [31], such as Windows XP
and Vista, to provide system designers more flexibility
in providing additional functionality, beside existing de-
signs offered by operating-system or hardware vendors.

File System NTFS FAT32

Number of Written Files 19,535 19,535
Number of Written Directories 1,200 1,200
Number of write requests 24,513 179,670
Time taken (min:sec) 4:33 54:21

Number of Read Files 19,535 19,535
Number of Read Directories 1,200 1,200
Number of Reads 14,568 23,528
Time taken (min:sec) 2:53 3:19

Table 1. Write/Read files to/from a removable storage device
over Windows XP

This work is motivated by significant performance
differences in doing file manipulations over different file
systems when the underlying storage medium is NAND
flash memory (referred to as NAND as well). We are in-
terested in NAND because it is a good example medium
for removable storage devices, which must be of low cost
and preferably huge in the capacity. It is also because
NAND is a popular alternative for the storage system
designs of embedded systems, due to its characteristics
in non-volatility, low power consumption, low cost, and
shock resistance. Table 1(Rows 2-5) shows our experi-
mental results in writing 19,535 files in 1,200 directo-
ries to a 2GB Sandisk USB flash drive (UFD). The to-
tal size in the writing is 210MB. The average number
of writes per file or directory is 1.18 in our experiments,
when NTFS is adopted as its file system. The average
number becomes 8.665 when FAT32 is adopted. The ob-
servation shows that the potential overheads introduced
by writes over different file system can be very different.
On the other hand, the average numbers of reads per file
for the access of the same set of files remain quite differ-
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ent for NTFS and FAT32, as shown in Table 1(Rows 6-9).
When close investigation was done, it was observed that
NAND easily suffers from writes of small sizes. Such a
phenomenon will exaggerate the performance problem
in file-system manipulations , due to the handling of file
meta information by the file system and the low trans-
mission rate of a bus.

The technical question is how to resolve the perfor-
mance gap among file systems and the management
problems of NAND in a transparent way, without any
modifications to bus and device drivers. Specifically, the
problem is how much performance improvement is pos-
sible to FAT32 and even NTFS without considering the
designs of bus and device drivers. In this research, the be-
havior of popular file systems, i.e., NTFS and FAT32, are
investigated to drive the design of a good filter driver in
system performance boosting. We consider file-system,
device, and bus drivers as block boxes because of modu-
lar designs (and the drivers are usually provided in binary
forms so that their modifications are often infeasible).
Furthermore, a filter driver is a special layer that knows
the characteristics of its corresponding storage medium
(unlike file-system drivers) and runs at the host with bet-
ter computing and memory resources (unlike the device
controller). Such observations underlines the objective
of this research. That is the design and implementation
of a filter driver with a highly efficient caching policy.
With considering the possibility to be adopted in em-
bedded systems, the design of the caching policy should
consider the system with restricted main memory and
limited computing power.

3. A Driver-Layer Caching Policy -
Cohesive Caching

3.1 Overview
In this section, a filter driver with a caching policy, re-
ferred to as Cohesive Caching, is proposed to improve
the system performance of file systems over NAND. It
is to be inserted between device drivers and bus drivers
without any modification to existing driver designs, as
shown in Figure 1. Strategies in request reprocessing,
data caching, and housekeeping information mainte-
nance will be proposed, where the concerns of limited
memory usages of embedded systems should be consid-
ered. In this paper, we will focus our investigation over
USB because of its extreme popularity as a bus interface
for peripheral devices.

This filter driver consists of five components, as
shown in Figure 2: Dispatch Unit, Cohesive Cache,
Transport Unit, Filesystem Identifier, and Debug Unit.
The driver intercepts, monitors, and creates I/O requests
to any device under its control, e.g., those belonging
to the USB mass storage device class (including USB
flash drives and hard disks with their ATA/SATA to the
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Figure 2. The system modules of the filter driver design

USB converter). The Dispatch Unit intercepts USB I/O
requests from the USB device driver, converts them to
IoPackets, and passes them to the Cohesive Cache or
Transport Unit, according the types of the IoPackets. A
revised data structure based on the “interval tree [13]”
is proposed to cache IoPackets (Please see Section 3.2))
and to reprocess requests (Please see Section 3.3). It is
not only to cache, merge, and retrieve cached data effi-
ciently but also to reduce the number of IoPackets sent to
removable storage devices. Data in the Cohesive Cache
are flushed to the the Transport Unit in a Least-Recently-
Used (LRU) fashion based on their referenced time. The
Transport Unit converts IoPackets into USB I/O requests
and sends them to the USB Bus Driver in a first-in-first-
out fashion. The Filesystem Identifier retrieves the par-
tition table from a removable storage device so as to
determine the layout of file systems in the device, and
then passes the information to the Cohesive Cache as
a reference in request reprocessing (so as to reduce the
number of IoPackets in the cache). The Debug Unit col-
lects access patterns and runtime messages. It is to report
the runtime information to a debugging viewer for de-
bugging purposes.

3.2 An LRU-Interval Tree
USB I/O requests are transformed into IoPackets by the
Dispatch Unit and kept in the Cohesive Cache. We pro-
pose an LRU-enhanced data structure, referred to as an
LRU-interval tree, based on the interval tree concept [13]
to do request manipulations, such as merging, where an
interval search tree is a balanced tree in which each node
is associated with an interval for key searching.

Each node in an LRU-interval tree denotes an IoPacket
of data in continuous sectors, as specified by its corre-
sponding Logical Block Address (LBA) interval [Low,High],
as shown in Figure 3(a). Each node is also associated
with three links: The left and right links of the node
point to subtrees with intervals to the left and right of
its corresponding interval (i.e., intervals with LBA’s less
or larger than the LBA’s of the corresponding interval),
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respectively. There should not be any overlapping among
the intervals of nodes. The LRU link of each node, de-
noted as a dashed line, helps in the maintenance of a
double link list based on the insertion time of each node
into the LRU-interval tree, as shown in Figures 3(b) and
3(c). The attribute size of a leaf node is the number of
sectors in the corresponding interval, i.e., the interval
length (High−Low + 1). The attribute size of an inter-
mediate node is the sum of its interval length and those
of all nodes in the subtrees pointed by its left and right
links, as shown in Figure 3(b). The maintenance of the
size values is to reduce the time to calculate the amount
of cached data corresponding to each node and a subtree.

The time complexity in the insertion or deletion of a
node in an LRU-interval tree is O(lgn), where n is the
number of nodes in the tree. The searching of a node
in an LRU-interval tree has a complexity O(lgn), where
a traversal over comparisons of nodes’interval is done.
When the cache is full, the removing of nodes based on
their LRU order can be also done efficiently by traversing
the LRU list and restructuring the resulted LRU-interval
tree until the cache size is restored back to a safe level.
Figure 3(b) shows an LRU-interval tree resulted from
the insertions of five nodes A[0,4], B[8,10], C[12,15],
D[20,31], and E[32,37] in order. The corresponding
LRU list (linked up by dashed lines) is as shown in Fig-
ure 3(c). The system requires that the packet size of each
IoPacket should not be over the maximum acceptable
packet size Pmax, as defined by the USB mass storage
protocol (Smax = Pmax/ (the sector size)). As shown in
the following section, no merging of nodes, i.e., IoPack-
ets, should result in a node with a size larger than the
maximum bound (Please see Section 3.3.1).

3.3 Cohesive Cache
The Cohesive Cache is mainly to cache data so as to re-
duce the amount of I/O requests sent to storage devices.

It is to improve the file-system performance over tertiary
storage devices, especially those over flash-memory stor-
age devices. We propose to focus on the designs of data
caching for writes, due to the fact that writes are much
slower than reads over flash memory.

USB I/O requests are converted into IoPackets by
the Dispatch Unit and sent to the Cohesive Cache. The
Caching Procedure is invoked to insert IoPackets into the
LRU-interval tree (Please see Section 3.3.1) for request
manipulations. The Trimming and Merging Procedure
and the Padding and Merging Procedure are then in-
voked to reduce the number of IoPackets sent to storage
devices (Please see Section 3.3.2). Any interval over-
lapping of IoPackets in the LRU-Interval tree should be
checked up for merging, padding, and removing. When
the cache is full, IoPackets should be flushed to the
proper storage device (through the Transport Unit) in
an LRU fashion until the size of the cached data is no
more than a pre-determined threshold.

Note that the USB device driver usually issues the
”Allow Medium Removal” command to declare the end
of a series of I/O requests. Once the Dispatch Unit re-
ceives the ”Allow Medium Removal” command, it should
notify the Cohesive Cache to flush out all of the cached
data so that the data consistency is preserved. In case the
”Allow Medium Removal” command is only issued after
the unmounting of the disk in some systems, the Cohe-
sive Caching should flush all of the cached data in a regu-
lar frequency, e.g., once per second, especially when the
device driver stops sending any read or write command
to the Dispatch Unit for some time.

3.3.1 The Caching Procedure

NL

[800, 804]

Ni

[808, 809]

NR

[812, 813]

New Ni

[800, 813] Merging

Padding

Unused sectorsPadding sectorsUsed sectors

Figure 4. Writes over the cluster area.

The Caching Procedure is invoked whenever the Co-
hesive Cache is requested to insert the IoPacket Pi of
a write request to the LRU-interval tree. Algorithm 1
shows the pseudo code of the Caching Procedure, where
Pi, LIT , and CA denote the IoPacket (received from the
Dispatch Unit), the LRU-interval tree, and the cluster ar-
eas of the file system, respectively. The objective is to do
merging, padding, and removing over nodes (of IoPack-
ets) of the LRU-interval tree to reduce writes to the stor-
age devices. Note that many modern file systems have
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two storage partitions: The cluster and non-cluster areas.
A write to a cluster in the cluster area might only oc-
cupy the first few sectors of the cluster such that the rest
sectors are allocated but not used, where a cluster is of
a fixed number of sectors, e.g., 8 sectors per cluster. In
a non-cluster area, the smallest unit for space allocation
and reclamation is one sector, instead of one cluster. Fig-
ure 4 shows three example write requests that correspond
to nodes (i.e., IoPackets) NL, Ni, and NR with LBA inter-
vals I[NL] = [800,804], I[Ni] = [808,809], and I[NR] =
[812,813], respectively. Here Low[N] and High[N] in Al-
gorithm 1 denote the lower and upper bounds of the LBA
interval, denoted as I[N], of a node N, respectively.

When an IoPacket, i.e., Pi, is received, the procedure
first checks up whether caching is not enabled, or the
size of Pi is larger than the maximal package size Pmax.
If so, the IoPacket is simply inserted into Qout , i.e, the
FIFO queue of IoPackets for the Transport Unit (Steps
1-2). If not, then Qout is initialized and the correspond-
ing node, i.e., Ni, is created (Steps 4-5). Note that Qout is
returned by the procedure and data in Qout is eventually
flushed to the storage device by the Transport Unit. Steps
6-8 repeatedly look for any node No that has some in-
terval overlapping with Ni and invoke the Trimming and
Merging Procedure (Please see Section 3.3.2) to merge
them into Ni. Note that IoPackets that are created due to
any constraints in merging adjacent nodes No and Ni are
inserted into Qout , i.e., the returned IoPackets from the
Trimming and Merging Procedure, (Steps 6-8). An ex-
ample constraint that prevents the procedure from node
merging is the maximum data size of an IoPacket al-
lowed by the USB mass storage protocol, i.e., 64KB or
128 LBA’s (referred to as Smax). Whenever any IoPacket
is created because adjacent nodes No and Ni cannot be
merged into Ni, it should be flushed to the storage device
(i.e., the inserting of the IoPacket returned by the Trim-
ming and Merging Procedure into Qout ). It is required
that no two nodes in the tree has any interval overleap-
ing.

Depending on whether Ni is in a cluster area, the left
and right adjacent nodes of Ni are looked up in the tree,
denoted as NL and NR, respectively (Steps 9-15). Here
Scluster denotes the number of sectors in a cluster, and the
second and third parameters of the search procedure de-
note the lower and upper LBA bounds for overlapping
intervals, respectively. The Padding and Merging Proce-
dure is then invoked to merge NL, NR, and Ni together
into Ni (Please see Section 3.3.2). Note that all of the ad-
jacent nodes that cannot be merged into Ni will remain
in LRU-interval tree (Steps 16-18). Consider nodes NL,
NR, and Ni in Figure 4, NL and Ni are padded with ze-
ros and become I[NL] = [800,807] and I[Ni] = [808,811]
so that the three intervals can be merged as one longer
interval I[Ni] = [800,813]. NR does not have its inter-
val I[NR] = [808,811] being padded because the padding

operation is applied mainly to reduce the memory size
of the tree. Steps 19-24 keep looping until the size of
the cache is no more than the cache capacity bound, i.e.,
Cmax. In each iteration, one LRU node is removed (Steps
20-21) and inserted into Qout (Step 22) for flushing into
the proper storage device.

Algorithm 1: The Caching Procedure
Input: Pi, LIT , CA
Output: Qout
if CacheEnable = False or Size[Pi] > Pmax then1

Qout ← Pi ;2
else3

Reset Qout ;4
Construct a node Ni for IoPacket Pi;5

// Trimming and merging
while No ← Search(LIT,Low[Ni],High[Ni]) 6= null6
do

Qout ←7
Qout +TrimmingAndMerging(LIT,Ni,No);

end8

// Padding and Merging: Search adjacent nodes of Ni
if I[Ni] is in CA then9

// Cluster area: Implicitly adjacent
NL ←10
Search(LIT,Low[Ni]−Scluster,Low[Ni]−1) ;
NR ←11
Search(LIT,Low[Ni]+1,Low[Ni]+Scluster) ;

else12
// Non-cluster area: Adjacent
NL ← Search(LIT,Low[Ni]−1,Low[Ni]−1) ;13
NR ← Search(LIT,High[Ni]+1,High[Ni]+1) ;14

end15

// Padding and Merging: merge NL into Ni,then NR
into Ni

Ni ← PaddingAndMerging(LIT,A,Ni,NL) ;16
Ni ← PaddingAndMerging(LIT,A,Ni,NR) ;17

// Insert the node Ni into LRU-interval tree
InsertNode(LIT,Ni);18

// Maintaining the cache size
while Size[Nroot ] > Cmax do19

Nvic ← LRU(L) ;20
RemoveNode(LIT,Nvic) ;21
Qout ← IoPacket[Nvic] ;22
Delete Nvic without deleting its IoPacket;23

end24
end25
return Qout ;26

3.3.2 The Trimming, Padding, and Merging
The Trimming and Merging Procedure is to merge
nodes No and Ni into Ni if their intervals overlap with
each other. There are four overlapping conditions con-
sidered in the procedure, referred to as overlapping con-
ditions 1-4 (Please see Figure 5). Ni is the node that is just
inserted into the tree (Please see the previous section) so
that the corresponding data of No is replaced with the
data of Ni. If the first overlapping condition is satisfied,
then the corresponding data of No is simply replaced with
the data of Ni. If the second overlapping condition is sat-
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isfied, then the overlapped part of No is trimmed first to
derive RightChunk. If the merging of RightChunk and Ni
is no more than the maximum data size of an IoPacket
Smax, then they are merged; otherwise, RightChunk is
flushed to the proper storage device. The third overlap-
ping condition is similar to the second condition (where
the difference is only on the part being trimmed). If the
fourth overlapping condition is satisfied, then the interval
of Ni contains that of No such that No and its IoPacket are
deleted.

Overlap condition 3

LeftChunk

Ni

No

Overlap condition 1

Ni

No

Overlap condition 2

RightChunk

Ni

No

Overlap condition 4

Ni

No

Trimming Data buffer of NoData buffer of Ni

Figure 5. Overlapping conditions

The Padding and Merging Procedure is to merge two
nodes together if the two nodes are adjacent to each other
in the cluster or non-cluster area: Ni is the node that is just
inserted into the tree (Please see Section 3.3.1), and Nn is
a node that might be adjacent to Ni. As shown in Figure 4,
Nn could be NL or NR. We should first identify the interval
length for padding. If Ni and Nn are adjacent and the
interval length of the merged node does not exceed the
maximum data size of an IoPacket (i.e., Smax) after the
padding operation, they are merged together. In general,
we first merge NL into Ni, and then the NR is merged into
the new Ni (Please see the example shown in Figure 4).

4. Behavior Analysis: FAT and the USB
Mass Storage Device Driver

The purpose of this section is to explore the impacts
of the proposed caching approach in practice. FAT and
USB are selected in the analysis because FAT is the de-
fault file system for flash-memory-based storage devices,
and USB is the most popular bus interface for peripheral
devices. Note that NTFS is not recommended by Mi-
crosoft for removable storage devices [29], specifically
flash-memory-based ones[14].

The layout of a FAT file system consists of four parts,
as shown in 6(a): The boot parameter block (BPB), the
primary file allocation table (FAT #1), the secondary file
allocation table (FAT #2), and the cluster area. There
are five major steps in the manipulation of a file: There
are updates to two files illustrated in Figure 6(b), where
“sectors” denotes the number of sectors being accessed
by the corresponding operation, i.e., read or write (and
the LBA of its first sector). They are updates to the
primary FAT, the secondary FAT, the directory entry, the
file contents, and the directory entry. Sectors are updated

FAT #1 FAT #2 Cluster AreaBPB

LBA 0

FAT #1 FAT #2 Cluster AreaBPB

LBA 0

(a) The layout of a FAT file system
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Figure 6. The behavior of a FAT file system

excessively to the directory entries even if the “Optimize
for performance” option is enabled in the device manager
of the operating system. One major reason for such an
extreme approach comes from the fact that the file system
issues a write request for updating a directory entry filed.
It results in extremely lower system performance and
serious endurance problems for NAND flash memory2.
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Figure 7. An example in writing files through the USB
driver stack

The problems are further worsened by the consider-
ations of the USB protocol implementations. As shown
in Figure 7, four files are written to a USB-based NAND
flash memory device. Each write request is done by a
data request command (issued by the USB mass storage
device driver). Each data request command consists of
three phases: Command, data, and status phases. In each
phase, a USB request block (URB) is created to carry the

2 The time to program one page of Single-Level Cell (SLC) and Multi-
Level Cell (MLC) NAND flash memory devices are about 200 µs and
800 µs, respectively. Each block of SLC and MLCx2 NAND flash
memory can only be erased for 100,000 and 10,000 times, respectively.
[5, 7]
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(a) No caching (the number of write re-
quests: 179,670, 100%)

(b) LRU caching (the number of write re-
quests: 22,516, 12.53%)

(c) Cohesive caching (the number of write
requests: 4,879, 2.72%)

Written Counts

0

1

2~128

>128

Figure 8. The access patterns of a storage device for a number of writes to a USB-based FAT file system. Note that
each sub-figure shows sectors from LBA 95,300 to LBA 99,400, located in the cluster area (row-major, 100 LBAs/row,
1 LBA = 1 sector).

contents of the phase [28]. In the command phase, the
URB carries a command block wrapper (CBW), which
has the operation code of the request command, to the
underlying USB bus driver. In the data phase, the URB
receives/sends requested data from/to the USB bus driver
where the request command is a read or write. In the
status phase, the URB carries a command status wrap-
per (CSW) to receive the results of the request com-
mand from the underlying USB bus driver. Substantial
overheads are thus resulted. Note that two control re-
quest commands “Prevent Medium Removal” and “Al-
low Medium Removal” are issued by the USB mass stor-
age device driver before and after the series of writes,
as shown in Figure 7, where the ”Allow Medium Re-
moval” command is to declare the end of a series of I/O
requests such that flushing is done for data consistency.
Since FAT file systems do not know that the issuing of the
command by the USB mass storage device driver, multi-
ple duplicates of writes to the directory entries are issued
by the file systems. The cohesive caching policy is im-
plemented between the USB mass storage device driver
and the USB bus driver. It can help in better integration
among the file system and the drivers, and help the con-
siderations of NAND characteristics. For example, the
”Allow Medium Removal” and ”Prevent Medium Re-
moval” commands can be used to trigger caching and
flushing of data issued by the file systems/drivers, respec-
tively.

Consider the experiments done in Section 2 in the
writing of 19,535 files to a removable storage device, as
shown in Table 1. Figure 8 shows the access patterns of
the experiments over a device with and without caching,
where each cluster of the FAT file system consists of
eight sectors. In the figure, black, white, and gray colors
are for sectors that are never written, written only once,
and written frequently, respectively. Figure 8(a) shows
the access pattern when no caching is provided. There
are 179,670 writes because sectors of directory entries
are written very frequently. When an LRU caching is
adopted, the number of writes is reduced substantially
to 22,516, i.e., 12.54% of that of no caching. The sectors
of directory entries are no longer written so frequently.

Those sectors are not gray-colored any more. When co-
hesive caching is adopted, the number of writes is again
significantly reduced again to 4,879, i.e., 2.72% of that of
no caching because write requests with overlapped inter-
vals are merged or removed! There are much less black-
colored sectors because of padding in clusters. Note that
padding in clusters slightly increases the amount of data
actually transmitted to the removal storage devices; but
it is considered very useful in performance improvement
because access is done in clusters anyway.

5. Performance Evaluation
5.1 Performance Metrics and Experiment Setup
The purpose of this section is to evaluate the capability
of the driver-layer cohesive caching policy over FAT file
systems (Sections 5.2-5.5) and NTFS file systems (Sec-
tion 5.6), in terms of performance improvement (Sec-
tions 5.2-5.4) and the ideal cache size (Section 5.5).
The performance improvement was based on the num-
ber of write requests, the data transmission time, and the
amount of data transmitted to a removable storage de-
vice. The ideal cache size for the cohesive caching policy
was based on the number of write requests to removable
storage devices.

The proposed cohesive caching policy was imple-
mented as a filter driver and installed in Windows XP/Vista
operating systems. The capability of the proposed pol-
icy was evaluated over some representative cases, real-
istic cases, and popular benchmarks. The representative
cases were designed and generated to evaluate the per-
formance of the proposed policy with different numbers
of directories and files, when the total size of files in an
archive was the same. The realistic cases were to evaluate
the performance of the proposed cohesive caching pol-
icy with some real archives, such as linux-kernel source
codes, photos, MP3s, and videos. Benchmarks, such as
FDBenchT M and SandraT MRemovableStorageBenchmark,
were used to further evaluate the performance of the pro-
posed policy based on the industry practice. Note that
for the representative cases and realistic cases, the ex-
periments were conducted via the shell API of Windows
Vista (i.e., Windows shell) with the “optimize for per-
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formance” option enabled. Figure 9(a) and Figure 9(b)
are the transmission dialogs (of the Windows shell) in
the copying of an archive (i.e., the archive used in Ta-
ble 1) to a FAT-formatted UFD without and with the the
proposed caching policy, respectively.

(a) No caching (b) Cohesive caching

Figure 9. The transmission dialog in the copying of an
archive to an FAT-formatted UFD

In the experiments, a 2GB USB flash drive (UFD)
of SanDiskT M Cruzer CrossfireT M was under investi-
gation. In order to prevent the uncertainty in allocat-
ing free spaces by file systems, we formatted the UFD
before the transmission of each archive from the hard
disk to the UFD. The cache size used for representa-
tive cases, realistic cases, and benchmarks was 64 KB.
The experiments evaluated three different cache settings:
no caching, caching, and cohesive caching. No caching
is the primitive policy of Windows Vista with the “op-
timize for performance” option enabled. Caching is an
LRU caching mechanism with better performance in the
manipulation of the LRU list because an balanced tree
is implemented to index the intervals/packages cached in
the LRU list. Cohesive caching is the proposed caching
policy in this research.

5.2 Performance Improvement for the FAT File
System: Case Studies

Three representative cases were designed for the exper-
iments over an FAT-formatted UFD, and each case was
classified as one class, i.e., Class A, Class B, and Class
C. Each class consisted of ten archives, and each archive
in the same class had the same size, excluding meta-data
of archives. Meanwhile, each file in the same archive had
the same size. The root directories of archives in Class A
contained different numbers of files, ranging from 1,000
to 10,000 and stepped by 1,000, and the size of each
archive was 100 MB. The root directories of archives
in Class B had different numbers of directories, ranging
from 1,000 to 10,000 and stepped by 1,000, but there was
no file in the archives so that the size of each archive was
0 MB. Each archive of Class C had 1,000 second-layer
directories in its root directory. Each second-layer direc-
tory contained one third-layer directory, and each third-
layer directory stored one fourth-layer directory. This
nested structure repeats until the number of directories,
except the root directory, reaches the pre-defined number

(that ranges from 1,000 to 10,000 and stepped by 1,000);
each leaf directory, i.e., the deepest-layer directory, then
stored with one file where the amount of size of the 1,000
files was 10 MB, i.e., the size of each archive was 10 MB.

The intention of Class A was to evaluate the perfor-
mance of caching policies for small files; Class B was
to evaluate the performance of caching the meta-data of
archives, i.e., directories and file information, excluding
the contents of files; Class C was used to evaluate the
performance of caching both small files and meta-data
of archives.

5.2.1 The Number of Write Requests
Figure 10 shows that the proposed cohesive caching pol-
icy significantly reduces the number of write requests to
the removable storage devices, where x-axis denotes the
number of files or directories in an archive, and y-axis de-
notes the number of write requests. In Figure 10(a), the
number of write requests of no caching grew extremely
fast as the number of files in an archive grew and went
beyond the scope of the figure. Compared to that with-
out caching, the numbers of write requests for caching
and cohesive caching were 14.87% and 2.86% of that of
no caching, respectively, when the number of files was
10,000. Furthermore, caching and cohesive caching re-
duced more than 80% and 95% of write requests, re-
spectively, when the number of files in an archive was
larger than 5,000. However, the number of write requests
for caching was still proportional to the number of files
while that of cohesive caching remained bounded in a
range. Comparatively, the number of write requests for
cohesive caching was less than 1

5 of that of caching, when
the number of files in an archive was 10,000. We should
point out that the cohesive caching had the worst per-
formance when the number of files was 3,000. When
the number of files in an archive was 3,000, the size
of each file was around 33.3 KB. This prevented co-
hesive caching from merging the contents of any two
files together because the maximal packet size of a USB
command was 64 KB. The results of Figures 10(b) and
10(c) were similar to those of Figure 10(a) regardless of
whether the archive contains “directories only” or “both
directories and small files.” It is worth of noting that the
number of write requests of cohesive caching was very
close to Sds

Smax
that was the minimum number of write re-

quests through USB interface, where Smax denoted the
maximum size of an write request accepted by the USB
mass storage protocol, and Sds denoted the space for
both data and meta-data of an archive.

5.2.2 The Data Transmission Time
Figure 11 shows the performance improvement of the
proposed cohesive caching policy, in terms of data trans-
mission time. Figure 11(a) shows the data transmis-
sion time of archives in Class A. The data transmis-

8



 0

 4000

 8000

 12000

 16000

 20000

 0  2000  4000  6000  8000  10000

T
h
e
 n

u
m

b
e
r 

o
f 
w

ri
te

 r
e

q
u
e

s
ts

The number of files

14.87%

2.86%

No caching
Caching

Cohesive caching

(a) Files in archives (Class A, Size: 100 MB)

 0

 4000

 8000

 12000

 16000

 20000

 0  2000  4000  6000  8000  10000

T
h
e
 n

u
m

b
e
r 

o
f 
w

ri
te

 r
e

q
u
e

s
ts

The number of empty directories

19.71%

1.47%

No caching
Caching

Cohesive caching

(b) Directories in archives (Class B, Size: 0
MB)
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Figure 10. Comparison on the number of write requests for different numbers of files or directories in an archive (FAT)

sion time increased as the number of files increased.
When the number of files was 10,000, the data transmis-
sion time for no caching, caching, and cohesive caching
were 2713, 123, and 91 seconds, respectively. In other
words, the data transmission times of caching and co-
hesive caching were 4.53% and 3.35% of that of no
caching, respectively. Therefore, the performance of co-
hesive caching was 29 times and 1.35 times of the per-
formance of no caching and caching, respectively, when
the number of files was 10,000. The trends of the data
transmission times of archives in Classes B and C were
similar to those of Class A. Figure 11(b) shows that the
performance of cohesive caching was 13.85 times and
1.25 times of the performance of no caching and caching,
respectively, when the number of directories was 10,000.
In Figure 11(c), it shows that the performance of cohe-
sive caching was 19.37 times and 1.43 times of the per-
formance of no caching and caching, respectively, when
the number of nested directories was 10,000.

5.2.3 The Amount of Transmitted Data
Figure 12 shows the amount of data that were actually
transmitted to the UFD, i.e., a removable storage device.
when the size of a sector was 512 bytes, and the size
of a cluster was 4 KB. As shown in Figure 12(a), the
amount of sectors actually transmitted to the UFD grew
rapidly as the number of files increased, when no caching
was adopted. In the case of transmitting 10,000 files of
an archive whose size was 100 MB, 540,692 sectors
(264MB) were transmitted to the UFD when no caching
was adopted. In this case, the overhead was more than
150%. Comparatively, caching and cohesive caching in-
troduced limited overhead on transmitting of archives of
100 MB when the number of files in an archive var-
ied from 1,000 to 10,000 (stepped by 1,000). We should
point out that cohesive caching transmitted more sectors
than caching did, because cohesive caching padded ze-
ros to sectors that were allocated but not used in a cluster
in order to merge two adjacent intervals(/IoPackets) to-
gether (Please see Section 3.3.1). Therefore, the more

sectors allocated but not used, the more extra sectors
transmitted by cohesive caching. However, it is interest-
ing to see that when the size of each file was a multiple
of the size of a cluster, the number of sectors transmitted
by cohesive caching was almost the same as the number
of sectors transmitted by caching. For example, when the
number of files in an archive was 5,000, the size of each
file was 20 KB, which was 5 times of the size of a clus-
ter (4 KB), so that the number of sectors transmitted by
cohesive caching was almost the same as the number of
sectors transmitted by caching, as shown in Figure 12(a).

Figure 12(b) shows the transmission results of Class
B. The number of transmitted sectors were proportional
to the number of directories in an archive, and the num-
ber of sectors transmitted by cohesive caching was al-
most the same as the number of sectors transmitted by
caching. The reason was because space allocation for the
storing of meta-data was in the unit of one sector, in-
stead of one cluster. Therefore, both the numbers of sec-
tors transmitted by cohesive caching and caching were
around one-third of that of sectors transmitted by no
caching. Figure 12(c) shows the transmission results of
Class C, and it was similar to Figure 12(b), except that
the number of sectors transmitted by cohesive caching
was larger than the number of sectors transmitted by
caching for 3% to 12%. That was because the space al-
location to store contents of files was in the unit of one
cluster and therefore some sectors that were allocated but
not used were padded by cohesive caching.

We should point out that even though cohesive caching
transmitted more sectors than caching did in most cases,
cohesive caching still spent less transmission time than
caching did. That was because cohesive caching merged
adjacent data (/intervals) together to reduce the num-
ber of write requests to the UFD. The fewer the write
requests were issued to the removable storage device
through the USB interface, the less overhead was intro-
duced by the USB mass storage protocol. Furthermore,
the address translation mechanism implemented in the
UFD was not at the page level. The more write requests
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Figure 11. Comparisons on the data transmission time for different number of files or directories in an archive (FAT)

to the UFD, the more overheads would be introduced to
the management of the flash memory in the UFD, e.g.,
live-page copyings and block-erasings.

5.3 Performance Improvement for FAT File
Systems: Realistic Cases

In order to further verify the performance improvement
of the proposed cohesive caching policy for an FAT-
formatted UFD, four realistic cases were under investi-
gation. Without loss of generality, each case was cho-
sen to represent one popular file format, and the archive
size of each case was around 205 MB. The four cases
were source codes of linux kernel, photos, MP3 files,
and videos, and their characteristics are shown in Ta-
ble 2. As shown in Table 3, cohesive caching outper-
formed no caching and caching in all cases. For instance,
the data transmission times of no caching, caching, and
cohesive caching for the source code of linux-2.6.17
were 3,261, 284, and 213 seconds, respectively. In other
words, the data transmission time of cohesive caching
to transmit the linux-2.6.17 source code was 6.53% and
75% of those of no caching and caching, respectively.
On the other hand, the number of write requests for co-
hesive caching to transmit the linux-2.6.17 source code
was only 2.7% and 21.7% of those of no caching and
caching, respectively. We should point out that the per-
formance improvement of the proposed cohesive caching
policy was more significant when an archive contained
more files and directories. In addition, the performance
of cohesive caching was close to the optimum because
the number of write requests issued by cohesive caching
was very close to the theoretical minimum number of
write requests, i.e., 205× 1024KB/Smax = 3,280 where
Smax = 64KB. The experimental results for the data trans-
mission time and the amount of data actually transmitted
to the removable storage devices were not included be-
cause they were similar to those in representative cases
(Sections 5.2.2 and 5.2.3).

Archive Archive Number of Number of Average
Size directories files file size

linux-2.6.17 source 210 MB 1,201 19,536 11 KB
Photo 205 MB 1 214 985 KB
MP3 206 MB 5 47 4 MB
Video 208 MB 1 2 104 MB

Table 2. The Archives of Some Realistic Cases

Archive No Caching Caching Cohesive
Caching

linux-2.6.17 source 179,670 22,488 4,879
(3,261 seconds) (284 seconds) (213 seconds)

Photo 5,022 3,906 3,431
MP3 3,841 3,630 3,506
Video 3,475 3,461 3,365

Table 3. Case Studies: Comparison on the number of
write requests (FAT)

5.4 Benchmark Evaluation: FAT File Systems

Two popular benchmarks, i.e., FDBenchT M and SandraT M

Removable Storage Benchmark (Referred to as Sandra
for short), were used to certify the performance of the
proposed caching policy for an FAT-formatted UFD,
where FDBench was designed to evaluate the perfor-
mance of flash-memory storage systems, and Sandra
was designed to evaluate the performance of removable
storage devices. Figure 13 shows the performance of
caching policies reported from the benchmarks, where
x-axis denotes the file sizes used for benchmarking, and
y-axis denotes the number of operations per minute in
the logarithmic scale. As shown in Figure 13(a), both
cohesive caching and caching had much better perfor-
mance than no caching did under FDBench. However,
under FDBench, the performance of cohesive caching
and caching was almost the same in most cases. That
was because FDBench deleted copied files right after
files were copied. This behavior introduced a lot of ad-
ditional small writes for meta-data so that the contents
(/data) of files could not be cached in the cohesive cache
long enough to be merged effectively. Comparatively,
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Figure 13. Benchmark Evaluation (FAT)

Sandra didn’t introduce too many additional small writes
for meta-data since it only deleted written files at the
end of the benchmarking. Therefore, the performance of
cohesive caching on Standra was 11.95 times and 1.37
times of those of no caching and caching, respectively,
when the size of tested files was 32 KB (as shown in
Figure 13(b)).

5.5 The Ideal Cache Size for FAT File Systems
The proposed cohesive caching policy was implemented
as a filter driver in Windows Vista, and the cache size
of the filter driver could be configured through the sys-
tem registry of Windows Vista. In order to evaluate the
ideal cache size of the proposed cohesive caching for
FAT-formatted UFD’s, an archive was designed so as to
introduce many write requests for meta-data and a lot of
padding overheads for sectors that were allocated but not
used. This archive included 20,000 files, where the size
of each file was 5 KB. In other words, the size of the
archive was 100 MB. In this archive, each file needed 2
clusters (8 KB) to store the file content (5 KB) so that it
had 6 sectors (3 KB) being allocated but not used. Fur-
thermore, since the size of each file in this archive was
only 5 KB, the meta-data of these files must introduce a
high percentage of overheads when this archive is copied
to a removable storage device. As shown in Figure 14, the
performance of cohesive caching became saturated when

the cache size was no less than 64 KB. Comparatively,
the performance of caching became saturated when the
cache size was equal or larger than 8 KB. It was inter-
esting to see that the performance of cohesive caching
was worse than that of caching when the cache size was
8 KB or 16 KB. It was because the benefit from merg-
ing write requests with padding could not compensate
the space overhead introduced by the padding. For in-
stance, in order to cache the contents of two consecutive
files in this archive, caching used 10 KB to cache them.
Cohesive caching used 13 KB to cache them because of
the padding of 6 sectors that were allocated but not used.
Therefore, cohesive caching could not cache meta-data
of files and merged write requests effectively, when the
cache size was too small.
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Figure 14. The Ideal Cache Size (FAT)

5.6 Performance Remarks for NTFS File Systems
The experiment results over the NTFS-formatted UFD
were similar to the trend of the results over the FAT-
formatted UFD. The only difference is that the perfor-
mance improvement of cohesive caching and caching
was not as good as their corresponding ones over the
FAT-formatted UFD, because meta-data management,
space allocation, and index structure of NTFS file sys-
tems are better than those of FAT file systems. For exam-
ple, for case studies, caching and cohesive caching only
reduced the number of write requests (of no caching) for
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Figure 15. Comparison on the number of write requests for different numbers of files or directories in an archive
(NTFS)
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Figure 16. Benchmark Evaluation (NTFS)

36.33% and 88.37% respectively, when the number of
files in an archive of Class A was 10,000 (as shown in
Figure 15). In realistic cases, the transmission times of
cohesive caching and caching for the linux-2.6.17 source
were 85.71% and 93.4% of no caching respectively (as
shown in Table 4). For benchmark evaluations, the per-
formance of cohesive caching was over 1.07 times and
1.65 times (/1.1 times and 2.03 times) of caching and
no caching in FDBench(/Sandra), respectively, when the
tested file size was 32KB (as shown in Figure 16). As for
the ideal cache size, with the same archive used in Sec-
tion 5.5, the performance of cohesive caching became
nearly saturated when the cache size was equal to 96
KB.

Archive No Caching Caching Cohesive
Caching

linux-2.6.17 source 60,457 41,105 8,268
(273 seconds) (255 seconds) (234 seconds)

Photo 3,951 3,972 3,776
MP3 3,489 3,480 3,452
Video 3,387 3,379 3,374

Table 4. Realistic Cases: Comparison on the number of
write requests (NTFS)

6. Conclusion
This work is motivated by significant performance dif-
ferences in doing file manipulations over different file

systems over NAND flash memory. An efficient cohe-
sive caching policy is proposed for removable storage de-
vices. We propose a filter-driver-layered caching design
to resolve the performance gap among file systems and
to improve their performance with the considerations of
flash memory characteristics and main-memory require-
ments. An efficient hybrid tree, called LRU-interval tree,
is designed to organize and manipulate the intervals of
cached write requests. With throughout analysis of the
USB mass storage protocol, the time to flush cached
writes to the underlying storage devices is determined
to guarantee data consistency. In the experiments, more
than 10 times of performance improvement was achieved
in many cases, when the cache size was only 64KB.

For future research, we should further exploit the
modularity design of filter-drivers to build up experimen-
tal platforms. The proposed filter-driver caching policy
and design can also be further extended to integrated de-
signs of devices with secondary/tertiary storage devices
and flash memory.
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