
RIBD: Recoverable Independent Block Devices
Name(s) omitted for blind review process

Abstract

Scalable storage systems built with collections of com-
modity components offer the promise of cost-efficient in-
frastructure for a variety of scalable applications. Such
storage systems are often designed to implement persis-
tent and highly-available storage abstractions such as vir-
tual disks, exported through a standard block-level inter-
face. Applications over these systems require additional
transactional support to achieve atomic, consistent, and
scalable access to their distributed data. As a result they
tend to be complex and often to duplicate functionality
already available in the underlying storage system.

In this paper we examine the alternative of a scalable
storage system that exports a richer, transactional block-
level interface to applications. Our system, named RIBD,
relies on a type of lightweight transactions (termed con-
sistency intervals) for expressing higher-level data con-
sistency requirements and on low-overhead versioning
at the block level for failure recovery. RIBD uses these
block-level mechanisms for dealing with both data and
metadata consistency, presenting a simple abstraction to
higher system layers. Our contributions in this paper
are: (a) the design and implementation of a RIBD sys-
tem prototype and the underlying protocols; (b) an eval-
uation of the RIBD prototype and a comparison to two
existing cluster file systems, GFS and PVFS2. Overall,
we find that RIBD provides stronger consistency seman-
tics while performing comparably to these file systems.
RIBD achieves this through clean and simple abstrac-
tions, whose applicability extends beyond cluster file sys-
tems.

1 Introduction

Cluster-based storage architectures in use today resem-
ble the structure shown in Figure 1-(a) where a high-level
layer such as a file system uses the services of an underly-
ing block-level storage system through a standard block-
level interface such as SCSI. Concerns such as data avail-
ability and metadata recovery after failures are commonly
addressed through data redundancy (e.g., consistent repli-
cation) at the file or block (or both) layers, and by meta-
data journaling techniques at the file layer. This structure,
where both reduncancy and metadata consistency is built
into the file system, leads to filesystems that are complex,
hard to scale, debug and tune for specific application do-
mains [1, 2, 3].

(e.g. Logging, Versioning)
Block Metadata Consistency

Cluster−based Storage System

(e.g. Logging, Versioning)
FS+Block Metadata Consistency

(Consistency Intervals)
Block−level Interface

Extended

Block−level Interface
Standard

Cluster Filesystem

(e.g. Logging, Versioning)
FS Metadata Consistency

RIBD
an

d
/ o

r

Cluster Filesystem

Data Availability & Consistency
(e.g. Consistent Replication) (e.g. Consistent Replication)

Data Availability & Consistency

Data Availability & Consistency
(e.g. Consistent Replication)

Figure 1: Overview of typical cluster-based scalable stor-
age architectures and RIBD .

Modern high-end storage systems incorporate increas-
ingly advanced features such as thin provisioning [4, 5],
snapshots [6], volume management [7, 8, 9], data dedu-
plication [10], block remapping [11, 12, 13, 14], and log-
ging [13, 15]. The implementation of all such advanced
features requires the use of significant block-level meta-
data, which are kept consistent using techniques similar
to those used in filesystems (Figure 1-(a)). Filesystems
running over such advanced systems often duplicate ef-
fort and complexity by focusing on file-level optimiza-
tions such as log-structured writes, or file defragmenta-
tion. Besides doubling the implementation and debug-
ging effort, these file-level optimizations are usually ir-
relevant or adversely impact performance [16].

In this paper we propose RIBD, an alternative cluster-
based storage system (depicted in Figure 1-(b)) that
moves the necessary support for handling both filesystem
and block-level metadata consistency to the block layer.
To this end, RIBD needs to provide an enhanced block-
level interface to the filesystem. RIBD proposes the no-
tion of consistency intervals (CIs) to provide fine-grain
consistency semantics on sequences of block-level oper-
ations by means of a lightweight transaction mechanism.
RIBD extends the traditional block I/O API with com-
mands to delineate CIs, offering a simple yet powerful
interface to the file (or block-level application) layer.

Another distinctive feature of RIBD is its roll-back re-
covery mechanism based on low-cost versioning. We be-
lieve that versioning is a particularly promising approach
for building reliable storage systems as it matches current

disk capacity/cost tradeoffs. To the best of our knowl-
edge, RIBD is the first system to propose and demonstrate
the use of versioning for recovery purposes at the block
storage level.

We implemented RIBD in the Linux kernel as a kernel
module exporting virtual devices layered over local or re-
mote physical storage devices. We also implemented a
simple file layer called ZeroFS (0FS) over RIBD. 0FS
is a user-level, stateless, pass-through file system that
merely translates file names to sets of blocks and spec-
ifies CI boundaries in file operations. We evaluated RIBD
using micro-benchmarks on a platform of 24 nodes (12
disk servers and 12 application/file servers). To under-
stand the overheads in our approach, we compared RIBD
with two popular file systems, PVFS [17] and GFS [18],
which however offer weaker guarantees. We found that
RIBD offers a simple and clean interface to higher sys-
tem layers and performs comparable to existing solutions
with weaker guarantees.

The rest of the paper is organized as follows. In Sec-
tion 2 we discuss our motivation and related work and in
Section 3 an overview of RIBD. Sections 4, and 5 present
the design of the underlying protocols and components
as well as the steps taken for recovering from faults. Sec-
tions 6 and 7 discuss our prototype implementation and
the platform we use for our evaluation. Section 8 presents
our experimental results. Finally, section 9 draws our
conclusions and outlines future work.

2 Motivation and Related Work
RIBD is a distributed storage system that offers transac-
tional guarantees to applications through a block-level in-
terface to the underlying storage. Our decision to choose
a block-level interface for RIBD rather than a higher-level
(e.g., file) interface is based on a number of reasons. First,
a block-level interface to storage can potentially be used
by a wide variety of applications, whereas a higher-level
interface to storage is confined to a more narrow set of
applications written specifically to that interface. Second,
storage systems exporting a block-level interface, such as
logical volume managers and storage controllers, have in
recent years grown in functionality and intelligence in-
corporating advanced support for scalability, availability,
and disaster recovery. Often, system support for data and
metadata consistency is already present within those sys-
tems. We believe that it is only natural to take advantage
of existing support and extend it appropriately to offer ap-
plications the level of transactional guarantees that they
need without the burden of having to (re-)implement it,
duplicating functionality already available in other sys-
tem layers. Finally, we believe that offering transactional
guarantees to applications for enabling consistent access
to their state (e.g., file system metadata) is easier per-
formed at the block level. The alternative of perform-

ing it within the application (i.e., through the use of a
journal [19, 20, 21]) and over a variety of possible imple-
mentations of block-level storage systems is fraught with
challenges arising from the different specifications and
guarantees that these implementations provide [22, 23].
We believe that a transactional block-level interface to
storage such as that provided by RIBD addresses these
concerns.

We also believe that a key component of any storage
system is support for maintenance of previous versions of
data in a structured manner, a feature known as version-
ing [24, 25], allowing recovery to any previous state of
the system. Versioning has a number of important uses in
system introspection through past states and data recov-
ery after operator or system failures. In designing RIBD
we incorporated versioning at the block-level within a
distributed storage system. To the best of our knowl-
edge RIBD is the first system using distributed block-
level versioning for roll-back recovery to the most recent
valid data. Our contributions include the design and im-
plementation of distributed algorithms for its implemen-
tation within a scalable storage system.

A number of past research projects relate to RIBD
in different aspects of its design. Storage systems that
provide a transactional API at the block level include
Echo [26], Base Storage Transactions (BSTs) [27], and
Logical Disk [28]. Echo provides block-level transac-
tions using a redo log for recovery. Unlike Echo, RIBD
achieves recovery using distributed versioning tech-
niques. BSTs [27] allow the system to maintain consis-
tency at all block operations on distributed RAID arrays.
The RIBD API uses the notion of consistency intervals
(CIs) to achieve atomicity, consistency, and durability, re-
lying for isolation to the use of explicit locks within CIs
in a more general manner. Finally, unlike Echo and BSTs,
our evaluation of RIBD is based on a real prototype. CIs
are similar to atomic recovery units (ARUs) in Logical
Disk [28]. However, unlike ARUs, CIs deal with replica
consistency as they target distributed scalable storage sys-
tems.

Systems that use versioning at the file level include
zFS [29], Elephant [24], 3DFS [30], the Inversion file
system [31], Plan9 [32], and self-securing storage [33].
Also, Cedar [34] and Venti [10] use a similar concept
of immutable files. Finally, the Comprehensive Versions
File System (CVFS) [25] uses techniques to reduce meta-
data overhead in versioning file systems. Systems that
use versioning at the block level include WAFL [35], and
SnapMirror [36]. RIBD differs from them in its support
for globally consistent block versions.

Similar to RIBD, systems such as the Hurricane file
system [37] and FiST [38] have extended the function-
ality of the operating system I/O stack. However, these
systems operate at the file level whereas RIBD appears as

2

a block device to the operating system.
Another system related to RIBD is Sinfonia [39], a

system that supports mini-transactions with configurable
durability semantics on memory servers. There are
nonetheless significant differences between RIBD and
Sinfonia. First, Sinfonia proposes a relatively general-
purpose transactional abstraction while the RIBD model
is simpler and focuses on block-level storage systems. In
addition, Sinfonia follows a roll-forward log-based re-
covery model while RIBD implements a roll-backward
versioning-based recovery scheme. In addition the clus-
ter file system built on top of Sinfonia explores a different
design space by supporting coherent, client-side caching,
with a write-through read-validation strategy. Our ap-
proach would also impose a write-through scheme for
(optional) client-side caching at the end of a transaction.
However, the use of explicit locking would allow client
caches to avoid read validation. Our approach also bears
similarities with Swarm [40], an extensible storage ser-
vice based on a low-level, striped log abtraction, but our
designs differ in terms of programming interfaces and re-
covery techniques. Besides, to the best of our knowledge,
the Swarm project did not study in depth features such as
distributed atomic updates and data sharing.

RIBD is related to FAB [41] in its use of a voting pro-
tocol to deal with all types of failures in replica consis-
tency. Unlike CIs, FAB allows updates to replicas to com-
plete when quorum is guaranteed. During reads, a voting
process takes place and decides the value of the block.
This approach incurs fairly different tradeoffs compared
to our protocols (writes are faster and reads are slower).
Supporting a voting mechanism for replica consistency of
non critical data in our system would only require mod-
ifications to a small subset of modules. However, we
choose to use a single, transactional mechanism for all
purposes, as we believe it is more appropriate for primary
storage applications, as opposed to archival-type applica-
tions.

3 RIBD Overview
RIBD tries to address issues at three levels: (a) ab-
straction and primitives it presents to higher layers, (b)
cost-effective scalability without compromising reliabil-
ity, and (c) flexibility in its use. In this section we present
an overview of RIBD and discuss the abstraction it pro-
vides. The next sections discuss primarily how it deals
with consistency issues and to some extend how its im-
plementation results in flexibility.

Previous work and other systems show that explicitly
handling atomicity in higher layers, e.g. by using journal-
ing alongside non-trivial file semantics, results in com-
plex systems [1]. File systems that support journaling
tend to be hard to implement and even harder to debug,
modify and tune [2, 3]. Moreover, as lower system layers

...
begin_ci();

lock(directory);
if (!lookup(filename, directory) {/*file exists?*/

allocate_inode(&inode_addr);
lock(inode_addr);
write_file_metadata(inode_addr, name, attrib);
unlock(inode_addr);
init_dirent(dirent, inode_addr, name, attrib);
write_dir_metadata(directory, dirent);

}
unlock(directory);

end_ci();
...

Figure 2: Pseudo-code for a simple file create operation
with a single CI.

provide higher level abstractions of system resources, e.g.
by abstracting block allocation and placement in a net-
worked system, solutions for atomicity become difficult
to optimize for performance. For these reasons, RIBD
hides this complexity by providing to higher system lay-
ers and applications a simple abstraction based on consis-
tency intervals (CIs), similar to transactions. Higher lay-
ers can delineate a set of consecutive (block) operations
as a consistency unit that will be handled appropriately
by RIBD. Figure 2 shows an example code segment from
0FS that uses the RIBD API for the file creation opera-
tion.

To provide cost-effective scalability without compro-
mising reliability, RIBD uses a single, lightweight trans-
actional mechanism for both replica and metadata con-
sistency, based on CI interface. Typically, file system ap-
proaches require different mechanisms for dealing with
metadata consistency and replica consistency, as these re-
fer to different entities, data blocks, file system metadata,
and consistency metadata (e.g. the log itself). RIBD, by
operating at the block level is able to use a single mecha-
nism for all types of blocks, regardless of whether they re-
fer to file data or metadata. Our transactional mechanism
uses agreement protocols for consistency, low-overhead
versioning for atomicity, and relies on explicit locking
for isolation. Given that all requests are eventually writ-
ten to disk, durability is provided in a straight-forward
manner at a configurable granularity by specifying a flush
interval. The combination of these low-level mechanisms
results in little contention when there is no (true) access
sharing at the file system, does not impose dependencies
during system operation for concurrent I/Os, and only in-
creases the response time of individual I/O requests, if
the application requires the ability to recover after each,
single I/O operation.

Finally, the few optimized distributed storage systems
(such as GPFS [42]) addressing dependability issues in a
single layer, the file system, have a monolithic structure
and can hardly be adapted or extended according to the
needs of a given application, e.g. by providing customiz-
able replication. In contrast, the protocols that we pro-
pose can be easily added to (or removed from) a modular

3

software stack and operate at the block level.

3.1 System abstraction
Overall, CIs provide atomicity, consistency, and durabil-
ity. Isolation is provided by a separate locking API. All
block operations enclosed in a CI are guaranteed to be
treated as a single operation during recovery, i.e. all or
none of the operations persist after a failure. A CI is
opened and closed by the client application using explicit
block-level API commands. Given that we are operating
on the critical I/O path, we do not allow nested CIs. Es-
sentially, a CI buffers all updated operations on the client
side, until the commit operation.

Higher system layers use RIBD CIs to delineate units
of work that may leave the system in inconsistent state af-
ter a failure. This includes all critical updates to metadata
operations, because the logical structure of the storage
system, such as a file system directory tree, must never
become corrupted. CIs may also be used to guarantee
the consistency of data. However, a different trade-off
may be adopted in this regard: sometimes, users may be
willing to accept occasional risks of data corruption, e.g.
if they can rely on backups or can easily regenerate the
data, in exchange of increased performance. In this case,
the higher system layer need not include accesses to data
in CIs. This decision on how CIs are used is left to the
file system. In our work and 0FS we choose to ensure
both metadata and data consistency, because managing
inconsistencies with increasing volumes of information,
quickly becomes a difficult problem.

As mentioned, RIBD CIs do not provide isolation. This
is achieved with appropriate block-level locking opera-
tions in the file system code. Typically, such locking op-
erations will occur within CIs. Thus, along with write op-
erations, we also need to buffer unlock operations that in-
cur within CI boundaries, to avoid cascading effects dur-
ing recovery.

We choose to not implement locking transparently at
the CI boundaries, to allow for possible optimizations at
the file level, e.g. by using a different granularity for
atomicity and for mutual exclusion. Locks are only re-
quired for mutual exclusion, that is to ensure that two sets
of operations on a given resource do not overlap but are
serialized. For instance, a client thread may lock a given
file (or range of blocks) to ensure that its updates will not
be interleaved with updates from other clients. However,
in a file system, specific metadata maybe associated with
specific data blocks. In this case, it may be adequate for
the client to include all metadata and data operations in a
transaction but only lock the metadata blocks.

In summary, RIBD provides atomicity, consistency,
isolation, and durability properties for CIs as follows:

Atomicity Our mechanism guarantees that the updates
encapsulated in a CI will be performed atomically, i.e.

that a server will perform either all or none of the up-
dates but never any other combination. This is achieved
by buffering the updates on the client-side until the CI is
closed.

Consistency CIs complete only after they are applied
to all involved servers and replicas. Thus, at any time,
all data replicas impacted by CIs will be in a consistent
state. This is achieved by means of a two-phase commit
protocol among disk servers.

Isolation CIs do not support implicit isolation. Instead,
higher layers can guarantee isolation by using explicit
block-range locks that are provided by RIBD.

Durability The updates encapsulated in a CI become
durable once two conditions apply : they have been in-
cluded in a globally consistent version and each disk
server has flushed the corresponding write requests to its
local disks. The durability semantics and the commit la-
tency seen by the RIBD clients can be configured accord-
ing to various trade-offs in terms of reliability and perfor-
mance, as explained in section 4.2.

3.2 Fault model

We assume that failures of client and server components
(CPUs, memories, disks, software faults) are fail-stop
and the whole node containing the component crashes.
Similarly, we assume that network components fail per-
manently, and that transient network failures at links or
switches are dealt with by the communication subsys-
tem, as is typical for high-throughput low-latency inter-
connects.

In case of any failure, data remains available as long
as there is a functional path from the application to the
specific data blocks. In other words, all non-faulty com-
ponents of the system keep operating in the presence of
faults, however data is only available, if at least one copy
is accessible through non-faulty components.

RIBD does not actively employ mechanisms to detect
incorrect behavior. It assumes that component errors are
reported through return codes of synchronous or asyn-
chronous operations. Thus, RIBD does not deal with un-
detected errors or Byzantine behavior. Finally, we as-
sume that file and disk servers belong to a single admin-
istrative domain and are co-located. Thus, we do not deal
with disaster recovery issues.

4 Underlying Protocols

Figure 3 illustrates the system structure. Table 1 de-
scribes the base functionality of each module.

4.1 Client-server transactional protocol

The protocol implementing atomicity involves two enti-
ties: the client-side CI manager (CCM) deployed on all

4

...

...

...
...

CIs (CCM)

Redundancy (CRM)

Filesystem

Block Allocator

Client m

CIs (SCM)CIs (SCM)

CIs (CCM)

Coordinator (VC)
Version

Master Client

Disk Server 1

Leasing (CLM)

Disk Server n

Locks (SLM+SXM)

Redundancy (SRM)

Versioning (VM)

Server 2,3,...

Disk

Locks (SLM+SXM)

Redundancy (CRM)

Redundancy (SRM)

Versioning (VM)

Filesystem

Block Allocator

Disk Servers

Client 1
Clients

Leasing (CLM)

Clients 2,3,...

Figure 3: RIBD system architecture and protocol stack.

Client Modules Server Modules

CCM CI Manager SCM CI Manager
VC Version Coordinator VM Versioning Module
CRM Redundancy Module SRM Redundancy Module
CLM Leasing Module SLM Leasing Module

SXM Lock Manager

Table 1: Client (left) and server (right) module func-
tions in RIBD. Client denotes block-level modules on file
servers, whereas Server denotes block-level modules on
disk servers.

the client nodes and the server-side CI manager (SCM),
on all the disk servers, as shown in Figure 4.

CCM buffers the write and lock operations associated
with a given CI (and services read requests from the
buffer if necessary). Once the end of a CI has been de-
tected, the CCM starts the two-phase commit protocol:
First, it batches the data updates in a single prepare
request, which is propagated to the SCM modules. At
some point, this request is acknowledged by the SCM on
the servers and CCM checks its status. If the prepare
request was successful, this means that all the concerned
disk servers have received the data to be written and
agreed on it. Then, CCM sends a commit request to all
the involved disk servers. Note that a commit request
can be acknowledged before it has reached the disk. This
is done on purpose, in order to lower the cost of the two-
phase protocol, at the expense of weaker guarantees in
terms of reliability.

On the SCM, the committed write requests are placed
in a queue, whose behavior depends on the current state
of the versioning protocol. When the protocol is not run-
ning, the queue is pass-through (it just logs the IDs of the
CIs that are issued and keeps tracks of which ones have
completed). When the versioning protocol is running, the
queue acts as a buffer that allows to enforce a distributed
agreement among the server nodes regarding the CIs that
should be included in the next version.

...

......

...

B
U

FF
E

R

Unlock Z

Write Y

Write X

B
U

FF
E

R

Unlock Z

Write Y

Write X

B
U

FF
E

R

Unlock Z

Write Y

Write X

Client m

Filesystem

3. Servers
Ack Requests

Requests

2. Send buffered
Requests

2. Send buffered

4.Commit4.Commit

5.Ack5.Ack

1.CI "Prepare" 1.CI "Prepare"

Server CI Manager

 (SCM) (SCM)

Server CI Manager

Disk Server 1 Disk Server n

(CCM)

0. Commit CI

6.Perform

Updates

C
lie

nt
 C

I
M

an
ag

er

Figure 4: Transactional protocol between the client CI
manager and multiple server CI managers.

The SCM only handles CIs and behaves as a pass-
through layer for all kinds of requests that are outside the
scope of CIs (including read, write, lock, unlock). As ex-
plained before, some setups may only use CIs for meta-
data updates and use basic write requests to access blocks
associated with user data.

4.2 Versioning protocol

Versioning involves three main modules: the version co-
ordinator (VC), the server CI manager (SCM), and the
version module (VM) that in charge of local versions. To
simplify our description, we assume that there is only one
version coordinator, i.e. only one node in charge of pe-
riodically triggering the protocol to create a new version.
However, in a realistic setup, this role may be attributed
to several nodes, for better load balancing and increased
fault-tolerance. Besides, applications may also interact
with a VC module to request the creation of a new ver-
sion. Figure 5 shows an overview of the the versioning
protocol in RIBD.

The creation of a new version relies on a two-phase
protocol driven by the VC. The first phase aims at deter-
mining a globally consistent point for the version. Upon
reception of the message from the VC (step 1), the SCM
of each server temporarily queues the newly committed
CIs and replies to the VC with a list specifying, for each
client stream, the ID of the last CI that was written to disk
(step 2). The VC can subsequently examine the replies
from all the servers and compute a globally consistent
”version map”, which is sent to the servers (step 3).

The second phase triggers the creation of local versions
on the servers according to the version map (step 5 and
6). Before a version is actually taken on a server, CIs that

5

...

Coordinator (VC)
Version

Versioning Daemon0. Create
Global
Version

Master Client

Manager(VM)
Version

Manager(VM)
Version

2.Servers

3.Send
Global

Map &

3.Send
Global

Map &

Local
Version

Commit Commit

Commit Commit

"Prepare"

1.Version 1.Version

"Prepare"

Disk Server 1 Disk Server n

Server CI Manager Server CI Manager

send list of CIs

 (SCM) (SCM)
4. Create

5.Version 5.Version

6.Ack 6.Ack

Figure 5: Versioning protocol between the versioning co-
ordinator, all server CI managers, and server versioning
modules.

are included in the version map and not yet committed
to disk are extracted from the queue and flushed to sta-
ble storage. The protocol used for CIs guarantees that,
for any CI included in the version map, each involved
server has received the corresponding prepare request
and thus, the required data updates.

After a global crash of the system (e.g. a power fail-
ure), VC coordinates the recovery process by communi-
cating with the storage nodes in order to determine the
most recent and complete version that can be used. This
role is assigned to a single instance of the module.

The VC is also in charge of a periodic garbage collec-
tion protocol, aimed at reclaiming physical storage space.
The latter essentially detects versions that are too old or
that did not (globally) succeed and asks the disk servers to
destroy the corresponding version on their local volume.

We use versioning to offer different recovery guaran-
tees, depending on the requirements of (end user) appli-
cations. First of all, the durability semantics can be con-
figured on a per-volume basis. According to the needs of
a given application, a CI can be acknowledged to a client
at one of the two following stages: (i) as soon as all the
servers have agreed on its status (but not performed the
related I/O operations on disk) or (ii) only after the CI is
persistent. In the first case, if a global crash of the storage
system occurs, it is not guaranteed that the recovery point
will include the modifications even though the updates
were successfully acknowledged to the applications. The
system can still recover to a previous consistent point,
however, it will have acknowledged a CI that was eventu-
ally not committed. In the second case, all CIs committed
are guaranteed to be part of the system after recovery.

Second, the CI commit latency is adjustable. In the
extreme case, each CI commit can cause a new version.
However, to improve the global performance of the sys-
tem, it is more appropriate to batch many disk updates
related to multiple CI commits.

4.3 Replication protocol
Availability can be achieved through redundancy mecha-
nisms, such as replication or erasure coding. In our sys-
tem we use data replication across different disk servers
(RAIN: Redundant Array of Independent Nodes) as the
only form of redundancy, rather than more complex for-
mulas, such as erasure codes. The degree of replication
(i.e. number of replicas) is configurable and independent
of the reliability protocols we present. Currently, we only
support RAID-0 and RAID-1 functionality.

4.4 Other protocols
Locking Mutual exclusion between clients for data ac-
cess is achieved the use of locks. The locks are provided
for block ranges and are handled by the disk servers. The
information on the current state of the locks is not stored
in stable storage but only in memory. Locks are associ-
ated with leases, renewed periodically by the clients. The
locks held by a crashed client can thus be reclaimed.

Liveness To operate correctly despite network parti-
tions, the system must respect the two following invari-
ants: (i) clients agree on the set of alive storage servers
and (ii) storage servers agree on the set of alive clients.
The typical solution to deal with network partitions is to
use a cluster manager, which uses heartbeat messages and
voting, in order to establish a quorum among the cluster
nodes. Once a majority of the nodes agree on the cur-
rent members of the cluster, the remaining nodes (con-
sidered faulty) must be isolated from their well-behaving
peers through a fencing service. The fencing can be en-
forced at the hardware level (brutal power off via a re-
mote power switch or network filtering thanks to a man-
ageable switch fabric) or, in some cases, at the software
level (through reconfiguration of the protocol stack of the
remaining nodes).

In our system, clients are not aware of each other and
do not cooperate directly, which complicates handling
“split brain” scenarios, because there is no mechanism
allowing the servers to make an agreement on the current
set of clients. We deal with this by deploying a (dis-
tributed) cluster manager (CM) only for the server nodes,
which does not only make decisions on the liveness of the
member nodes but also elects a leader among them. The
leader server is assigned with an additional and specific
network address, which is known by the clients. When
the CM detects that a server node is not alive, it triggers
a fencing procedure for it.

5 System Recovery
In this section we briefly discuss recovery from two
main types of failures: network partitions and client (file
server) failures. We omit details concerning local disk

6

and disk server failures since they are respectively han-
dled using traditional RAID and distributed-RAID tech-
niques.

5.1 Network failures

On the clients, the management of network partitions
only involves the communication layer. When a the client
does not receive a reply from a server within a given time
interval, it must contact the leader server to ask if the un-
responsive node currently belongs to the group of alive
servers. There are three possibilities:

(i) The leader replies that the server is not alive, where
the communication layer returns an error to the upper
layer.

(ii) The leader replies that the server is alive, then this
means that a network partition prevents the client from
communicating with the server. In this case, the client
considers itself disconnected from the all the servers and
the failed request should be acknowledged with a “dis-
connected” status. Upon propagation of the acknowledg-
ment in the RIBD hierarchy, all the modules will take
the necessary measures to invalidate the state informa-
tion that they hold (locks, cached data and metadata). All
future requests should be rejected in the same way until a
proper reconnection procedure succeeds.

(iii) The leader does not reply, which means that a net-
work partition prevents the client from communicating
with some or all of the servers. In this case, the discon-
nection procedure is employed as well. Since the above
protocol is handled at the communication layer, these is-
sues do not impact the rest of the I/O stack (the client-side
modules only need to ensure proper measures for state
invalidation in case they receive a notification of discon-
nection).

5.2 File server/client failures

RIBD does not rely on client metadata for correct oper-
ation, and thus, client failures require little maintenance.
The main issues are: releasing any acquired locks and
guaranteeing appropriate operations of CIs.

First, as mentioned previously, if a client fails while
holding locks, this will eventually be detected by time-
outs of the leases on the servers. Second, the atomicity
of a CI is ensured by two properties: (i) the updates as-
sociated with a CI are buffered on the client side until its
closure and (ii) the 2-phase update protocol ensures that
all the servers agree on whether a CI should be committed
or not.

If a client fails before a CI is closed (or before any
prepare request is sent), then the CI will be automati-
cally discarded because it will not reach any server. If a
client fails after sending the prepare requests (a frac-
tion or all of them), then the two-phase protocol is not

sufficient to decide. This is a well known issue of the
2PC protocol, which is blocking when the coordinator
fails [43]. Our solution, without assuming that the client
may be able to recover quickly, if at all, relies on server
timeouts and the versioning protocol. On each server,
when the SCM module receives a prepare request, it
also arms a corresponding timer. The timer is normally
discarded when the associated commit request arrives.
If the timer expires, the prepare request is considered
as suspect and further inquiry will be necessary to deter-
mine if it should be committed or not. The solution actu-
ally comes from the next round of the versioning proto-
col: if at least one server has received a commit request,
for the CI, then the latter can be committed safely. Other-
wise, the CI should be discarded. This resolution process
happens through the next “regular” round of the version-
ing protocol.

Note that this protocol is not optimal because it may
discard a CI that could actually be committed (if all the
concerned servers have acknowledged the prepare re-
quest and the client failed just before sending the first
commit request). Yet, this scenario would seldom oc-
cur in practice and thus, our approach trades recovery to
a less recent point for simplicity in this regard.

6 System Implementation
We implement all related protocols under ABC, an ex-
tensible block-level framework for decentralized, cluster-
based storage architectures. ABC is implemented as a
block device driver module in the Linux 2.6 kernel ac-
companied by a set of user-level management tools. ABC
supports sharing at the block level by providing (optional)
locking and allocation facilities.

We implement all RIBD protocols related to reliability
as a set of building blocks, which can be layered appropri-
ately in a ABC virtual hierarchy, as shown in Figure 3 and
Table 1. It is therefore, possible to enable/disable all reli-
ability extensions, regardless of the “functional” features
of the storage system, e.g. the specific type of replication
provided. In total, RIBD consists of approximately 40K
lines of kernel code and 15K lines of user-level code.

Next, we comment on implementation issues of each
system component. CI management modules (CTM,
STM) implement the core of the CI mechanism. The
versioning module (VM) creates and manages remap-on-
write versions of a local volume. It is placed right on
top of the SRM so that the “real” data and the metadata
from all the above modules can be treated in the same
fashion). It interacts with the server CI manager (STM)
in the context of the versioning protocol. Version coor-
dination (VC) is a lightweight process and will typically
be performed by a single VC that is elected once, at boot
time. Another VC election can be triggered anytime the
current VC fails and is removed from the system. Redun-

7

dancy modules (CRM, SRM) operate in the same way
both for the disk and file server sides. Neither SRM nor
CRM does need to run an agreement protocol. SRM han-
dles only local replication, whereas for CRM agreement
is handled by the two-phase protocol by the CTM. Also,
the client leasing modules (CLM) works in conjunction
with the server leasing module (SLM). These modules
need to be “paired” in all RIBD configurations, where
locking is necessary.

ZeroFS: To evaluate our approach we build ZeroFS
(0FS), a stateless, pass-through file system that trans-
lates file calls to the underlying RIBD block device in
the OS kernel. 0FS allows shared, distributed access to
files from different nodes. Unlike distributed file systems
but similar to Frangipani [44], 0FS does not require ex-
plicit communication between separate instances running
on different application nodes. Typically, communication
is required for agreement purposes. Instead, 0FS uses
the corresponding block-level mechanisms provided by
RIBD volumes.

0FS is implemented as a user-level library that pro-
vides I/O operations on files and directories. Being user-
level, 0FS needs to cross the kernel boundary several
times during a file operation, whereas a kernel implemen-
tation need only perform a single crossing.

0FS does not support a (client-side) cache but relies on
RIBD for any caching it may perform. Our current design
and implementation of RIBD does not support client-side
caching. We believe that for scaling to large numbers
of clients, client state should not affect system state re-
quired for recovery purposes. Thus, existing approaches
for client-side caching need to be re-thought, especially
given the availability of high-throughput low-latency in-
terconnects, which is beyond the scope of our work. As
shown in our results (Section 8), the use of a client-side
cache does not improve, but rather degrades performance
when the workload is not fs-metadata-intensive (i.e. con-
sists of few large files and directories as our IOzone ex-
periments). Such workloads are typical to many parallel
applications.

7 Experimental Platform
Our evaluation platform is a 24-node cluster of com-
modity x86-based Linux systems. All cluster nodes
are equipped with dual AMD Opteron 244 CPUs and 1
GByte of RAM, while 12 nodes acting as disk servers
have additionally four 80GB Western Digital SATA disks
each. All nodes are connected with a 1 Gbit/s Ether-
net network (on-board Broadcom Tigon3 NIC) through
a single 24-port GigE switch (D-Link DGS-1024T). All
systems run Redhat Enterprise Linux 5.0 with the default
2.6.18-8.el5 kernel.

To examine the overhead of our protocols compared to
existing systems we compare RIBD against two other sys-

tems: A cluster filesystem, Global File System (GFS)[45]
system, and a parallel filesystem, Parallel Virtual File
System (PVFS2) [17, 46]. These file systems offer
weaker guarantees compared to RIBD. We choose to use
them because (a) they are widely used in real setups and
(b) contrasting RIBD to them will reveal the cost of offer-
ing stronger guarantees based on our approach.

In the GFS setup we use GNBD and CLVM provided
by RedHat’s Enterprise Linux 5.0. Note that neither
GNBD nor CLVM support data replication. Thus, to con-
figure a replicated (RAIN-10) setup for GFS we use the
Linux software RAID driver (MD), which, however, does
not maintain replica consistency and does not incur any
related overheads. In this setup, GFS reliability guaran-
tees are weaker than 0FS. PVFS2 is only available with
support for striping configurations because it uses its own
networking protocol, which does not support data repli-
cation. In our setup we use the kernel module of PVFS2
for the clients and ext3 for the server-exported storage.

All three filesystems (GFS, PVFS2, and 0FS) are in-
stalled and evaluated on the same 12 cluster nodes acting
as clients and using the same 12 server nodes with 48
disks in total. In the case of GFS and PVFS2 we have
tuned the filesystems for optimal performance according
to the vendors manuals. In our evaluation we use two
cluster I/O benchmarks: IOZone [47] and clustered Post-
Mark [48].

IOZone is a benchmark that generates and measures a
variety of file operations. We use the distributed IOZone
setup in version 3.233 to study file I/O performance for
the following workloads: sequential read and write, ran-
dom read and write, reverse read and stride read. In
all workloads we vary the block size between 32 KBytes
and 16 MBytes. We use a different 8-GByte file for each
client. The aggregate data volume for every IOZone run
is 96 GBytes of data for all 12 clients.

PostMark [48] is a synthetic, filesystem benchmark
that creates a pool of continually changing files on a
filesystem and measures transaction rates for a workload
simulating a large Internet electronic mail server. The
original version of PostMark is a single-node application.
To use it in our setup, we modify its initialization and ter-
mination code using MPI to: (a) spawn processes on a
cluster of nodes, (b) synchronize the various benchmark
phases, and (c) communicate aggregate results at the end.
Note that the benchmark code itself remains unchanged.
In our setup, each client node/process uses a different di-
rectory on the cluster filesystem. The transactions issued
by each process consist of (i) a create or delete file opera-
tion and (ii) a read or append file operation. Each transac-
tion type and its affected files are chosen randomly. When
all transactions complete, the remaining files are deleted.

We use two workloads for PostMark (Table 2) that dif-
fer in file size distribution (1-10 MBytes for the first and

8

File Initial Files Transactions Files Created Read traffic Write traffic
Sizes (per client) (per client) (aggregate) (aggregate) (aggregate)

Workload A 1 - 10 MB 800 4000 33588 162 GBytes 223 GBytes
Workload B 10 - 100 MB 100 300 3072 126 GBytes 191 GBytes

Table 2: Cluster PostMark workloads.

Figure 6: Average number of operations per CI and
breakdown to write, unlock operations for Postmark.

10-100 MBytes for the second), the number of initial files
per client, and the number of transactions per client. Both
workloads create a sufficiently large number of files and
enough read and write traffic to fill in the node caches and
allow for consistent results.

To facilitate interpretation of results, we use a sym-
metric system configuration with 12 disk servers and 12
file servers/application clients for all filesystems. For the
configuration of 0FS we have used the protocol stack
shown in Figure 3 and two data distribution setups: (i) a
striped volume with no redundancy, where all 48 disks
in the cluster are striped at the disk server side (RAID-
0) and the disk servers are striped at the file server side
(RAIN-0). (ii) a RAIN-10 volume with consistent RAIN-
1 replication, where the disks are striped at the disk
servers using RAID-0 and the disk servers are mirrored
and striped at the file server side (RAIN-10). In all RAID
and RAIN setups we use a chunk-size of 128 KBytes.

All data and metadata passing through RIBD’s stack,
both in RAIN-0 and RAIN-10 are versioned by the
server-side versioning modules. In Section 8.5 we study
the overhead of the versioning agreement protocol, mea-
suring 0FS with Postmark under four versioning frequen-
cies. In the rest of the experiments, we do not capture
versions during their duration.

Figure 6 shows the average number of write and un-
lock operations in each CI for workloads A, B, for dif-
ferent request sizes. Writes, refer to individual I/Os that
are performed to disks by the disk servers. Although the
number of operations specified by the application in a CI
is statically known, the number of I/Os that are eventu-
ally generated by these operations depends on the block
placement. Since we measure this statistic on the disk

(a) Workload A (1 - 10MB files).

(b) Workload B (10 - 100MB files).

Figure 8: PostMark aggregate transaction rate (transac-
tions/sec) for workloads A and B.

server side, RAIN replication does not affect the number
of I/Os in each CI (but affects the number of CIs that disk
servers see).

8 Experimental Results

This section examines the overheads associated with our
approach on a setup with multiple storage and filesystem
nodes.

8.1 Overhead of Dependability Protocols

Figure 7 shows IOZone results for sequential and ran-
dom workloads. There are five curves on each graph,
showing the three filesystem in a RAIN-0 setup and ad-
ditionally GFS and 0FS on a RAIN-10 configuration. As
mentioned, GFS in the RAIN-10 configuration does not
support a replica consistency scheme, and thus, has lower
overhead.

In the case of sequential read (Figure 7-a) 0FS outper-
forms GFS and is very close to PVFS2 for large block

9

(a) Sequential Read (b) Sequential Write (c) Random Read (d) Random Write

Figure 7: IOZone sequential read/write and random read/write results for RAIN-0 and RAIN-10 setups.

sizes. In the case of small requests, PVFS2 and GFS per-
form better due to their client-side cache which aids se-
quential prefetching. For sequential writes (Figure 7-b)
0FS performs worse than PVFS2 and GFS in large block
sizes, showing the overhead of the reliability protocols.
In RAIN-10 and for average request sizes (512KB-1MB),
0FS is similar to GFS. However, when the request size
increases, the increased number of acknowledgments for
the two-phase protocol incur a performance degradation
of 15-20%. For small request sizes, performance is again
lower due to the lack of client-side caching.

In the case of random I/O, Figures 7-c and 7-d, 0FS
performs better than both GFS and PVFS2, since the
random workload minimizes the client-side caching ef-
fects. Random write for the RAIN-10 volume (Figure 7-
d) shows practically no performance overhead compared
to GFS, which has no reliability protocol. In the RAIN-
0 case, the overhead of the protocol appears in the very
large block sizes. Please note that, even in the case of
RAIN-0, our prototype uses CIs and the two-phase pro-
tocol for writes since this is required to guarantee atomic
updates of distributed data blocks.

Finally, in PostMark (Figure 81) we observe that 0FS
mostly outperforms PVFS2 on RAIN-0. On the other
hand, GFS maintains a lead in all cases, except in large re-
quests, where 0FS performs very close. We attribute this
performance lead of GFS in metadata-intensive work-
loads to the use of the client cache for metadata and the
fact that 0FS needs to cross the kernel boundary 3-4 times
per filesystem operation. As block size increases, this
does not happen as often, and we are able to match GFS
performance in large block sizes. The performance of
GFS also shows that it performs asynchronous logging,
flushing the metadata log to disk infrequently.

As mentioned, 0FS does not use a client side cache.
To examine the impact of the lack of a cache on 0FS we
show in Figure 9 the total data volume that reaches phys-
ical disks. First, we see that in 0FS configurations this
amount is higher by up to about 20%. Second, (not shown
here) the amount of data for each request size remains

1Note that transactions in this figure are PostMark-reported transac-
tions and not related to RIBD’s operation.

Figure 9: Postmark: Total data volume reaching disks.

approximately the same. Given that GFS performs better
only for smaller requests, we believe that the extra traffic
is not a bottleneck that skews our results. On the other
hand, the GFS cache affects request response time, espe-
cially for small requests, and since PostMark is latency-
bound, we believe that this role of the client-cache results
in the better GFS results for small request sizes. This
effect is exacerbated by the use of TCP/IP as our commu-
nication subsystem, which not only incurs high latencies
compared to state-of-the-art networks, but also exhibits
problematic behavior, such as the Incast problem [49].

8.2 Overhead of availability

To examine the performance overhead of providing avail-
ability, we compare the performance of RAIN-0 vs.
RAIN-10. This comparison is only applicable to GFS and
0FS, since PVFS2 does not provide replication. For IO-
Zone (Figure 7), we see that performance degrades by ap-
proximately a factor of two as expected, because of repli-
cation. In read requests however, both GFS and 0FS per-
form better in RAIN-10 than RAIN-0 for large requests
because of the efficient load-balancing of replica reads.

For postmark workloads (Figure 8) we observe also
an average 20% performance degradation in the transac-
tion rate, despite the fact that available disk throughput
is effectively reduced to half. Overall we find that the
performance impact of availability with 0FS in metadata-
intensive workloads is in the range of 15-20%.

10

(a) Sequential Read (b) Sequential Write (c) Random Read (d) Random Write

Figure 10: IOzone sequential and random results (throughput vs. record size) for RAIN-10 with up to 3 threads per client.

(a) Workload A (RAIN-10 Setup)

(b) Workload B (RAIN-10 Setup)

Figure 11: PostMark aggregate transaction rate
(trans/sec) for workloads A and B with up to 3
threads per client.

8.3 Impact of outstanding I/Os

To examine the impact of increasing the number of out-
standing I/Os in the system we use IOZone with GFS
and 0FS on a RAIN-10 configuration and Postmark with
workloads A and B on RAIN-0 and RAIN-10. In these
experiments we have used multiple benchmark threads
per client node, thus multiplying the load on the system
and inducing more concurrent I/Os. IOZone supports
multi-threaded mode, however Postmark does not have
such an option so we executed multiple Postmarks in par-
allel on each node.

In Figure 10 we see that increasing the number of
outstanding I/Os of IOZone from one to two, increases

FE GFS GFS PVFS2 0FS 0FS
RAIN 0 10 0 0 10
Sys/Wait S W S W S W S W S W

[A] Server 11 32 14 39 10 19 12 0 15 0
[A] Client 17 36 20 35 5 0 10 37 12 33

[B] Server 15 25 17 32 17 16 15 0 17 0
[B] Client 23 34 25 32 8 0 11 32 13 27

Table 3: Average percentage of CPU time used by the
system and for I/O wait in Postmark workloads A,B.

throughput for both GFS and 0FS up to about 30%. We
observe, however, that in the case of GFS, more than two
outstanding I/Os per client can degrade performance (se-
quential reads) up to 20%.

In the case of Postmark (Figure 11), we also observe
that increasing the number of outstanding I/Os also in-
creases throughput up to about 30% in GFS and 0FS.
On the other hand, PVFS2 does not seem to benefit from
the increased concurrent I/Os as its performance remains
the same as with the single thread. Finally, Figure 11
shows that GFS does not seem to scale with more than
two threads per client. 0FS results with more than two
threads are not available because of stability issues in our
prototype.

8.4 Impact on system resources

Now we examine system resource utilization in all sys-
tems we have measured.

CPU utilization: Table 3 shows the CPU utilization
on the server and client sides for both PostMark work-
loads. We show only system and wait times, as user time
is always less than 5% and in most cases less than 2%.
First, we observe that overall system CPU utilization re-
mains at low levels and up to 25% in the worst case, while
I/O wait times can rise up to 40% both on the server and
client side. However, the CPU has not been saturated in
any of the experiments. Second, we note that all filesys-
tems have similar system CPU utilizations on the disk
server side. Finally, we note that on the client side, GFS
incurs significantly higher CPU utilization, due to the use
of a client-side cache.

Disk latency and utilization: Figure 12 shows the
disk-level statistics during the PostMark runs, averaged

11

(a) Disk Throughput (MBytes/sec) (b) Disk Response Time (c) Disk Utilization

Figure 12: PostMark disk statistics for workload B. Values are averaged across all disks.

Figure 13: PostMark aggregate transaction rate for work-
load B and four versioning frequencies.

over the run time of the experiment and over all disks.
Figure 12-a shows the average disk throughput for read
and write requests. We observe that 0FS reaches higher
throughput. This is mainly due to the fact that RIBD is
able to send to the disk larger requests than GFS. GFS
requests go through the client side cache and are even-
tually issued at smaller sizes to the disk, resulting in
lower throughput. Differences in Postmark disk request
response time, shown in Figure 12-b, reflect longer seeks
due to differences in block placement and access locality.
0FS incurs higher latency than GFS because it does not
use a client-side cache and it cannot fence metadata ac-
cesses. Thus, data and metadata requests alternate more
frequently than in GFS, resulting in longer seek times. Fi-
nally, Figure 12-c shows average disk utilization. We see
that RIBD results in up to double disk utilization com-
pared to GFS and PVFS.

Finally, we conclude that the bottleneck in all file sys-
tems and workloads we measured is the networking layer,
since neither the nodes’ CPUs or the disks were saturated.

8.5 Versioning Protocol Overhead

To examine the overhead of the versioning protocol in
RIBD we repeat the Postmark experiment with 0FS us-
ing workload B on RAIN-10 (shown in Figure 8(b)) and
four versioning frequencies: 30 seconds, 60 seconds, 180

seconds and never (i.e. no versioning). The results are
shown in Figure 13. As shown, the maximum overhead
of this protocol on the Postmark transaction rate is 21.7%
for the 30 second version case with a block size of 64
KBytes. As the block size is increased to 1 MByte, the
overhead of the protocol becomes less that 2%. We also
find that lowering the versioning frequency improves per-
formance slightly, since the versioning agreement proto-
col runs less frequently.

8.6 Summary
Overall, we find that although RIBD’s protocols for main-
taining consistency affect system behavior and consume
resources, performance and scalability, especially for
larger requests, remains comparable to GFS and PVFS2.
We also find that performance in small requests and
metadata-intensive workloads is greatly enhanced by a
client-side cache. Finally, we conclude that RIBD’s
approach is better than existing solutions, since it of-
fers stronger consistency guarantees with similar perfor-
mance.

9 Conclusions
Cluster-based storage with commodity components is
a promising alternative to scaling capacity and perfor-
mance of future storage systems in a cost-effective man-
ner. However, their decentralized nature poses important
challenges, especially in terms of reliability and availabil-
ity. Current solutions to this problem focus mostly at the
file level and result in complex systems that are difficult
to design, scale, and tune. In this paper we discuss how
consistency issues can be addressed at the block level pro-
viding a simple abstraction. Our approach, RIBD, uses
CIs, a lightweight transactional mechanism, agreement,
versioning, and explicit locking, to address consistency
of both replicas and metadata. We discuss in detail as-
sociated protocols and we implement a real prototype,
showing that RIBD performs comparably to systems with
weaker guarantees

12

References

[1] V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Analysis and Evolution of Jour-
naling File Systems,” in Proceedings of the USENIX
Annual Technical Conference (USENIX ’05), (Ana-
heim, CA), pp. 105–120, April 2005.

[2] J. Yang, P. Twohey, D. R. Engler, and M. Musu-
vathi, “Using Model Checking to Find Serious File
System Errors,” in Proceedings of the 6th Sympo-
sium on Operating System Design and Implemen-
tation (OSDI 2004), (December 6-8, 2004, San
Francisco, California, USA. USENIX Association),
pp. 273–288, 2004.

[3] V. Prabhakaran, L. N. Bairavasundaram,
N. Agrawal, H. S. Gunawi, A. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau, “IRON File Systems,”
in Proceedings of the 20th ACM Symposium on Op-
erating Systems Principles (SOSP ’05), (Brighton,
United Kingdom), pp. 206–220, October 2005.

[4] Compellent, “Storage Center Data Sheet.”
http://www.compellent.com/∼/media/ com/ Files/
Datasheets/DS FT 021908.ashx.

[5] XIV Ltd., “Delivering the Thin Provision-
ing Advantage with XIV’s Nextra Architec-
ture White Paper.” http://www.xivstorage.com/
materials/ white papers/ nex-
tra thin provisioning white paper.pdf.

[6] XIV Ltd., “Nextra Snapshot Implementation White
Paper.” http://www.xivstorage.com/ materials/
white papers/ nextra snapshot white paper.pdf.

[7] Enterprise Volume Management System,
“evms.sourceforge.net.”

[8] FreeBSD: GEOM Modular Disk I/O
Request Transformation Framework,
“http://kerneltrap.org/node/view/454.”

[9] D. Teigland and H. Mauelshagen, “Volume man-
agers in linux,” in Proceedings of USENIX 2001
Technical Conference, June 2001.

[10] Sean Quinlan and Sean Dorward, “Venti: A New
Approach to Archival Data Storage,” in Proceed-
ings of FAST ’02, pp. 89–102, USENIX, Jan. 28–30
2002.

[11] R. English and S. Alexander, “Loge: A Self-
Organizing Disk Controller,” in Proceedings of the
Winter 1992 USENIX Conference, (Berkeley, CA),
The USENIX Association, 1992.

[12] R. Y. Wang, T. E. Anderson, and D. A. Patter-
son, “Virtual Log Based File Systems for a Pro-
grammable Disk,” in Proceedings of Operating Sys-
tems Design and Implementation (OSDI), pp. 29–
43, 1999.

[13] J. Wilkes, R. A. Golding, C. Staelin, and T. Sullivan,
“The HP AutoRAID Hierarchical Storage System,”

ACM Transactions on Computer Systems, vol. 14,
pp. 108–136, Feb. 1996.

[14] M. Sivathanu, V. Prabhakaran, F. Popovici, T. E.
Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Semantically-Smart Disk Systems,” in
Proceedings of the FAST ’03 Conference on File
and Storage Technologies (FAST-03), USENIX As-
sociation, Apr. 2003.

[15] D. Stodolsky, M. Holland, I. William V. Courtright,
and G. A. Gibson, “Parity-logging disk arrays,”
ACM Trans. Comput. Syst., vol. 12, no. 3, pp. 206–
235, 1994.

[16] T. Denehy, A. Arpaci-Dusseau, and R. Arpaci-
Dusseau, “Bridging the Information Gap in Storage
Protocol Stacks,” in Proceedings of the USENIX An-
nual Technical Conference (USENIX ’02), pp. 177–
190, June 2002.

[17] P. H. Carns, W. B. Ligon III, R. B. Ross, and
R. Thakur, “PVFS: A Parallel File System For
Linux Clusters,” in Proceedings of the 4th Annual
Linux Showcase and Conference, 2000.

[18] S. Soltis, G. Erickson, K. Preslan, M. O’Keefe, and
T. Ruwart, “The Global File System: A File System
for Shared Disk Storage,” Oct. 1997.

[19] S. Chutani, O. T. Anderson, M. L. Kazar, B. W. Lev-
erett, W. A. Mason, and R. N. Sidebotham, “The
Episode file system,” in Proceedings of the USENIX
Winter 1992 Technical Conference, (San Fransisco,
CA, USA), pp. 43–60, 1992.

[20] A. Sweeney, D. Doucette, W. Hu, C. Anderson,
M. Nishimoto, and G. Peck, “Scalability in the xfs
file system,” in ATEC ’96: Proceedings of the an-
nual conference on USENIX Annual Technical Con-
ference, (Berkeley, CA, USA), pp. 1–1, USENIX
Association, 1996.

[21] S. Tweedie, “Ext3, journaling filesystem,” in Pre-
sentation at Ottawa Linux Symposium, (Ottawa
Congress Centre, Canada), July 2000.

[22] E. K. Lee and C. A. Thekkath, “Petal: Dis-
tributed virtual disks,” in Proc. of The 7th Interna-
tional Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (AS-
PLOS7), (Cambridge, MA), pp. 84–92, Oct. 1996.

[23] C. Attanasio, M. Butrico, C. Polyzois, S. Smith,
and J. Peterson, “Design and implementation of a
recoverable virtual shared disk,” Tech. Rep. IBM
Research Report RC 19843, IBM T. J. Watson Re-
search Center, Yorktown Heights, NY, 1994.

[24] D. J. Santry, M. J. Feeley, N. C. Hutchinson, and
A. C. Veitch, “Elephant: The file system that never
forgets,” in HOTOS ’99: Proceedings of the The
Seventh Workshop on Hot Topics in Operating Sys-
tems, (Washington, DC, USA), p. 2, IEEE Com-
puter Society, 1999.

13

[25] C. A. Soules, G. R. Goodson, J. D. Strunk, and G. R.
Ganger, “Metadata Efficiency in Versioning File
Systems,” in Proceedings of the FAST ’03 Confer-
ence on File and Storage Technologies (FAST-03),
(Berkeley, CA), The USENIX Association, Apr.
2003.

[26] A. Hisgen, A. Birrell, C. Jerian, T. Mann, and
G. Swart, “New-value logging in the Echo repli-
cated file system,” Tech. Rep. 104, Xerox, Palo Alto
CA (USA), 1993.

[27] K. A. Amiri et al., “Highly Concurrent Shared Stor-
age,” in Proceedings of 20th IEEE ICDCS Con-
ference), (Taipe, Taiwan), IEEE Computer Society,
Apr. 2000.

[28] R. Grimm et al., “Atomic Recovery Units: Failure
Atomicity For Logical Disks,” in Proc. of the 16th
IEEE ICDCS Conference, 1996.

[29] J. Bonwick and B. Moore, “Zfs: The last
word in file systems.” http://opensolaris.org/
os/community/zfs/ docs/zfs last.pdf.

[30] W. D. Roome, “3dfs: A time-oriented file server,” in
Proceedings of USENIX ’92 Winter Technical Con-
ference, Jan. 1992.

[31] M. A. Olson, “The Design and Implementation of
the Inversion File System,” in Proc. of USENIX ’93
Technical Conference, Jan. 1993.

[32] R. Pike, D. Presotto, S. Dorward, B. Flandrena,
K. Thompson, H. Trickey, and P. Winterbottom,
“Plan 9 from Bell Labs,” Computing Systems, Sum-
mer, 1995., vol. 8, pp. 221–254, Summer 1995.

[33] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz,
C. A. N. Soules, and G. R. Ganger, “Self-Securing
Storage: Protecting Data in Compromised Sys-
tems,” in Proceedings of the 4th Symposium on Op-
erating Systems Design and Implementation (OSDI-
00), (Berkeley, CA), pp. 165–180, The USENIX
Association, Oct. 23–25 2000.

[34] R. Hagmann, “Reimplementing the cedar file sys-
tem using logging and group commit,” in SOSP
’87: Proceedings of the eleventh ACM Symposium
on Operating systems principles, (New York, NY,
USA), pp. 155–162, ACM, 1987.

[35] D. Hitz, J. Lau, and M. Malcolm, “File System De-
sign for an NFS File Server Appliance,” in Proc.
of the USENIX Winter 1994 Technical Conf., (San
Fransisco, CA, USA), pp. 235–246, 17–21 1994.

[36] R. H. Patterson, S. Manley, M. Federwisch, D. Hitz,
S. Kleiman, and S. Owara, “SnapMirror: File-
System-Based Asynchronous Mirroring for Disas-
ter Recovery,” in Proceedings of the FAST ’02 Con-
ference on File and Storage Technologies (FAST-
02), (Berkeley, CA), pp. 117–130, USENIX Asso-
ciation, Jan. 28–30 2002.

[37] O. Krieger and M. Stumm, “Hfs: a performance-

oriented flexible file system based on building-
block compositions,” ACM Trans. Comput. Syst.,
vol. 15, no. 3, pp. 286–321, 1997.

[38] E. Zadok and J. Nieh, “FiST: A Language for Stack-
able File Systems,” in Proc. of the 2000 USENIX
Annual Technical Conf., pp. 55–70, June 18–23
2000.

[39] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch,
and C. Karamanolis, “Sinfonia: a new paradigm
for building scalable distributed systems,” in SOSP
’07: Proc. of 21st ACM SIGOPS Symposium on Op-
erating systems principles, (New York, NY, USA),
pp. 159–174, ACM, 2007.

[40] J. Hartman, I. Murdock, and T. Spalink, “The
Swarm Scalable Storage System,” in 19th IEEE
International Conference on Distributed Comput-
ing Systems (ICDCS ’99), (Washington - Brussels
- Tokyo), pp. 74–81, IEEE, May 1999.

[41] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and
S. Spence, “FAB: Enterprise storage systems on
a shoestring,” in Proc. of the ASPLOS 2004, Oct.
2004.

[42] F. Schmuck and R. Haskin, “GPFS: A Shared-
disk File System for Large Computing Centers,” in
USENIX Conference on File and Storage Technolo-
gies, (Monterey, CA), pp. 231–244, Jan. 2002.

[43] D. Skeen, “Nonblocking commit protocols,” in SIG-
MOD ’81: Proceedings of the 1981 ACM SIGMOD
international conference on Management of data,
(New York, NY, USA), pp. 133–142, ACM, 1981.

[44] C. A. Thekkath, T. Mann, and E. K. Lee, “Frangi-
pani: A Scalable Distributed File System,” in Proc.
of the 16th Symposium on Operating Systems Prin-
ciples (SOSP-97), pp. 224–237, Oct. 5–8 1997.

[45] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Er-
ickson, E. Nygaard, C. J. Sabol, S. R. Soltis, D. C.
Teigl, and M. T. O’keefe, “A 64-bit, shared disk
file system for Linux,” in 16th IEEE Conference
on Mass Storage Systems and Technologies (MSST
’99), Mar. 1999.

[46] PVFS2 Project, “PVFS2 Home Page.”
http://www.pvfs.org.

[47] W. D. Norcott and D. Capps, “IOzone Filesystem
Benchmark.” http://www.iozone.org.

[48] J. Katcher, “PostMark: A New File System
Benchmark.” http://www.netapp.com/tech library/
3022.html.

[49] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. An-
dersen, G. R. Ganger, G. A. Gibson, and S. Se-
shan, “Measurement and Analysis of TCP Through-
put Collapse in Cluster-based Storage Systems,” in
Proc. of the 6th USENIX Conference on File and
Storage Technologies (FAST08), pp. 175–188, 2008.

14

