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Abstract 
Fast and efficient access to data storage is an 

important concern in the modern computer industry.  
One of the problems is that the only way to share large 
amounts of data across applications is to serialize it and 
store it on disks.  As an alternative we describe the 
design, implementation, and evaluation of a new file 
system model that uses shared memory as a storage 
partition, eliminating the need for expensive I/O system 
calls such as read and write, simplifying programming 
when sharing and storing of large complex data 
structures is required, and avoiding the need to copy 
data through multiple buffers. The main idea behind the 
new file system implementation is to expose a malloc-
like programming API, which permits programmers to 
create and operate directly on shared complex objects 
residing in the file system.  At the same time full 
backward compatibility is maintained, preserving 
standard file system behavior with regard to regular 
files. While our current implementation is not persistent 
between system reboots, we note that it foreshadows 
interesting developments that will be possible with 
future non-volatile memory technologies.   

1. Introduction 
The Unix locate utility is used to locate files in the 

system, typically libraries and other such system files.  
It works in two phases.  The first is creating a database 
of all the system’s files using the updatedb utility.  The 
second is looking for files in this database with the 
locate utility.  Using a pre-compiled database leads to 
much faster search times relative to the find utility, 
which actually scans the file system when invoked.  
locate also has flags to verify that the files listed in the 
database indeed still exist, as the database may be out of 
date, but using them naturally takes more time. 

The database of file names is naturally kept in a 
file.  To conserve space, it is compressed using an 
incremental encoding scheme, where filenames are 
sorted and each one is represented by its difference from 
the previous one.  This means that file search must read 
the database sequentially, which leads to an efficient 
sequential access pattern to the database file. 

An alternative data structure that may be used to 
store and search for file names is a hash table.  Hash 
tables are more efficient because the expected search 
time is constant, rather then depending on the size of the 
dataset.  However, using hash tables is not applicable in 
the context of locate, because they would have to be 

created by one application (updatedb) and used by 
another (locate).  This would imply that updatedb has 
to serialize the hash table and store it in a file, and 
locate then needs to reconstruct it, thereby losing all the 
performance advantages. 

The above situation is not unique to locate – it 
applies to any applications that create and use complex 
data structures.  One example is applications that use 
graphs, such as entity-relationship models, which can be 
used to describe any ontology for a certain universe of 
discourse.  Another is computational geometry and 
image processing, where image data may be stored in a 
quad-tree that is expanded according to need [Munroe 
2007].  It also applies to the checkpointing of complete 
applications, where all an application’s data structures 
need to be efficiently stored and restored. 

Another major problem with access to stored data 
in modern operating systems is that it requires multiple 
data copies. These data copies, especially ones from a 
disk drive, are very expensive. For example, the read 
command data flow in an application running on a 
modern operating system first involves copying the data 
from the disk device to a kernel buffer in main memory, 
typically using DMA, and then copying the data to the 
buffer specified by the user. This second copy is done 
by the processor, wasting CPU cycles and possibly 
disrupting cache state. 

To solve the above problems we introduce PSHFS, 
a kernel module add-on based on the traditional shared 
memory file system (tmpfs), which allows applications 
to take better advantage of the system’s memory 
management facilities. A new approach is introduced, 
providing a framework for improving efficiency of the 
I/O and memory management mechanisms. The idea is 
that memory objects created using a new malloc-like 
API can be turned into files as is, without being 
serialized and copied through multiple buffers.  They 
can then be attached to other applications, which can 
immediately use them, saving the need to reconstruct 
the object from the serialized representation. 

At this point it might seem that the PSHFS 
functionality is the same as that of shared memory 
segments.  However, shared memory is different in 
several respects.  First, it uses a different namespace, 
thus losing the uniformity that comes from sticking to 
the file system namespace.  In addition, the 
implementation is based on mapped files, that suffer the 
overheads of buffer copies similar to using the read and 
write system calls.  But most importantly, when using 
shared memory one still needs to serialize complex data 
structures, because pointers would become invalid if the 
structure is mapped by another process at a different 



location. PSHFS avoids this problem by using named 
pointers, i.e. pointers that use the file system 
namespace. Thus PSHFS in effect integrates the shared 
memory functionality with the conventional file system 
to obtain efficiency and ease of use. 

Our implementation of PSHFS is based on the 
Debian operating system. Debian OS is based on the 
standard Linux kernel, allowing this work portability 
between other flavors of Linux, and is used widely for 
OS research.  Our implementation provides persistent 
storage between unrelated applications.  However, it is 
not persistent across system reboots.  This is a design 
choice, which may well be rectified in future versions.  
Alternatively, one may view our prototype as 
foreshadowing developments that will be possible with 
future non-volatile memory products such as phase-
change memory [PCM] that are not as restrictive as 
current flash technology.  Such non-volatile memory 
will also offer full persistence. 

The rest of this paper is organized as follows.  The 
next section presents some technological background.  
Section  3 presents the design and implementation of 
PSHFS, and Section   4 its performance.  Finally, Section 
 5 reviews related work, and Section  6 concludes the 
paper. 

2. Background 
PSHFS is based on tmpfs and VFS, and is 

obviously related to malloc and shared memory.  We 
therefore provide a brief review of these topics before 
going into the details of PSHFS. 

2.1 Memory File Systems 
Virtual memory based file system such as tmpfs 

[Snyder, McKusick] are similar in concept to 
RAMdisks, in that they use RAM instead of disk to 
obtain better performance. The difference is that a 
traditional RAMdisk is a block device, whereas tmpfs is 
a complete filesystem. In addition, RAMdisks typically 
use a pre-allocated dedicated block of memory, while 
tmpfs sits on top of virtual memory (VM) and may 
therefore use both RAM and swap. The VM subsystem 
allocates RAM and swap to various parts of the system, 
and takes care of managing these resources behind-the-
scenes, often transparently moving RAM pages to swap 
and vice-versa. The tmpfs filesystem requests pages 
from the VM subsystem to store files and doesn't know 
whether these pages are on swap or in RAM.  

The size of the tmpfs file system can be 
dynamically increased – the tmpfs driver will allocate 
more VM and will dynamically increase the filesystem 
capacity as needed. And, as files are removed from 
tmpfs, the driver will dynamically shrink the size of the 
filesystem and free VM resources, and by doing so 

return VM into circulation so that it can be used by 
other parts of the system as needed. tmpfs data is not 
preserved between reboots, because virtual memory is 
volatile in nature.  

The PSHFS implementation uses tmpfs as a base, 
adding a malloc-like API to the existing code in order to 
simplify programming, and preventing multiple buffer 
copies by mapping the actual file system pages into 
process memory. 

2.2 VFS 
Due to filesystems, applications no longer have to 

deal directly with the physical storage medium. But the 
Linux operating system supports multiple different 
filesystems. To enable the upper levels of the kernel to 
deal equally with all of them, Linux defines an abstract 
layer, known as the Virtual File System, or VFS. 

Each lower level file-system must present an 
interface which conforms to VFS.  This interface is 
structured around a number of generic object types, and 
a number of methods which can be called on these 
objects. The basic objects known to the VFS layer are 
files, file-systems, inodes, and names for inodes.  
Files are streams of bytes stored as a single unit, which 

can be read from or written to.  
Inodes  represent basic objects within a file-system, e.g. 

a regular file, a directory, or a symbolic link. VFS 
itself does not make a strong distinction between 
different types of objects, but leaves this to the 
actual file-system implementation.  

File Systems are a collection of inodes with one 
distinguished inode known as the root. Other inodes 
are accessed by starting at the root and looking up a 
file name to get to another inode. Each file-system 
resides on a unique device, but some (such as nfs 
and proc) don't need a real physical device.  

Names are used to access inodes. Names are given 
relative to a directory, leading to a hierarchical 
namespace. 

 dcache is a cache for currently active and recently used 
names, structured in memory as a tree. Each node 
in the tree corresponds to an inode with a given 
name in a given directory, so an inode can be 
associated with more than one node in the tree.  

dentry is an entry in the dcache, and acts as an 
intermediary between open files and inodes.  

2.3 Malloc 
The malloc command is the workhorse of dynamic 

memory allocation. Such memory is allocated from the 
heap, and is not sharable with other processes.  

An important aspect of dynamic memory allocation 
is the management of heap space, and trying to prevent 
fragmentation.  In particular, allocations of less than a 



full page (e.g. for new objects in object-oriented 
programming) must be supported efficiently.  The 
PSHFS prototype does not support efficient small 
allocations, but this is a technical issue that can be 
solved with sub-paging techniques [Itzkovitz 1999] 
more than an inherent barrier. 

2.4 Shared memory 
Linux processes typically do not share memory – in 

fact, one of the roles of the system is to isolate processes 
(and their address spaces) from each other. But it is also 
possible to share a memory segment. This is done by 
mapping the same segment into the address spaces of 
the sharing processes.  

Shared memory segments are created by shmget, 
which specifies their name and access permissions. 
They are then attached to the sharing processes using 
shmatt.  When not needed, they should be removed 
from the system using shmctl; if not removed this is 
considered a memory leak.  PSHFS is different in 
regarding such behavior as a feature, and allowing data 
structures to be retained for long periods.  Moreover, the 
shared memory objects can be given names that make 
them appear as regular files. 

3. PSHFS Design and 
Implementation 
 VFS is an indirection layer used to handle system 

calls acting on files located on traditional file systems. 
This indirection mechanism is used by the Linux 
operating system to allow use of several filesystem 
types. When a file oriented system call is issued, the 
kernel calls a function contained in the VFS. This 
function handles the structure independent 
manipulations and redirects the call to a function 
contained in the physical filesystem, which is 
responsible for handling the structure dependent 
operations. 

Here we introduce PSHFS (Persistent Shared Heap 
File System), a novel virtual memory filesystem for 
Linux, that makes better use of existing hardware 
memory management features to reduce overhead and 
improve performance. PSHFS is implemented within 
the framework of the Linux kernel, and maintains full 
backward compatibility to the traditional virtual 
memory filesystem (tmpfs), which was used as a base 
for the implementation. PSHFS supports UNIX file 
semantics and provides file system space, based on 
shared memory. 

3.1 Basic Ideas 
The main idea behind PSHFS's implementation is 

to expose a malloc-like programming API, which 

permits programmers to create and operate on 
persistent, shared objects (a.k.a. files) on the file system, 
without using expensive system calls, such as read and 
write. On the other hand, full backward compatibility is 
maintained, preserving standard file system behavior in 
regards with regular files. Such an API simplifies 
programming by creating a single level of abstraction 
(files = objects), and maximizes data efficiency by 
preventing multiple buffer copies.  

 

Table  3-1 read() comparison. 
 
Table  3-1 demonstrates this by comparing the 

overhead of using PSHFS to that of a conventional read 
system call (time taken by steps marked in italic is a 
function of file/buffer size, time taken by other steps is 
constant). 

As indicated in this example, the PSHFS 
implementation goals are achieved by basically 
mapping files space (objects) into process address 
space.  A new definition of the term "file" is provided, 
where serialized data access is no longer used. Instead 
data is stored in its original ("object") format, and data 
original structures are preserved. 

 Since data has to be persistent after process 
termination, anonymous mmap is no longer used.  To 
preserve the naming and hierarchical structure of the file 
system, we introduce name pointers (unique names) and 
file names. Persistent name pointers are automatically 
generated for all objects, and a new file system module 
protects from race-conditions during object name 
selection. In addition, objects can be assigned user-
chosen file names. Objects can then be referenced by 
either these object names or file names, providing 

PSHFS Tmpfs 

Dereference object name 
to obtain pointer 

Open file to obtain file 
descriptor 

Map process memory to 
object memory 

Copy data from physical 
storage to kernel buffer 

Copy data from kernel 
buffer to process buffer 

Repeat until all data has 
been copied 

Deserialize data read to 
reconstruct object 

Access object data using 
pointer 

Access object data using 
pointer 



functionality similar to the original file system’s 
namespace. 

The common approach to physical memory based 
file systems (RAMdisks) is to reserve a chunk of 
physical memory for use of the file system. RAMdisks 
use memory inefficiently, since data is duplicated on 
file system memory and in kernel memory. In contrast, 
PSHFS uses the memory more efficiently. No memory-
to-memory copy is required, eliminating the need for 
most resources consuming system calls such as reads 
and writes. 

To summarize, PSHFS deals with the following 
drawbacks of traditional file systems in the following 
ways: 
• Performance degradation due to multiple buffer 

copies, especially copies between kernel space and 
user space buffers: PSHFS provides direct access to 
files, so no intermediate buffers are required. 

• Unnecessary overhead due to multiple system calls, 
such as read: PSHFS eliminates the need for such 
system calls 

• Data duplication – the same data is stored in memory 
and on disk, which, in the case of a virtual memory 
file system, leads to unnecessary duplication: again, 
PSHFS avoids this by providing direct access to the 
files themselves. 

• Serialization is required for data structures to be 
stored on disk – objects have to be serialized when 
written to the file system and de-serialized when 
read from the file system: PSHFS allows the 
persistent data to be stored in its original object 
format, with links based on named pointers, so no 
serialization is required. 

3.2 Architecture 
 

Figure  3-1: System Architecture 
 
PSHFS is comprised of two basic components , as 

illustrated in Figure  3-1 (the implementation is called 
memfs, which stands for MEMory File System): 

• Loadable kernel module, or "memfs kernel module" 
– an extension of the tmpfs kernel module, with a 
number of modifications, to allow PSHFS operation. 

• An API library, or "libmemfs library" – an 
abstraction layer and interface to PSHFS services. 

The precise functions embedded in each component will 
be listed later, after we describe the API. 

Upon PSHFS module load, the new file system type 
is registered with the kernel, and mounted, if required, 
according to the regular VFS procedure.  

PSHFS is compliant with the standard virtual 
filesystem (VFS) abstraction layer. The VFS access 
interface is used to acquire file descriptors of PSHFS 
files, in order to perform actual shared memory 
mapping into the process space. Once mapping is 
performed, the file descriptor is no longer used and is 
released.  

PSHFS can be used also as a regular shared 
memory file system (tmpfs). In this case its operation is 
identical to that of tmpfs. 

The basic structures used within PSHFS are: 
• mfobj, which represents an object (file). An object is 

mapped into a process address space, and accessed 
via a standard pointer (ptr). In addition, a named-
pointer (nptr) represents the object's automatically 
generated name, which is used as a permanent 
identifier of the object in the objects store (file 
system). Objects can also be attached to an unlimited 
number of user-generated names (represented by 
symbolic links). The role of mfobjs is illustrated in 
Figure  3-2. 
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Figure  3-2: Basic structures 
 

• mftype, which is used to describe the internal 
structure of an object, by providing a list of offsets to 
named pointers (nptr's) within it. This is used only 
when a process calls mfclone(), which creates a deep 
copy of an object, so pointers to referenced objects 
need to be found. 



3.3 Basic API 
The following is a simple example of using the PSHFS 
malloc-like API. All these functions are explained 
below. 
mfobj *mfobj;  
int error = mfopen("/mem");  //Attach  filesystem 
mfobj = mfalloc(1000);  //Allocate object 
nptr *namedptr = mfobj->nptr; //Get object's name 
char *ptr = mfdereference(mfobj); //Get pointer 
memset(ptr, '0', 1000);  //Initialize 
mfaddname(mfobj, "FILE1"); //Give it a name 
mfcloseobj(mfobj);  //Detach object 
mfobj = mfgetobjbyname("FILE1");//Get by name 
mffreeobj(mfobj);   //Delete 
error = mfclose();  //Detach file system 

mfopen() 
mfopen("path") opens the file system to access the name 
space. This can be done on any directory within PSHFS, 
but only a single namespace (directory) can be attached 
to a process at a time. The following operations are 
performed when a namespace is accesses with 
mfopen(): 
• A balanced red-black tree is created, and used to 

store objects (attached to the current process) 
information. The red-black tree mechanism is used 
to provide quick O(lg(n)) mapping between nptr's 
(named pointers) and ptr's (regular malloc-like 
pointers), for the files attached to the current process. 
A possible alternative attached objects data structure 
is a hashtable. 

• The file system is verified to be PSHFS compliant. 

mfalloc() 
mfobj = mfalloc(int size) allocates an object, with size 
specified, utilizing the PSHFS malloc-style API. This 
operation creates an mfobj struct, and generates a 
unique name (nptr) for the object. nptr also represents a 
physical file in the underlying tmpfs-like file system. 
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Figure  3-3: mfalloc() 

Object initialization is performed in the following steps: 
• Verification that the designated file system is PSHFS 

compliant 
• Create a file descriptor (and empty file with 

requested size). An nptr is generated automatically 
for the file created. 

• Map shared memory segment with requested size 
into process memory space, and acquire a pointer 
(ptr) to the mapped pages. 

• Close the file descriptor 
• Register object in objects red-black balanced tree.  

mfdereference() 
*ptr = mfdereference(mfobj) provides a pointer, which 
can be used to access an object’s memory directly. This 
can be done only on objects already attached to the 
current process.   
 

Figure  3-4: mfdereference() 
 
Once the pointer (ptr) to the object's storage is acquired, 
regular pointer API operations can be performed, so 
memset(ptr, '0', 1000) will fill the first 1000 bytes of the 
memory area pointed to by ptr with constant byte 0. To 
appreciate the power of direct access, consider the 
following tmpfs code: 

write(fd,"00000",5); 
lseek(fd,0,SEEK_SET); 
read(fd,buffer,5); 
fprintf(stdout," Current Value:  %s\n",buffer); 
lseek(fd,0,SEEK_SET); 
write(fd,"11111",5); 
lseek(fd,0,SEEK_SET); 
read(fd,buffer,5); 
fprintf(stdout," Current Value:  %s\n",buffer); 

using PSHFS, this turns into 
memset(ptr,'0',5); 
fprintf(stdout,"Current Value:  %s\n",ptr); 
memset(ptr,'1',5); 
fprintf(stdout,"Current Value:  %s\n",ptr); 

seeking to a location other than 0 would translate to 
adding an offset to ptr. 

mfaddname() & mfgetobjbyname() 
mfaddname(mfobj, "filename") allows addition of 
human-provided names to the object. Initially, an object 
is automatically given a named pointer (nptr) file name, 
but in order to provide a common interface to file 
naming, and stay in line with file system acceptable 
naming policies, it is possible to add any number of 
names to a given object. Additional file names are 



represented by symbolic links on the file system, which 
are automatically removed if the object is freed or 
deleted. To enable this, the symbolic links are listed in 
the object’s inode (see below). 
 

 
Figure  3-5: mfaddname() 

mfobj = mfgetobjbyname("filename") opens an object 
pointed to by the given filename and attaches it to the 
current process memory address space (just like 
mfalloc, except that the object does not need to be 
created). 

mfgetobj() & mfnptr() 
mfobj = mfgetobj(nptr) obtains the mfobj pointer to by a 
given nptr. 
nptr = mfnptr(mfobj) performs the opposite mapping, 
extracting the nptr from an mfobj. 

mfcloseobj() 
mfcloseobj(mfobj) detaches the object from the current 
process, but leaves it in the storage space. The object 
can be reopened and used at any time. 
An object is unmapped in the following steps: 
• Object shared memory block is unmapped from 

current process address space 
• Object is removed from process's red-black balanced 

objects tree.  

mffreeobj() 
mffreeobj(mfobj) detaches the object from the current 
process, removing it from the storage, and freeing the 
shared memory taken by the object. In addition, all 
symbolic links pointing to the object are removed. The 
memfs inode structure has an additional field, 
"symlinks", containing a list of pointers to nptr's of the 
symbolic links (pointers to inodes of the symbolic link 
files) to the object being removed. Symbolic links are 
removed according to this "symlinks" list. 

mfclose() 
mfclose() detaches the PSHFS name space, opened with 
mfopen.  The following operations are performed when 
a namespace is detached with mfclose(): 
• Red-black tree, containing objects mapping, is freed.  
• Namespace is destroyed 

3.4 Advanced Functionality 
mfcopy() 
copy = mfcopy(mfobj) creates a copy of a SINGLE 
object. Objects referenced by mfobj are not copied. This 

operation creates a new mfobj struct, and generates a 
unique name (nptr) for the object, in a way similar to the 
mfalloc() function. nptr also represents the physical file 
on the underlying tmpfs file system. 
Single object copy is performed in the following steps: 
• Perform mfalloc() for a new (destination) object with 

size similar to that of the source 
• Copy using memcpy all data from the source to the 

new object 
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Figure  3-6: mfcopy() 

mfalloctype() & mftypeatt() 
We use a "types" method in order to deal with complex 
object operations, such as deep-copy. "type" is 
represented by an array attached to a complex object, 
and containing offsets of all named pointers within the 
given object. A single "type" can be attached to multiple 
objects with the same structure. For example, given the 
following complex object, representing a tree node: 
typedef struct { 
        nptr *left;  // Pointer to left child 
        nptr *right;  // Pointer to right child 
        int val;  // Node value 
} tree_node; 
will require the following "type" structure, in order to be 
deep-copied (cloned): 
size_t type[] = {0,4}; // Array of offsets to pointers  
mftype *mftype;  // Types pointer 
mftype = mfalloctype(type, 2);//Alloc and init  
mftypeatt(mfobj, mftype); // Attach mftype to object  
 
In this code, type is the array of offsets within the struct: 
0 = left, 4 = right. Rather than hardcoding, it is also 
possible to use the offsetof macro in order to determine 
the offsets. mfalloctype() takes such an array of offsets 
and its size and converts them to an mftype, which is 
finally attached to the object itself. 
 



Figure  3-7: attaching an mftype 

mfclone() 
clone = mfclone(mfobj) creates a copy of a whole object 
tree (deep-copy). All objects referenced by mfobj are 
copied. All referenced objects must be identified in the 
mftype attached to each of the complex objects in the 
objects tree to be copied. 
Cloning of an object tree (object and objects referenced 
from it) is performed in the following steps: 
• Selection of the sub-graph of objects to be cloned 

graph from the graph of all objects. An acyclic, 
connected, directed graph of the object is built, based 
on offset information located in mftype structures. 
Mftype structures are recursively analyzed in order 
to build the graph.  

• Correction of cyclic links to prevent dead end loops. 
• Each object in the selected sub-graph is copied and 

new nptr's are allocated. 
• Correction of new nptr's to reflect the copied objects. 
As an example of all this, here is code that handles a 
tree with a root and two sons (see  Figure  3-8): 
// Create tree 
mfobj *root = mfalloc(sizeof(tree_node)); 
tree_node *root_ptr = mfdereference(root); 
root_ptr->left = mfnptr(mfalloc(sizeof(tree_node))); 
root_ptr->right = mfnptr(mfalloc(sizeof(tree_node))); 
 
mfaddname(root, "THIS_IS_A_TREE");   
 
// Assign values 
tree_node *left_ptr = 

 mfdereference(mfgetobj(root_ptr->left)); 
tree_node *right_ptr = 

 mfdereference(mfgetobj(root_ptr->right));  
root_ptr->val = 1; 
left_ptr->val = 2; 
right_ptr->val = 3; 
 
// Detach objects 
mfcloseobj(mfgetobj(root_ptr->left)); 
mfcloseobj(mfgetobj(root_ptr->right)); 

mfcloseobj(root); 
 
// Re-attach (just for the example)  
root = mfgetobjbyname("THIS_IS_A_TREE"); 
root_ptr = mfdereference(root); 
 
// Make a copy of root node only 
mfobj *copy = mfcopy(root);  
mfaddname(copy, "COPY_TREE");    
 
// Clone the whole tree  
size_t type[] = {0,4};     
mftype *mftype; 
mftype = mfalloctype(type, 2); 
mftypeatt(root, mftype); 
mftypeatt(mfgetobj(root_ptr->left), mftype); 
mftypeatt(mfgetobj(root_ptr->right), mftype); 
mfobj *clone = mfclone(root); 
mfaddname(clone, "CLONE_TREE"); 
tree_node *clone_ptr = mfdereference(clone); 

 

 
Figure  3-8: Tree Sample 

3.5 Sharing Data 
Naturally more than one process may attach the 

same objects to its memory space, leading to data 
sharing. This requires some handling of security and 
synchronization. 

Standard file system permissions hierarchy and 
rules apply. For regular files, no file descriptor can be 
acquired without appropriate permissions set on the file. 
For PSHFS objects, shared memory will not be mapped 
into process address space, unless right permission are 
set on the object. In the current implementation there is 
no read-only mapping provided for read-only objects, 
and memory pages are always mapped in a RW mode. 
In order to resolve this permissions issue, it is possible 
to add a parameter specifying the object's permissions to 
the mfalloc library call, or to allow manual setting of a 
default file mask, such as with the umask() function. 



PSHFS provides full backward locking 
compatibility for regular files (such as fcntl() and 
flock() mechanisms). For PSHFS files, a standard 
shared memory semaphore-based mechanism is 
recommended: 
• semget function can be used to grab a semaphore 
• semop function to test-n-set a semaphore  
• semun function to destroy a semaphore 
• semctl function provides a variety of semaphore 

control operations  
• ftok function returns a key based on path and id that 

is usable in subsequent calls to other semaphore 
functions  

3.6 Implementation 
As noted above, the implementation is based on 

two components: a loadable kernel module and a user 
library.  

The PSHFS kernel module is an extension of the 
standard Linux tmpfs module, and it is used to introduce 
the actual PSHFS (memfs) file system into the Linux 
kernel. A number of modifications to standard tmpfs 
were made to provide support for desired features: 
• Directories namespace – each directory in PSHFS 

provides a separate namespace (when libmemfs is 
concerned), therefore to avoid race-conditions on a 
given PSHFS filesystem, unique names generation 
for files is provided on the kernel module level, and 
not from libmemfs. The kernel module provides a 
single system call, ioctl IOMF_NEW, which 
generates a new name for the new object (file), and 
registers the object on the filesystem. 

• File names – in addition to a regular, serialized nptr 
(named pointer) file name, it's possible to add a 
number of strings or "regular" names to the file 
(implemented using symbolic links). When an object 
(file) is removed, its "regular" names are removed 
automatically as described above. 

• The file system utilizes the directory cache (dcache) 
to store the directory structure, increasing dentry 
counter on its creation, which forces the dentry to 
stay in cache. The dentry references an inode, 
allocated in slab_cache (kmem_cache_t). 

• memfs_inode, besides standard vfs_inode data, 
contains two additional fields: 
o Symlinks which is used for automatic removal of 

real names (symlinks) pointing to this inode’s 
PSHFS file. 

o Dentry, pointing to dentry which owns inode of 
given symbolic link.  

• Hard links (to nptr) are not allowed in PSHFS. 
• Introducing "t" bit – files generated via 

ioctl(IOMF_NEW) are marked with special bit "t" 
(stored in the inode), in order to provide 

differentiation between "objects" and regular "files". 
The "t" bit is validated during API functions 
execution on files. 

• Filesystem type verification – the kernel provides a 
system call ioctl(IOMF_NEGUINT), which can be 
used to verify that a given filesystem is of type 
memfs (PSHFS). 
The PSHFS library (libmemfs) provides an 

abstraction layer and interface to PSHFS services, 
providing as well some additional functionality, such as: 
• Malloc-style API (described in detail in Section  3.3) 
• Types subsystem 
• Recursive copy of objects graphs 
• Listing of objects attached to the process address 

space 
• Balanced red-black tree storing objects information 

per process 
The malloc-style API provides standard wrappers 

for malloc system calls. One of the most important 
features of the new API implementation is the fact that 
file descriptors are released when object operation is 
complete, which on one hand increases the number of 
system calls, but on the other hand allows a large 
number of objects to be connected to a process without 
overrunning the limit of 1024 file descriptors per 
process. 

The "types" subsystem provides a list of references 
to other objects inside a specific object. This list of 
offsets is used when a copy of the object tree is 
required. Copy of object tree is implemented in user-
space, therefore types are not attached to actual objects 
on the file system. The reason for performing the object-
tree copies in user-space is based on the fact that 
performance degradation can be caused by copying 
large objects in the kernel space, while implementation 
of copy-on-write doesn’t exist in VFS scope. 

In order to insure object structure is kept (according 
to mftype), and to disallow unwanted pointers 
modifications from user-space (using for example 
standard OS utilities), it is not allowed to reduce the size 
of an existing object. Such implementation is dictated 
by the fact that information regarding pointers location 
in a memory block is not passed to the kernel, but exists 
only in the name space of libmemfs. 

The current implementation has several drawbacks 
that should be noted: 
• PSHFS is a plug-in to the existing tmpfs file system. 

Such dependence creates additional overhead – for 
example, a file descriptor has to be obtained in order 
to create the actual memory mapping. 

• PSHFS size is limited by shared memory size, in 
contrast to real file systems, where limitation is 
actual size of the disk. 

• PSHFS file size (and total size of the file system) is 
limited by 4GB in total (32 bit). 



• Fixed PAGE_SIZE creates overhead on small files. 
• Persistence across power cycles is not yet supported. 

4. Performance Results 
We evaluated the performance of PSHFS first using 

microbenchmarks, and then by implementing a version 
of locate that uses PSHFS to store its database. 

The test environment was in Intel-based PC with a 
Core2 Duo processor running at 2.20GHz and equipped 
with 1GB of RAM and a 160 GB disk. The operating 
system was Debian release 4.0 with a 2.6.18.6 standard 
Linux kernel. 

4.1 Micro Benchmarks 
The micro benchmarks are designed to measure the 

performance of individual operations.  We measured the 
performance of sequentially reading data, sequentially 
writing it, random reading interspersed by seeking 
operations, and copying.  This was repeated for different 
file sizes from 1KB to 2MB with the size doubling at 
each step, and using buffer sizes of 1, 64, 512, and 1K 
bytes  (in the random access measurements, only a 
buffer size of 512 was used). 

The results (Figure  4-1 to Figure  4-4) show that 
PSHFS is largely insensitive to the buffer size used: the 
results for read and copy are identical for all buffer 
sizes, and for write small buffers suffer a relatively 
small degradation.  The standard file system suffers a 
much larger degradation in performance for small 
buffers, due to the constant overhead involved in the 
system calls.  On the other hand PSHFS suffers from a 
constant overhead for small file sizes. 

 
 

 
Figure  4-1: Read 

 
Figure  4-2: Write 

Figure  4-3: Seek 

Figure  4-4: Copy 

 

 



4.2 Locate Utility 
The Unix locate utility mentioned in the 

introduction was selected to demonstrate the massive 
performance increase when using PSHFS to store 
complex objects. A simplified version of the slocate 
flavour of locate was used as a base for the benchmark 
implementation. slocate (Secure locate) [slocate] 
provides a secure way to index and quickly search for 
files on the system. It uses incremental encoding 
(similar to GNU locate) to compress its database to 
make searching faster, but also checks file permissions 
and ownership so that users will not see files they do not 
have access to. 

As part of the benchmark preparation, several 
mixed directory/file structures were created on a regular 
physical partition. Directory structures containing 100, 
200, 300, 500, 1,000, 2,000 and 4,000 entries were 
created. 

Rather than timing the whole utility, we 
instrumented both the original slocate code and the 
PSHFS version, to allow performance analysis of 
relevant code parts only.  The code parts that were 
measured are the creation of the database and the search 
function. 

The PSHFS flavor of slocate naturally uses a 
database residing on a PSHFS partition. The database 
was implemented as a persistent hashtable, even though 
any other similar data structure could be used.  To avoid 
differential effects of disk access, a shared memory 
partition was used to store both databases, original and 
PSHFS.  

The results shown are averages of 100 repetitions 
of the measured operations.  As seen in Figure  4-5, the 
difference in time to construct the database is minimal.  
However, the PSHFS implementation has a decisive 
advantage in the search operation, which takes an order 
of magnitude less time on the small test case (100 
entries), and more than 2 orders of magnitude less time 
on the largest testcase (4K entries).  As a result, the 
search time drops from being noticeable (1.8 seconds) 
to being nearly instantaneous (0.013 seconds). 

 
 

 
Figure  4-5 results of database creation and file name 
search using the original slocate and the PSHFS 
version 

5. Related Work 
Several projects which share some or even most of 

our ideas have been proposed over the years. 

5.1 Single Level Store 
The concept of single-level store, pioneered by 

Multics in the 1960s and by IBM in the 1970s, and 
recently used in EROS [Shapiro 2002], regards all 
storage as a sequence of pages.  At any given time, 
pages may reside either in RAM or on disk.  If a process 
tries to access a non-RAM-resident page, a page fault 
will occur.  This replaces the need for an explicit read.  
Writes are performed automatically when a modified 
page is evicted to make space for another.  Thus disk 
space is used only for swap, and there is no explicit file 
system. 

In Multics [multics] all memory was organized as a 
set of segments, which today can be thought of as being 
memory-mapped files. The contents of each segment 



were paged in and out according to usage. This included 
segments with executable code.  Building on this, 
Multics introduced the idea of dynamic linking, in 
which a running process could incorporate segments 
with additional (library) code to its address space. This, 
in turn, allowed applications to always run with the 
latest version of the linked code.  Segments could also 
be shared among processes. 

Another example of single-level store 
implementation is the IBM AS/400 [Baldwin 1998], 
which later became the i5/OS. This is an object-based 
system, where objects (e.g. a database file or index) are 
stored in one or more segments of 16MB.  Objects are 
identified by 64-bit virtual addresses, and are naturally 
paged in or out according to usage. AS/400 applications 
work only at the object level, and do not need to 
consider I/O explicitly. An important feature is that 
objects may be tagged as temporary or persistent.  

The AS/400 implementation places each object 
within a single “auxiliary storage pool” (roughly 
equivalent to a volume or file system). In i5/OS this 
approach was changed, with object pages intentionally 
scattered across all disks so that the objects can be 
stored and retrieved much more rapidly. The system 
also allows CPU, memory, and disk resources to be 
freely substituted for each other at run time to smooth 
out performance bottlenecks. 

The EROS experimental system [Shapiro 2002] 
also used a single-level store of pages, and the RAM is 
considered a software-managed cache of this storage 
space.  Like the AS/400, this is an object-based system.  
Actually there are two types of memory objects: pages 
and nodes. Pages are pages of user data. Nodes store 
capabilities and process state. The most important 
feature of the EROS design is its support for 
transactional semantics. This is achieved by partitioning 
the disk space into two: home locations and a 
checkpointing area. The home locations are the “real” 
addresses of the objects. But when an object is written, 
it is first written to the checkpointing area. Data is then 
copied form the checkpointing area to the home 
locations only upon achieving a consistent system 
checkpoint. 

Although single-level storage has been available for 
many years, and provides at least part of our desired 
functionality (simplified programming and data 
efficiency), it has not caught on beyond its use in IBM’s 
AS/400. This is probably at least partly due to the 
relatively coarse-grain granularity of the supported 
objects.  PSHFS attempts to rectify this by supporting a 
malloc-like API that is naturally used for fine-grained 
objects, and in fact is essentially the same as the APIs 
commonly used for dynamic memory allocation today. 

5.2 SPHDE  
The SPHDE (Shared Persistent Heap/Data 

Environment) library [Munroe 2007] is the closest we 
know of to our work.  Like PSHFS, it allows processes 
to allocate memory objects that persist beyond the 
original process’s lifetime, and can be shared by other 
processes. It demonstrates utility of shared persistent 
heaps in leveraging large virtual addresses and memory 
mapped files, and combining memory allocation and file 
persistence into a single activity. SPHDE demonstrates 
an improvement in the efficiency of data access and 
sharing, as multiple programs can access data directly 
(operate in place) from the single real page copy. This 
eliminates the need to copy the data through multiple 
layers of buffering. When all programs share data at the 
same virtual address, there are also opportunities for the 
kernel to manage the memory map to avoid aliases and 
share MMU resources across applications. 

To demonstrate the utility of the approach, [Monroe 
2007] describes a gigapixel Mandelbrot viewer, which 
allows users unlimited zoom into a depiction of the 
Mandelbrot set.  This is supported by a quad-tree 
design, where additional levels of detail are generated 
on demand and retained for possible future use. 

SPHDE is similar to PSHFS in its goals and 
features. However, it does not provide backward 
compatibility and current VFS mechanisms can not be 
used. The "File System" term is dismissed entirely 
changing the programming methodology. PSHFS is 
similar in spirit, but also retains the traditional VFS 
infrastructure. 

5.3 Using Flash Memory 
Flash is by far the most common non-volatile 

memory technology, widely used in consumer 
electronics such as digital cameras and disk-on-key 
devices. It is therefore natural to consider it as a 
potential replacement for RAM. However, the current 
technology is too limited in terms of access speed, usage 
patterns (e.g. the need to clear a whole block in order to 
update even one byte), and wear (limited number of 
write cycles).  These restrictive features have led to the 
design of special algorithms that take them into account 
[Gal 2005a]. 

While not (yet) a good replacement for RAM, flash 
can nevertheless be used instead of disk. The common 
approach to using Flash memory technology in 
embedded devices has been to use a pseudo-filesystem 
on the flash chips to emulate a standard block device 
and provide wear leveling, and to use a normal file 
system on top of that emulated block device. 

More recently, file systems have been designed 
explicitly for flash directly [Woodhouse, Gal 2005b]. 
For example, JFFS is a log-structured file system 



especially for use on flash devices in embedded 
systems, which is aware of the restrictions imposed by 
flash technology and which operates directly on the 
flash chips, thereby avoiding the inefficiency of having 
two journaling file systems on top of each other.  

PSHFS is inspired by possible use on top of non-
volatile memory like flash. However, the current 
generation of flash devices have various limiting 
characteristics. Therefore our current implementation is 
based on volatile memory (RAM) and is not optimized 
for flash.  

6. Conclusions 
The PSHFS implementation meets its goals, 

showing significant performance gains, and a number of 
other significant advantages over standard virtual 
memory file systems, including: 
• Programming simplification by using a native 

malloc-like API, when working with shared and 
persistent large data objects 

• Improved efficiency of data access, by using direct 
pointers rather than system calls 

• Elimination of multiple data copies between buffers 
At the same time, PSHFS is fully backward compatible, 
providing a standard file system API. 

The PSHFS implementation takes advantage of a 
unique shared memory file system implementation, 
adding another layer of abstraction, providing 
significant performance increase and new methodology 
of persistent shared storage programming. 

Numerous improvements and features are possible 
to make PSHFS work faster and more efficiently: 
• Replace the tmpfs core with a dedicated core, to 

allow more efficient memory mapping for PSHFS 
objects. 

• Security features have to be implemented to allow a 
full unix-like security scheme to be applied to 
objects. 

• Compaction mechanism has to be added to prevent 
fragmentation. 

• Use more sophisticated mappings, such as those 
described in [Itzkovitz 1999], to reduce the page size 
overhead problem, where a minimum of a whole 
page is allocated to a file, even if the file size is 
smaller than a full page. 
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