
Persistent Shared Heap File System (PSHFS)

Abstract
Fast and efficient access to data storage is an

important concern in the modern computer industry.
One of the problems is that the only way to share large
amounts of data across applications is to serialize it and
store it on disks. As an alternative we describe the
design, implementation, and evaluation of a new file
system model that uses shared memory as a storage
partition, eliminating the need for expensive I/O system
calls such as read and write, simplifying programming
when sharing and storing of large complex data
structures is required, and avoiding the need to copy
data through multiple buffers. The main idea behind the
new file system implementation is to expose a malloc-
like programming API, which permits programmers to
create and operate directly on shared complex objects
residing in the file system. At the same time full
backward compatibility is maintained, preserving
standard file system behavior with regard to regular
files. While our current implementation is not persistent
between system reboots, we note that it foreshadows
interesting developments that will be possible with
future non-volatile memory technologies.

1. Introduction
The Unix locate utility is used to locate files in the

system, typically libraries and other such system files.
It works in two phases. The first is creating a database
of all the system’s files using the updatedb utility. The
second is looking for files in this database with the
locate utility. Using a pre-compiled database leads to
much faster search times relative to the find utility,
which actually scans the file system when invoked.
locate also has flags to verify that the files listed in the
database indeed still exist, as the database may be out of
date, but using them naturally takes more time.

The database of file names is naturally kept in a
file. To conserve space, it is compressed using an
incremental encoding scheme, where filenames are
sorted and each one is represented by its difference from
the previous one. This means that file search must read
the database sequentially, which leads to an efficient
sequential access pattern to the database file.

An alternative data structure that may be used to
store and search for file names is a hash table. Hash
tables are more efficient because the expected search
time is constant, rather then depending on the size of the
dataset. However, using hash tables is not applicable in
the context of locate, because they would have to be

created by one application (updatedb) and used by
another (locate). This would imply that updatedb has
to serialize the hash table and store it in a file, and
locate then needs to reconstruct it, thereby losing all the
performance advantages.

The above situation is not unique to locate – it
applies to any applications that create and use complex
data structures. One example is applications that use
graphs, such as entity-relationship models, which can be
used to describe any ontology for a certain universe of
discourse. Another is computational geometry and
image processing, where image data may be stored in a
quad-tree that is expanded according to need [Munroe
2007]. It also applies to the checkpointing of complete
applications, where all an application’s data structures
need to be efficiently stored and restored.

Another major problem with access to stored data
in modern operating systems is that it requires multiple
data copies. These data copies, especially ones from a
disk drive, are very expensive. For example, the read
command data flow in an application running on a
modern operating system first involves copying the data
from the disk device to a kernel buffer in main memory,
typically using DMA, and then copying the data to the
buffer specified by the user. This second copy is done
by the processor, wasting CPU cycles and possibly
disrupting cache state.

To solve the above problems we introduce PSHFS,
a kernel module add-on based on the traditional shared
memory file system (tmpfs), which allows applications
to take better advantage of the system’s memory
management facilities. A new approach is introduced,
providing a framework for improving efficiency of the
I/O and memory management mechanisms. The idea is
that memory objects created using a new malloc-like
API can be turned into files as is, without being
serialized and copied through multiple buffers. They
can then be attached to other applications, which can
immediately use them, saving the need to reconstruct
the object from the serialized representation.

At this point it might seem that the PSHFS
functionality is the same as that of shared memory
segments. However, shared memory is different in
several respects. First, it uses a different namespace,
thus losing the uniformity that comes from sticking to
the file system namespace. In addition, the
implementation is based on mapped files, that suffer the
overheads of buffer copies similar to using the read and
write system calls. But most importantly, when using
shared memory one still needs to serialize complex data
structures, because pointers would become invalid if the
structure is mapped by another process at a different

location. PSHFS avoids this problem by using named
pointers, i.e. pointers that use the file system
namespace. Thus PSHFS in effect integrates the shared
memory functionality with the conventional file system
to obtain efficiency and ease of use.

Our implementation of PSHFS is based on the
Debian operating system. Debian OS is based on the
standard Linux kernel, allowing this work portability
between other flavors of Linux, and is used widely for
OS research. Our implementation provides persistent
storage between unrelated applications. However, it is
not persistent across system reboots. This is a design
choice, which may well be rectified in future versions.
Alternatively, one may view our prototype as
foreshadowing developments that will be possible with
future non-volatile memory products such as phase-
change memory [PCM] that are not as restrictive as
current flash technology. Such non-volatile memory
will also offer full persistence.

The rest of this paper is organized as follows. The
next section presents some technological background.
Section 3 presents the design and implementation of
PSHFS, and Section 4 its performance. Finally, Section
 5 reviews related work, and Section 6 concludes the
paper.

2. Background
PSHFS is based on tmpfs and VFS, and is

obviously related to malloc and shared memory. We
therefore provide a brief review of these topics before
going into the details of PSHFS.

2.1 Memory File Systems
Virtual memory based file system such as tmpfs

[Snyder, McKusick] are similar in concept to
RAMdisks, in that they use RAM instead of disk to
obtain better performance. The difference is that a
traditional RAMdisk is a block device, whereas tmpfs is
a complete filesystem. In addition, RAMdisks typically
use a pre-allocated dedicated block of memory, while
tmpfs sits on top of virtual memory (VM) and may
therefore use both RAM and swap. The VM subsystem
allocates RAM and swap to various parts of the system,
and takes care of managing these resources behind-the-
scenes, often transparently moving RAM pages to swap
and vice-versa. The tmpfs filesystem requests pages
from the VM subsystem to store files and doesn't know
whether these pages are on swap or in RAM.

The size of the tmpfs file system can be
dynamically increased – the tmpfs driver will allocate
more VM and will dynamically increase the filesystem
capacity as needed. And, as files are removed from
tmpfs, the driver will dynamically shrink the size of the
filesystem and free VM resources, and by doing so

return VM into circulation so that it can be used by
other parts of the system as needed. tmpfs data is not
preserved between reboots, because virtual memory is
volatile in nature.

The PSHFS implementation uses tmpfs as a base,
adding a malloc-like API to the existing code in order to
simplify programming, and preventing multiple buffer
copies by mapping the actual file system pages into
process memory.

2.2 VFS
Due to filesystems, applications no longer have to

deal directly with the physical storage medium. But the
Linux operating system supports multiple different
filesystems. To enable the upper levels of the kernel to
deal equally with all of them, Linux defines an abstract
layer, known as the Virtual File System, or VFS.

Each lower level file-system must present an
interface which conforms to VFS. This interface is
structured around a number of generic object types, and
a number of methods which can be called on these
objects. The basic objects known to the VFS layer are
files, file-systems, inodes, and names for inodes.
Files are streams of bytes stored as a single unit, which

can be read from or written to.
Inodes represent basic objects within a file-system, e.g.

a regular file, a directory, or a symbolic link. VFS
itself does not make a strong distinction between
different types of objects, but leaves this to the
actual file-system implementation.

File Systems are a collection of inodes with one
distinguished inode known as the root. Other inodes
are accessed by starting at the root and looking up a
file name to get to another inode. Each file-system
resides on a unique device, but some (such as nfs
and proc) don't need a real physical device.

Names are used to access inodes. Names are given
relative to a directory, leading to a hierarchical
namespace.

 dcache is a cache for currently active and recently used
names, structured in memory as a tree. Each node
in the tree corresponds to an inode with a given
name in a given directory, so an inode can be
associated with more than one node in the tree.

dentry is an entry in the dcache, and acts as an
intermediary between open files and inodes.

2.3 Malloc
The malloc command is the workhorse of dynamic

memory allocation. Such memory is allocated from the
heap, and is not sharable with other processes.

An important aspect of dynamic memory allocation
is the management of heap space, and trying to prevent
fragmentation. In particular, allocations of less than a

full page (e.g. for new objects in object-oriented
programming) must be supported efficiently. The
PSHFS prototype does not support efficient small
allocations, but this is a technical issue that can be
solved with sub-paging techniques [Itzkovitz 1999]
more than an inherent barrier.

2.4 Shared memory
Linux processes typically do not share memory – in

fact, one of the roles of the system is to isolate processes
(and their address spaces) from each other. But it is also
possible to share a memory segment. This is done by
mapping the same segment into the address spaces of
the sharing processes.

Shared memory segments are created by shmget,
which specifies their name and access permissions.
They are then attached to the sharing processes using
shmatt. When not needed, they should be removed
from the system using shmctl; if not removed this is
considered a memory leak. PSHFS is different in
regarding such behavior as a feature, and allowing data
structures to be retained for long periods. Moreover, the
shared memory objects can be given names that make
them appear as regular files.

3. PSHFS Design and
Implementation
 VFS is an indirection layer used to handle system

calls acting on files located on traditional file systems.
This indirection mechanism is used by the Linux
operating system to allow use of several filesystem
types. When a file oriented system call is issued, the
kernel calls a function contained in the VFS. This
function handles the structure independent
manipulations and redirects the call to a function
contained in the physical filesystem, which is
responsible for handling the structure dependent
operations.

Here we introduce PSHFS (Persistent Shared Heap
File System), a novel virtual memory filesystem for
Linux, that makes better use of existing hardware
memory management features to reduce overhead and
improve performance. PSHFS is implemented within
the framework of the Linux kernel, and maintains full
backward compatibility to the traditional virtual
memory filesystem (tmpfs), which was used as a base
for the implementation. PSHFS supports UNIX file
semantics and provides file system space, based on
shared memory.

3.1 Basic Ideas
The main idea behind PSHFS's implementation is

to expose a malloc-like programming API, which

permits programmers to create and operate on
persistent, shared objects (a.k.a. files) on the file system,
without using expensive system calls, such as read and
write. On the other hand, full backward compatibility is
maintained, preserving standard file system behavior in
regards with regular files. Such an API simplifies
programming by creating a single level of abstraction
(files = objects), and maximizes data efficiency by
preventing multiple buffer copies.

Table 3-1 read() comparison.

Table 3-1 demonstrates this by comparing the

overhead of using PSHFS to that of a conventional read
system call (time taken by steps marked in italic is a
function of file/buffer size, time taken by other steps is
constant).

As indicated in this example, the PSHFS
implementation goals are achieved by basically
mapping files space (objects) into process address
space. A new definition of the term "file" is provided,
where serialized data access is no longer used. Instead
data is stored in its original ("object") format, and data
original structures are preserved.

 Since data has to be persistent after process
termination, anonymous mmap is no longer used. To
preserve the naming and hierarchical structure of the file
system, we introduce name pointers (unique names) and
file names. Persistent name pointers are automatically
generated for all objects, and a new file system module
protects from race-conditions during object name
selection. In addition, objects can be assigned user-
chosen file names. Objects can then be referenced by
either these object names or file names, providing

PSHFS Tmpfs

Dereference object name
to obtain pointer

Open file to obtain file
descriptor

Map process memory to
object memory

Copy data from physical
storage to kernel buffer

Copy data from kernel
buffer to process buffer

Repeat until all data has
been copied

Deserialize data read to
reconstruct object

Access object data using
pointer

Access object data using
pointer

functionality similar to the original file system’s
namespace.

The common approach to physical memory based
file systems (RAMdisks) is to reserve a chunk of
physical memory for use of the file system. RAMdisks
use memory inefficiently, since data is duplicated on
file system memory and in kernel memory. In contrast,
PSHFS uses the memory more efficiently. No memory-
to-memory copy is required, eliminating the need for
most resources consuming system calls such as reads
and writes.

To summarize, PSHFS deals with the following
drawbacks of traditional file systems in the following
ways:
• Performance degradation due to multiple buffer

copies, especially copies between kernel space and
user space buffers: PSHFS provides direct access to
files, so no intermediate buffers are required.

• Unnecessary overhead due to multiple system calls,
such as read: PSHFS eliminates the need for such
system calls

• Data duplication – the same data is stored in memory
and on disk, which, in the case of a virtual memory
file system, leads to unnecessary duplication: again,
PSHFS avoids this by providing direct access to the
files themselves.

• Serialization is required for data structures to be
stored on disk – objects have to be serialized when
written to the file system and de-serialized when
read from the file system: PSHFS allows the
persistent data to be stored in its original object
format, with links based on named pointers, so no
serialization is required.

3.2 Architecture

Figure 3-1: System Architecture

PSHFS is comprised of two basic components , as

illustrated in Figure 3-1 (the implementation is called
memfs, which stands for MEMory File System):

• Loadable kernel module, or "memfs kernel module"
– an extension of the tmpfs kernel module, with a
number of modifications, to allow PSHFS operation.

• An API library, or "libmemfs library" – an
abstraction layer and interface to PSHFS services.

The precise functions embedded in each component will
be listed later, after we describe the API.

Upon PSHFS module load, the new file system type
is registered with the kernel, and mounted, if required,
according to the regular VFS procedure.

PSHFS is compliant with the standard virtual
filesystem (VFS) abstraction layer. The VFS access
interface is used to acquire file descriptors of PSHFS
files, in order to perform actual shared memory
mapping into the process space. Once mapping is
performed, the file descriptor is no longer used and is
released.

PSHFS can be used also as a regular shared
memory file system (tmpfs). In this case its operation is
identical to that of tmpfs.

The basic structures used within PSHFS are:
• mfobj, which represents an object (file). An object is

mapped into a process address space, and accessed
via a standard pointer (ptr). In addition, a named-
pointer (nptr) represents the object's automatically
generated name, which is used as a permanent
identifier of the object in the objects store (file
system). Objects can also be attached to an unlimited
number of user-generated names (represented by
symbolic links). The role of mfobjs is illustrated in
Figure 3-2.

mfobj

Mapped
address
space

shmem
nptr
size

mftype

ptr
malloc style

API

Process

mfobj

Mapped
address
space

shmem
nptr
size

mftype

ptr
malloc style

API

Process

Process Address
Space

Figure 3-2: Basic structures

• mftype, which is used to describe the internal
structure of an object, by providing a list of offsets to
named pointers (nptr's) within it. This is used only
when a process calls mfclone(), which creates a deep
copy of an object, so pointers to referenced objects
need to be found.

3.3 Basic API
The following is a simple example of using the PSHFS
malloc-like API. All these functions are explained
below.
mfobj *mfobj;
int error = mfopen("/mem"); //Attach filesystem
mfobj = mfalloc(1000); //Allocate object
nptr *namedptr = mfobj->nptr; //Get object's name
char *ptr = mfdereference(mfobj); //Get pointer
memset(ptr, '0', 1000); //Initialize
mfaddname(mfobj, "FILE1"); //Give it a name
mfcloseobj(mfobj); //Detach object
mfobj = mfgetobjbyname("FILE1");//Get by name
mffreeobj(mfobj); //Delete
error = mfclose(); //Detach file system

mfopen()
mfopen("path") opens the file system to access the name
space. This can be done on any directory within PSHFS,
but only a single namespace (directory) can be attached
to a process at a time. The following operations are
performed when a namespace is accesses with
mfopen():
• A balanced red-black tree is created, and used to

store objects (attached to the current process)
information. The red-black tree mechanism is used
to provide quick O(lg(n)) mapping between nptr's
(named pointers) and ptr's (regular malloc-like
pointers), for the files attached to the current process.
A possible alternative attached objects data structure
is a hashtable.

• The file system is verified to be PSHFS compliant.

mfalloc()
mfobj = mfalloc(int size) allocates an object, with size
specified, utilizing the PSHFS malloc-style API. This
operation creates an mfobj struct, and generates a
unique name (nptr) for the object. nptr also represents a
physical file in the underlying tmpfs-like file system.

size

m
fo

bj

size
fd

np
tr

ptr

Figure 3-3: mfalloc()

Object initialization is performed in the following steps:
• Verification that the designated file system is PSHFS

compliant
• Create a file descriptor (and empty file with

requested size). An nptr is generated automatically
for the file created.

• Map shared memory segment with requested size
into process memory space, and acquire a pointer
(ptr) to the mapped pages.

• Close the file descriptor
• Register object in objects red-black balanced tree.

mfdereference()
*ptr = mfdereference(mfobj) provides a pointer, which
can be used to access an object’s memory directly. This
can be done only on objects already attached to the
current process.

Figure 3-4: mfdereference()

Once the pointer (ptr) to the object's storage is acquired,
regular pointer API operations can be performed, so
memset(ptr, '0', 1000) will fill the first 1000 bytes of the
memory area pointed to by ptr with constant byte 0. To
appreciate the power of direct access, consider the
following tmpfs code:

write(fd,"00000",5);
lseek(fd,0,SEEK_SET);
read(fd,buffer,5);
fprintf(stdout," Current Value: %s\n",buffer);
lseek(fd,0,SEEK_SET);
write(fd,"11111",5);
lseek(fd,0,SEEK_SET);
read(fd,buffer,5);
fprintf(stdout," Current Value: %s\n",buffer);

using PSHFS, this turns into
memset(ptr,'0',5);
fprintf(stdout,"Current Value: %s\n",ptr);
memset(ptr,'1',5);
fprintf(stdout,"Current Value: %s\n",ptr);

seeking to a location other than 0 would translate to
adding an offset to ptr.

mfaddname() & mfgetobjbyname()
mfaddname(mfobj, "filename") allows addition of
human-provided names to the object. Initially, an object
is automatically given a named pointer (nptr) file name,
but in order to provide a common interface to file
naming, and stay in line with file system acceptable
naming policies, it is possible to add any number of
names to a given object. Additional file names are

represented by symbolic links on the file system, which
are automatically removed if the object is freed or
deleted. To enable this, the symbolic links are listed in
the object’s inode (see below).

Figure 3-5: mfaddname()

mfobj = mfgetobjbyname("filename") opens an object
pointed to by the given filename and attaches it to the
current process memory address space (just like
mfalloc, except that the object does not need to be
created).

mfgetobj() & mfnptr()
mfobj = mfgetobj(nptr) obtains the mfobj pointer to by a
given nptr.
nptr = mfnptr(mfobj) performs the opposite mapping,
extracting the nptr from an mfobj.

mfcloseobj()
mfcloseobj(mfobj) detaches the object from the current
process, but leaves it in the storage space. The object
can be reopened and used at any time.
An object is unmapped in the following steps:
• Object shared memory block is unmapped from

current process address space
• Object is removed from process's red-black balanced

objects tree.

mffreeobj()
mffreeobj(mfobj) detaches the object from the current
process, removing it from the storage, and freeing the
shared memory taken by the object. In addition, all
symbolic links pointing to the object are removed. The
memfs inode structure has an additional field,
"symlinks", containing a list of pointers to nptr's of the
symbolic links (pointers to inodes of the symbolic link
files) to the object being removed. Symbolic links are
removed according to this "symlinks" list.

mfclose()
mfclose() detaches the PSHFS name space, opened with
mfopen. The following operations are performed when
a namespace is detached with mfclose():
• Red-black tree, containing objects mapping, is freed.
• Namespace is destroyed

3.4 Advanced Functionality
mfcopy()
copy = mfcopy(mfobj) creates a copy of a SINGLE
object. Objects referenced by mfobj are not copied. This

operation creates a new mfobj struct, and generates a
unique name (nptr) for the object, in a way similar to the
mfalloc() function. nptr also represents the physical file
on the underlying tmpfs file system.
Single object copy is performed in the following steps:
• Perform mfalloc() for a new (destination) object with

size similar to that of the source
• Copy using memcpy all data from the source to the

new object

mfobj (copy)

Mapped
address
space

shmem
nptr
size

mftype

ptr

mfobj (source)

Mapped
address
space

shmem
nptr
size

mftype

ptr
Process Address

Space

Figure 3-6: mfcopy()

mfalloctype() & mftypeatt()
We use a "types" method in order to deal with complex
object operations, such as deep-copy. "type" is
represented by an array attached to a complex object,
and containing offsets of all named pointers within the
given object. A single "type" can be attached to multiple
objects with the same structure. For example, given the
following complex object, representing a tree node:
typedef struct {
 nptr *left; // Pointer to left child
 nptr *right; // Pointer to right child
 int val; // Node value
} tree_node;
will require the following "type" structure, in order to be
deep-copied (cloned):
size_t type[] = {0,4}; // Array of offsets to pointers
mftype *mftype; // Types pointer
mftype = mfalloctype(type, 2);//Alloc and init
mftypeatt(mfobj, mftype); // Attach mftype to object

In this code, type is the array of offsets within the struct:
0 = left, 4 = right. Rather than hardcoding, it is also
possible to use the offsetof macro in order to determine
the offsets. mfalloctype() takes such an array of offsets
and its size and converts them to an mftype, which is
finally attached to the object itself.

Figure 3-7: attaching an mftype

mfclone()
clone = mfclone(mfobj) creates a copy of a whole object
tree (deep-copy). All objects referenced by mfobj are
copied. All referenced objects must be identified in the
mftype attached to each of the complex objects in the
objects tree to be copied.
Cloning of an object tree (object and objects referenced
from it) is performed in the following steps:
• Selection of the sub-graph of objects to be cloned

graph from the graph of all objects. An acyclic,
connected, directed graph of the object is built, based
on offset information located in mftype structures.
Mftype structures are recursively analyzed in order
to build the graph.

• Correction of cyclic links to prevent dead end loops.
• Each object in the selected sub-graph is copied and

new nptr's are allocated.
• Correction of new nptr's to reflect the copied objects.
As an example of all this, here is code that handles a
tree with a root and two sons (see Figure 3-8):
// Create tree
mfobj *root = mfalloc(sizeof(tree_node));
tree_node *root_ptr = mfdereference(root);
root_ptr->left = mfnptr(mfalloc(sizeof(tree_node)));
root_ptr->right = mfnptr(mfalloc(sizeof(tree_node)));

mfaddname(root, "THIS_IS_A_TREE");

// Assign values
tree_node *left_ptr =

 mfdereference(mfgetobj(root_ptr->left));
tree_node *right_ptr =

 mfdereference(mfgetobj(root_ptr->right));
root_ptr->val = 1;
left_ptr->val = 2;
right_ptr->val = 3;

// Detach objects
mfcloseobj(mfgetobj(root_ptr->left));
mfcloseobj(mfgetobj(root_ptr->right));

mfcloseobj(root);

// Re-attach (just for the example)
root = mfgetobjbyname("THIS_IS_A_TREE");
root_ptr = mfdereference(root);

// Make a copy of root node only
mfobj *copy = mfcopy(root);
mfaddname(copy, "COPY_TREE");

// Clone the whole tree
size_t type[] = {0,4};
mftype *mftype;
mftype = mfalloctype(type, 2);
mftypeatt(root, mftype);
mftypeatt(mfgetobj(root_ptr->left), mftype);
mftypeatt(mfgetobj(root_ptr->right), mftype);
mfobj *clone = mfclone(root);
mfaddname(clone, "CLONE_TREE");
tree_node *clone_ptr = mfdereference(clone);

Figure 3-8: Tree Sample

3.5 Sharing Data
Naturally more than one process may attach the

same objects to its memory space, leading to data
sharing. This requires some handling of security and
synchronization.

Standard file system permissions hierarchy and
rules apply. For regular files, no file descriptor can be
acquired without appropriate permissions set on the file.
For PSHFS objects, shared memory will not be mapped
into process address space, unless right permission are
set on the object. In the current implementation there is
no read-only mapping provided for read-only objects,
and memory pages are always mapped in a RW mode.
In order to resolve this permissions issue, it is possible
to add a parameter specifying the object's permissions to
the mfalloc library call, or to allow manual setting of a
default file mask, such as with the umask() function.

PSHFS provides full backward locking
compatibility for regular files (such as fcntl() and
flock() mechanisms). For PSHFS files, a standard
shared memory semaphore-based mechanism is
recommended:
• semget function can be used to grab a semaphore
• semop function to test-n-set a semaphore
• semun function to destroy a semaphore
• semctl function provides a variety of semaphore

control operations
• ftok function returns a key based on path and id that

is usable in subsequent calls to other semaphore
functions

3.6 Implementation
As noted above, the implementation is based on

two components: a loadable kernel module and a user
library.

The PSHFS kernel module is an extension of the
standard Linux tmpfs module, and it is used to introduce
the actual PSHFS (memfs) file system into the Linux
kernel. A number of modifications to standard tmpfs
were made to provide support for desired features:
• Directories namespace – each directory in PSHFS

provides a separate namespace (when libmemfs is
concerned), therefore to avoid race-conditions on a
given PSHFS filesystem, unique names generation
for files is provided on the kernel module level, and
not from libmemfs. The kernel module provides a
single system call, ioctl IOMF_NEW, which
generates a new name for the new object (file), and
registers the object on the filesystem.

• File names – in addition to a regular, serialized nptr
(named pointer) file name, it's possible to add a
number of strings or "regular" names to the file
(implemented using symbolic links). When an object
(file) is removed, its "regular" names are removed
automatically as described above.

• The file system utilizes the directory cache (dcache)
to store the directory structure, increasing dentry
counter on its creation, which forces the dentry to
stay in cache. The dentry references an inode,
allocated in slab_cache (kmem_cache_t).

• memfs_inode, besides standard vfs_inode data,
contains two additional fields:
o Symlinks which is used for automatic removal of

real names (symlinks) pointing to this inode’s
PSHFS file.

o Dentry, pointing to dentry which owns inode of
given symbolic link.

• Hard links (to nptr) are not allowed in PSHFS.
• Introducing "t" bit – files generated via

ioctl(IOMF_NEW) are marked with special bit "t"
(stored in the inode), in order to provide

differentiation between "objects" and regular "files".
The "t" bit is validated during API functions
execution on files.

• Filesystem type verification – the kernel provides a
system call ioctl(IOMF_NEGUINT), which can be
used to verify that a given filesystem is of type
memfs (PSHFS).
The PSHFS library (libmemfs) provides an

abstraction layer and interface to PSHFS services,
providing as well some additional functionality, such as:
• Malloc-style API (described in detail in Section 3.3)
• Types subsystem
• Recursive copy of objects graphs
• Listing of objects attached to the process address

space
• Balanced red-black tree storing objects information

per process
The malloc-style API provides standard wrappers

for malloc system calls. One of the most important
features of the new API implementation is the fact that
file descriptors are released when object operation is
complete, which on one hand increases the number of
system calls, but on the other hand allows a large
number of objects to be connected to a process without
overrunning the limit of 1024 file descriptors per
process.

The "types" subsystem provides a list of references
to other objects inside a specific object. This list of
offsets is used when a copy of the object tree is
required. Copy of object tree is implemented in user-
space, therefore types are not attached to actual objects
on the file system. The reason for performing the object-
tree copies in user-space is based on the fact that
performance degradation can be caused by copying
large objects in the kernel space, while implementation
of copy-on-write doesn’t exist in VFS scope.

In order to insure object structure is kept (according
to mftype), and to disallow unwanted pointers
modifications from user-space (using for example
standard OS utilities), it is not allowed to reduce the size
of an existing object. Such implementation is dictated
by the fact that information regarding pointers location
in a memory block is not passed to the kernel, but exists
only in the name space of libmemfs.

The current implementation has several drawbacks
that should be noted:
• PSHFS is a plug-in to the existing tmpfs file system.

Such dependence creates additional overhead – for
example, a file descriptor has to be obtained in order
to create the actual memory mapping.

• PSHFS size is limited by shared memory size, in
contrast to real file systems, where limitation is
actual size of the disk.

• PSHFS file size (and total size of the file system) is
limited by 4GB in total (32 bit).

• Fixed PAGE_SIZE creates overhead on small files.
• Persistence across power cycles is not yet supported.

4. Performance Results
We evaluated the performance of PSHFS first using

microbenchmarks, and then by implementing a version
of locate that uses PSHFS to store its database.

The test environment was in Intel-based PC with a
Core2 Duo processor running at 2.20GHz and equipped
with 1GB of RAM and a 160 GB disk. The operating
system was Debian release 4.0 with a 2.6.18.6 standard
Linux kernel.

4.1 Micro Benchmarks
The micro benchmarks are designed to measure the

performance of individual operations. We measured the
performance of sequentially reading data, sequentially
writing it, random reading interspersed by seeking
operations, and copying. This was repeated for different
file sizes from 1KB to 2MB with the size doubling at
each step, and using buffer sizes of 1, 64, 512, and 1K
bytes (in the random access measurements, only a
buffer size of 512 was used).

The results (Figure 4-1 to Figure 4-4) show that
PSHFS is largely insensitive to the buffer size used: the
results for read and copy are identical for all buffer
sizes, and for write small buffers suffer a relatively
small degradation. The standard file system suffers a
much larger degradation in performance for small
buffers, due to the constant overhead involved in the
system calls. On the other hand PSHFS suffers from a
constant overhead for small file sizes.

Figure 4-1: Read

Figure 4-2: Write

Figure 4-3: Seek

Figure 4-4: Copy

4.2 Locate Utility
The Unix locate utility mentioned in the

introduction was selected to demonstrate the massive
performance increase when using PSHFS to store
complex objects. A simplified version of the slocate
flavour of locate was used as a base for the benchmark
implementation. slocate (Secure locate) [slocate]
provides a secure way to index and quickly search for
files on the system. It uses incremental encoding
(similar to GNU locate) to compress its database to
make searching faster, but also checks file permissions
and ownership so that users will not see files they do not
have access to.

As part of the benchmark preparation, several
mixed directory/file structures were created on a regular
physical partition. Directory structures containing 100,
200, 300, 500, 1,000, 2,000 and 4,000 entries were
created.

Rather than timing the whole utility, we
instrumented both the original slocate code and the
PSHFS version, to allow performance analysis of
relevant code parts only. The code parts that were
measured are the creation of the database and the search
function.

The PSHFS flavor of slocate naturally uses a
database residing on a PSHFS partition. The database
was implemented as a persistent hashtable, even though
any other similar data structure could be used. To avoid
differential effects of disk access, a shared memory
partition was used to store both databases, original and
PSHFS.

The results shown are averages of 100 repetitions
of the measured operations. As seen in Figure 4-5, the
difference in time to construct the database is minimal.
However, the PSHFS implementation has a decisive
advantage in the search operation, which takes an order
of magnitude less time on the small test case (100
entries), and more than 2 orders of magnitude less time
on the largest testcase (4K entries). As a result, the
search time drops from being noticeable (1.8 seconds)
to being nearly instantaneous (0.013 seconds).

Figure 4-5 results of database creation and file name
search using the original slocate and the PSHFS
version

5. Related Work
Several projects which share some or even most of

our ideas have been proposed over the years.

5.1 Single Level Store
The concept of single-level store, pioneered by

Multics in the 1960s and by IBM in the 1970s, and
recently used in EROS [Shapiro 2002], regards all
storage as a sequence of pages. At any given time,
pages may reside either in RAM or on disk. If a process
tries to access a non-RAM-resident page, a page fault
will occur. This replaces the need for an explicit read.
Writes are performed automatically when a modified
page is evicted to make space for another. Thus disk
space is used only for swap, and there is no explicit file
system.

In Multics [multics] all memory was organized as a
set of segments, which today can be thought of as being
memory-mapped files. The contents of each segment

were paged in and out according to usage. This included
segments with executable code. Building on this,
Multics introduced the idea of dynamic linking, in
which a running process could incorporate segments
with additional (library) code to its address space. This,
in turn, allowed applications to always run with the
latest version of the linked code. Segments could also
be shared among processes.

Another example of single-level store
implementation is the IBM AS/400 [Baldwin 1998],
which later became the i5/OS. This is an object-based
system, where objects (e.g. a database file or index) are
stored in one or more segments of 16MB. Objects are
identified by 64-bit virtual addresses, and are naturally
paged in or out according to usage. AS/400 applications
work only at the object level, and do not need to
consider I/O explicitly. An important feature is that
objects may be tagged as temporary or persistent.

The AS/400 implementation places each object
within a single “auxiliary storage pool” (roughly
equivalent to a volume or file system). In i5/OS this
approach was changed, with object pages intentionally
scattered across all disks so that the objects can be
stored and retrieved much more rapidly. The system
also allows CPU, memory, and disk resources to be
freely substituted for each other at run time to smooth
out performance bottlenecks.

The EROS experimental system [Shapiro 2002]
also used a single-level store of pages, and the RAM is
considered a software-managed cache of this storage
space. Like the AS/400, this is an object-based system.
Actually there are two types of memory objects: pages
and nodes. Pages are pages of user data. Nodes store
capabilities and process state. The most important
feature of the EROS design is its support for
transactional semantics. This is achieved by partitioning
the disk space into two: home locations and a
checkpointing area. The home locations are the “real”
addresses of the objects. But when an object is written,
it is first written to the checkpointing area. Data is then
copied form the checkpointing area to the home
locations only upon achieving a consistent system
checkpoint.

Although single-level storage has been available for
many years, and provides at least part of our desired
functionality (simplified programming and data
efficiency), it has not caught on beyond its use in IBM’s
AS/400. This is probably at least partly due to the
relatively coarse-grain granularity of the supported
objects. PSHFS attempts to rectify this by supporting a
malloc-like API that is naturally used for fine-grained
objects, and in fact is essentially the same as the APIs
commonly used for dynamic memory allocation today.

5.2 SPHDE
The SPHDE (Shared Persistent Heap/Data

Environment) library [Munroe 2007] is the closest we
know of to our work. Like PSHFS, it allows processes
to allocate memory objects that persist beyond the
original process’s lifetime, and can be shared by other
processes. It demonstrates utility of shared persistent
heaps in leveraging large virtual addresses and memory
mapped files, and combining memory allocation and file
persistence into a single activity. SPHDE demonstrates
an improvement in the efficiency of data access and
sharing, as multiple programs can access data directly
(operate in place) from the single real page copy. This
eliminates the need to copy the data through multiple
layers of buffering. When all programs share data at the
same virtual address, there are also opportunities for the
kernel to manage the memory map to avoid aliases and
share MMU resources across applications.

To demonstrate the utility of the approach, [Monroe
2007] describes a gigapixel Mandelbrot viewer, which
allows users unlimited zoom into a depiction of the
Mandelbrot set. This is supported by a quad-tree
design, where additional levels of detail are generated
on demand and retained for possible future use.

SPHDE is similar to PSHFS in its goals and
features. However, it does not provide backward
compatibility and current VFS mechanisms can not be
used. The "File System" term is dismissed entirely
changing the programming methodology. PSHFS is
similar in spirit, but also retains the traditional VFS
infrastructure.

5.3 Using Flash Memory
Flash is by far the most common non-volatile

memory technology, widely used in consumer
electronics such as digital cameras and disk-on-key
devices. It is therefore natural to consider it as a
potential replacement for RAM. However, the current
technology is too limited in terms of access speed, usage
patterns (e.g. the need to clear a whole block in order to
update even one byte), and wear (limited number of
write cycles). These restrictive features have led to the
design of special algorithms that take them into account
[Gal 2005a].

While not (yet) a good replacement for RAM, flash
can nevertheless be used instead of disk. The common
approach to using Flash memory technology in
embedded devices has been to use a pseudo-filesystem
on the flash chips to emulate a standard block device
and provide wear leveling, and to use a normal file
system on top of that emulated block device.

More recently, file systems have been designed
explicitly for flash directly [Woodhouse, Gal 2005b].
For example, JFFS is a log-structured file system

especially for use on flash devices in embedded
systems, which is aware of the restrictions imposed by
flash technology and which operates directly on the
flash chips, thereby avoiding the inefficiency of having
two journaling file systems on top of each other.

PSHFS is inspired by possible use on top of non-
volatile memory like flash. However, the current
generation of flash devices have various limiting
characteristics. Therefore our current implementation is
based on volatile memory (RAM) and is not optimized
for flash.

6. Conclusions
The PSHFS implementation meets its goals,

showing significant performance gains, and a number of
other significant advantages over standard virtual
memory file systems, including:
• Programming simplification by using a native

malloc-like API, when working with shared and
persistent large data objects

• Improved efficiency of data access, by using direct
pointers rather than system calls

• Elimination of multiple data copies between buffers
At the same time, PSHFS is fully backward compatible,
providing a standard file system API.

The PSHFS implementation takes advantage of a
unique shared memory file system implementation,
adding another layer of abstraction, providing
significant performance increase and new methodology
of persistent shared storage programming.

Numerous improvements and features are possible
to make PSHFS work faster and more efficiently:
• Replace the tmpfs core with a dedicated core, to

allow more efficient memory mapping for PSHFS
objects.

• Security features have to be implemented to allow a
full unix-like security scheme to be applied to
objects.

• Compaction mechanism has to be added to prevent
fragmentation.

• Use more sophisticated mappings, such as those
described in [Itzkovitz 1999], to reduce the page size
overhead problem, where a minimum of a whole
page is allocated to a file, even if the file size is
smaller than a full page.

References
[Baldwin 1998] James R. Baldwin. AS/400 Memory

Management, 1998.
http://varietysoftworks.com/jbaldwin/Education/sin
gle-level_store.html

[Gal 2005a] Eran Gal and Sivan Toledo.
Algorithms and data structures for flash memories.
ACM Computing Surveys, 37:138-163, 2005.
http://www.tau.ac.il/~stoledo/Bib/Pubs/flash-
survey.pdf

[Gal 2005b] Eran Gal and Sivan Toledo.
A transactional flash file system for
microcontrollers. Proc.USENIX Tech. Conf., pp.
89-104, 2005.
http://www.tau.ac.il/~stoledo/Bib/Pubs/usenix2005.
pdf

[Itzkovitz 1999] Ayal Itzkovitz and Assaf Schuster.
MultiView and Millipage – Fine-Grain Sharing in
Page-Based DSMs. Proc 3rd Symposium on
Operating Systems Design and Implementation,
USENIX, 1999.
http://usenix.org/events/osdi99/full_papers/itzkovit
z/itzkovitz.pdf

[McKusick] Marshall Kirk McKusick, Michael J.
Karels, Keith Bostic. A pageable memory based
filesystem. Usenix Summer Conf. pp. 137-144,
1990.
 http://docs.freebsd.org/44doc/papers/memfs.pdf

[multics] Multics, WikiPedia, (retrieved Sep 2008)
 http://en.wikipedia.org/wiki/Multics

[Munroe 2007] Steve Munroe. Exploiting 64-bit Linux.
Linux Journal, August 1st 2007
 http://www.linuxjournal.com/article/9723

[PCM] Phase change memory. WikiPedia (retrieved Sep
2008).
http://en.wikipedia.org/wiki/Phase-change_memory

[Shapiro 2002] Jonathan S. Shapiro and Jonathan
Adams. Design evolution of the EROS single-level
store. USENIX Annual Technical Conference, 2002.

 http://www.eros-os.org/papers/storedesign2002.pdf
[slocate] Secure Locate, 2006. http://slocate.trakker.ca
[Snyder] Peter Snyder. tmpfs: A Virtual Memory File

System. Sun Microsystems Inc.
http://www.solarisinternals.com/si/reading/tmpfs.pd
f

[Wilson 1995] Paul R. Wilson, Mark S. Johnstone,
Michael Neely, and David Boles. Dynamic Storage
Allocation: A Survey and Critical Review. Intl.
Workshop Memory Management, Sep 1995.

[Woodhouse] David Woodhouse. JFFS: The Journaling
Flash File System. Red Hat Inc.
http://sources.redhat.com/jffs2/jffs2.pdf

http://varietysoftworks.com/jbaldwin/Education/single-level_store.html
http://varietysoftworks.com/jbaldwin/Education/single-level_store.html
http://www.tau.ac.il/%7Estoledo/Bib/Pubs/flash-survey.pdf
http://www.tau.ac.il/%7Estoledo/Bib/Pubs/flash-survey.pdf
http://www.tau.ac.il/%7Estoledo/Bib/Pubs/usenix2005.pdf
http://www.tau.ac.il/%7Estoledo/Bib/Pubs/usenix2005.pdf
http://usenix.org/events/osdi99/full_papers/itzkovitz/itzkovitz.pdf
http://usenix.org/events/osdi99/full_papers/itzkovitz/itzkovitz.pdf
http://docs.freebsd.org/44doc/papers/memfs.pdf
http://en.wikipedia.org/wiki/Multics
http://www.linuxjournal.com/article/9723
http://en.wikipedia.org/wiki/Phase-change_memory
http://www.eros-os.org/papers/storedesign2002.pdf
http://slocate.trakker.ca/
http://www.solarisinternals.com/si/reading/tmpfs.pdf
http://www.solarisinternals.com/si/reading/tmpfs.pdf
http://sources.redhat.com/jffs2/jffs2.pdf

	Abstract
	1. Introduction
	2. Background
	Memory File Systems
	2.2 VFS
	2.3 Malloc
	2.4 Shared memory

	3. PSHFS Design and Implementation
	Basic Ideas
	3.2 Architecture
	3.3 Basic API
	mfopen()
	mfalloc()
	mfdereference()
	mfaddname() & mfgetobjbyname()
	mfgetobj() & mfnptr()
	mfobj = mfgetobj(nptr) obtains the mfobj pointer to by a given nptr.
	mfcloseobj()
	mffreeobj()
	mfclose()

	3.4 Advanced Functionality
	mfcopy()
	mfalloctype() & mftypeatt()
	mfclone()

	3.5 Sharing Data
	3.6 Implementation

	4. Performance Results
	Micro Benchmarks
	4.2 Locate Utility

	5. Related Work
	Single Level Store
	5.2 SPHDE
	5.3 Using Flash Memory

	6. Conclusions
	References

