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Abstract
Writing code is easy although time-consuming. Mak-
ing code work in the real world is usually substantially
harder. Major open source operating systems provide a
wealth of kernel code which not only already exists and
is available for use, but has also been tested and proven
in the real world. The ability to reuse this code in appli-
cations provides a library of functionality for free.

This paper shows that using existing kernel file sys-
tem implementations as part of userspace applications is
possible without modifying the kernel file system code
base. Two different operating modes are explored: 1) a
transparent mode, where the file system is mounted in the
typical fashion by using the kernel code as a userspace
server, and 2) a standalone mode, where applications can
make file system calls without going through the kernel
system call interface. The first mode provides isolation
from the trusted computing base and a secure way for
mounting untrusted file system images on a monolithic
kernel. Additional uses include debugging and develop-
ment. The second mode is useful for file system utilities,
and applications, such as mtools. File system access is
possible without host kernel support.

The design and implementation of a framework al-
ready integrated into NetBSD is discussed. Under this
framework ten disk-based file systems and two other ker-
nel file systems have been tested to be functional. The
usefulness of both operating modes of the framework is
examined. Although not optimizing for performance, it
is measured to be acceptable: worst case 19% slower
than the kernel. The prototype of a similar framework
for Linux was also implemented and portability was ver-
ified: Linux file systems work on NetBSD and NetBSD
file systems work on Linux.

1 Introduction
Motivation. ”Userspace or kernel?”A typical case of
driver development starts with that exact question. The
tradeoffs are classically well-understood: speed, effi-

ciency and stability for the kernel or ease of program-
ming and a more casual development style for userspace.

The question stems from the different programming
environments offered by the two choices. Even if code
written for the kernel is designed to be run in userspace
for testing, it is often crippled and does not support all the
features. Additionally, such code is frequently cluttered
with #ifdef ’s.

Typical operating system kernels already offer a
plethora of tested and working code just waiting to be
used. An excellent example of this is file system code,
which in the case of most operating systems even comes
with a practical virtual file system [21] interface making
code use independent of the file system type.

By making kernel file system code usable in
userspace, readily available code can be used for free
in applications. We have accomplished this by creating
a shim layer to emulate enough of the kernel to make
it possible to compile, link and run the kernel file sys-
tem code. Additionally, we have created supplementary
components necessary to fully integrate the file system
code with a running system, i.e. mount it as a userspace
file server. Our scheme requires no modification to pre-
existing kernel file system code and therefore no added
maintenance costs for supported file systems.

We define arump, or Runnable Userspace Meta Pro-
gram, to be kernel code used as part of a userspace
program. Specifically, a rump file system is kernel file
system code running in a userspace application or as a
userspace file server.
Userspace file systems.While this paper touches file
systems in userspace, it is by no means a paper about
userspace file system frameworks. Userspace file sys-
tem frameworks provide two things: a programming in-
terface for the file server to attach to and a method for
transporting file system requests in and out of the ker-
nel. This paper explores running kernel file system code
as an application in userspace. Our approach requires a
userspace file system framework only in case mounting
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the resulting rump file system is desired. The choice of
the framework is mostly orthogonal. We chose puffs [19]
because it is the native solution on NetBSD. Similarly,
would the focus of implementation have been for exam-
ple Linux or Windows NT, the choice could have been
FUSE [2] or FIFS [8], respectively.

Results. NetBSD [5] is a free, 4.4BSD derived OS run-
ning on over 50 platforms and used in the industry espe-
cially in embedded systems. A real world usable imple-
mentation for NetBSD, already integrated into the main
source tree, has been done.

The following NetBSD kernel file systems have been
tested to be usable in userspace without source modifi-
cations: cd9660, EFS, Ext2fs, FFS, HFS+, LFS, MS-
DOSFS, NTFS, puffs, SysVBFS, tmpfs, and UDF. After
creating the initial support for FFS, support for additional
file systems required at minimum nothing and at most
small tweaks. The only major real file system not cur-
rently supported is NFS, as it requires a lot of additional
support from the kernel networking subsystem.

Additionally, a quick prototype of a similar system for
the Linux kernel has been implemented. Under it, the
jffs2 [31] journalling file system from the Linux kernel
is mountable as a userspace server on NetBSD. There is
no reason other Linux file systems could not work using
the same scheme, but as jffs2 is a reasonably simple file
system, some extra work would be required to support
them.

Contributions. This paper shows that it is possible and
desirable to use pre-existing kernel file system code in
userspace. The new contribution is theuse of kernel file
system code in userspace applications. In the quest for
microkernel operating systems, the useful possibility of
treating kernel code as a programming library resource
instead of a kernel resource has been completely ignored.

While not strikingly novel, the paper also describes a
way to make a monolithic style kernel operate like a mul-
tiserver microkernel. However, in contrast to previous
work, it gives the user the choiceof micro- or monolithic
kernel operation, thereby avoiding the need to get into
the whole microkernel performance discussion.

The paper also shows it is possible to use kernel code
in userspace on top of a POSIX environment irrespec-
tive of the kernel platform the code was originally writ-
ten for. This paves way to thinking aboutkernel modules
as reusable operating system independent components.

Paper organization. The rest of this paper is organized
as follows: Chapter 2 deals with issues related to the ar-
chitecture. Some major details in the implementation are
discussion in Chapter 3. The work is measured and eval-
uated in Chapter 4. Chapter 5 surveys related and prior
work and finally Chapter 6 concludes and envisions fu-
ture work.

2 Architecture
Before going into details about the architecture of the
implementation, let us recall how file systems are imple-
mented in a monolithic kernel such as NetBSD or Linux.

• The well-known interface through which the file
system is accessed is known as the virtual file sys-
tem interface [21]. It provides virtual nodes,vn-
odes, as abstract objects for the kernel to access files
independent of the file system type.

• To access the file system backend, the file system
implementation uses the necessary routines from
the kernel. These are for example the disk driver
for a disk-based file system such as ffs [23], the
network for nfs or the virtual memory subsystem
for tmpfs [29]. Access is usually done through the
buffer cache.

• To maximize file content caching and provide for
memory mapped I/O, a modern operating system
is very heavily tied to the virtual memory subsys-
tem [28]. In addition to the pager’s get and put rou-
tines, various supporting routines are required. This
integration also provides the page cache.

• Finally, a file system uses various kernel services.
Examples range from a hashing algorithm to timer
routines and memory allocation.

If the reuse of file system code in userspace is desired,
all of these interfaces must be provided in userspace. As
most parts of the kernel do not have anything to do with
hardware but rather just implement algorithms, they can
be simply compiled and linked to a userspace program.
We call such codeenvironment independent(EI). On the
other hand, for example device drivers, scheduling rou-
tines and CPU routines areenvironment dependent(ED)
and must be reimplemented.

2.1 Kernel and Userspace Namespace
To be able to understand the general architecture, it is
important to note the difference between the names-
paces defined by the C headers for kernel and for user
code. Selection of the namespace is usually done with
the preprocessor, e.g.-D KERNEL. Any given module
must becompiledin either the kernel or user namespace.
However, after compilation the modules from different
namespaces can belinkedtogether, assuming that the ap-
plication binary interface (ABI) is the same.

Code cannot use both namespaces simultaneously due
to collisions. For example, on a BSD-based system libc
malloc () takes one parameter while the kernel interface
takes three. Trying to declare both variants will cause
C compilation to fail. To solve the problem, we iden-
tify components which require the kernel namespace and
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Figure 1: rump File System Architecture

components which require the user namespace and com-
pile them as separate compilation units. We let the linker
handle unifying them.

The issue is even more severe if we wish to use rump
file systems foreign platforms. We cannot depend on
anything in the NetBSD kernel namespace to be avail-
able on other systems. Worse, we cannot even include
anything from the NetBSD kernel namespace in appli-
cations on other platforms, since it will create conflicts.
For example, think what will happen if an application
includes both the native and NetBSD<sys/stat.h> .
Therefore, rump itself provides a namespace which ap-
plications can use to make calls to the kernel namespace.
For example, the kernel vnode operationVOPREAD() is
available under the nameRUMPVOPREAD().

2.2 Component Overview
The architecture of the framework is presented in Fig-
ure 1 using three different cases to illuminate the situ-
ation. Analogous parts between the three are signaled.
The differences are briefly discussed below before mov-
ing to further dissect the components and architecture.
Regular File System(case 0). For comparison, ”Regular
File System” shows the architecture relevant to running
a file system in the kernel.
Mounted rump File System Using puffs(case 1). From
the application perspective, a mounted rump file system
looks and behaves like the same file system code running
in the kernel. The NetBSD userspace file systems frame-
work, puffs [19], is used to attach the file system to the

kernel virtual file system.
Standalone rump File System Using ukfs(case 2). A
standalone rump file system is not mounted into the nor-
mal file system namespace. Rather, applications use a
special programming interface to mount and access the
file system. While this requires specially crafting ap-
plications to access the file systems, it allows complete
freedom for the applications, including the ability to spe-
cially target some certain file system and make calls past
the virtual file system abstraction. Such a scheme is use-
ful for example in very fine-grained testing.

2.3 The File System Code Itself
Kernel file systems are obviously kernel code. The com-
pilation process itself, though, is like building a normal
userspace library. The end result is a library of kernel
file system code ready to be linked into a binary. The
ABI of the library is regrettably currently not precisely
equal to a kernel module, as we provide a userspace ver-
sion of a few architecture dependent data structures. If
the ABI were the same with the kernel, a file system ker-
nel module could be used directly instead of requiring a
separately compiled library.

2.4 librump
The interfaces required by a file system were classified
in the beginning of Chapter 2. The component to pro-
vide these interfaces in the absence of the real kernel is
librump. It emulates enough of the kernel environment
for the file system code to be able to run.
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Figure 2: Examples ofrumpuserinterfaces

int rumpuser_gettimeofday(struct timeval * tv,
int * error);

ssize_t rumpuser_pread(int fd, void * buf,
size_t bufsize, off_t offset, int * error);

int rumpuser_thread_create(void * ( * f)(void * ), void * );

void rumpuser_mutex_enter(struct rumpuser_mtx * );

Table 1: rump library size analysis
Component # of lines

rumpuser 432
rumpkern (ED) 3099
std kern (EI) 19017

puffs (kernel) 3411
FFS 14912

2.4.1 Internal Division

librump is conceptually kernel code: it emulates the ker-
nel proper. However, to successfully emulate the ker-
nel in userspace, it must be able to make calls to certain
interfaces in the user namespace, such as the read and
write system calls used for accessing the file system im-
age. The parts which make these calls cannot be com-
piled in the kernel namespace for reasons discussed in
Chapter 2.1.

We split librump into two portions:rumpkernand
rumpuser. rumpkern contains routines implementing the
kernel interfaces, while rumpuser provides bridge inter-
faces to call interfaces in application namespace. rum-
puser is used only by rumpkern and a means to defeat
the namespace problem.

Figure 2 lists some example routines provided by the
rumpuser. There are currently two main classes of calls
provided by rumpuser: system calls and threading library
calls. Additionally, some support calls such as memory
allocation are provided.

A convenient observation is to note that the file sys-
tems only call routines within themselves and interfaces
in our case provided by rumpkern. rumpkern only calls
routines within itself, the file system (via callbacks) and
rumpuser. Therefore, by closure, this makes rumpuser
the component defining the portability of a rump file sys-
tem. Since rumpuser is only a handful of calls and apart
from diagnostic routines uses POSIX functionality, the
portability of the system is very high.

2.4.2 Development Approach

As maintainability is an issue, we want to write as lit-
tle code for librump as possible - kernel interface imple-
mentations which are duplicated in librump need to be

modified if the kernel interface changes. The strategy is
to identify environment independent modules from the
kernel sources and compile them into librump directly.

The decision between environment dependent and in-
dependent modules is left to the implementor. How-
ever, the trend during development has been to increase
the amount of code compiled directly from the kernel
sources. It is likely that specifically-written code will
diminish even more over time once solutions to the re-
maining problems become clearer and environment in-
dependent code suitable both for rumps and the kernel is
created.

See Table 1 for a rough idea on how much code had
to be written (rumpuser and rumpkern) and how much
could be compiled directly from the kernel sources. The
count is measured without comments or empty lines. The
Fast File System and puffs are included for comparison
to put us on the map about code size. While the num-
ber of code lines implemented for rump seems modest, it
should be remembered that the real challenge is to keep
the amount of reimplemented lines down and therefore
maintainability up. The subject of code size will also be
revisited in Chapters 4.3 and 4.5.

2.5 libp2k

Mounted rump file systems build upon the functionality
provided by the NetBSD native userspace file systems
framework, puffs [19]. We rely on two key features. The
first one is transporting file system requests to userspace,
calling the file server, and sending the results back to the
kernel. The second one is the cleanup of an abruptly
unmounted file system, such as in the case of a file server
crash. The latter prevents any kernel damage in the case
of a misbehaving file server.

puffs provides an interface for implementing a
userspace file systems. While this interface is clearly
heavily influenced by the virtual file system interface,
there are multiple differences. For example, the ker-
nel virtual file system identifies files by astruct
vnode pointer, whereas puffs identifies files using a
puffs cookie t value. Another example of a param-
eter difference is thestruct uio parameter. In the
kernel this is used to inform the file system how much
data to copy and in which address space. puffs passes
this information to the read interface as a pointer where
to copy to along with the byte count - the address space
would make no difference since a normal userspace pro-
cess can only copy to addresses mapped in its vmspace.
In both cases the main idea is the same, although the de-
tails differ.

The p2k, or puffs-to-kernel, library is our request
translator between the puffs userspace file system inter-
face and the kernel virtual file system interface. It also
interprets the results from the kernel file systems and
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Figure 3:p2k node read () Implementation

int
p2k_node_read(struct puffs_usermount * pu,

puffs_cookie_t opc, uint8_t * buf,
off_t offset, size_t * resid,
const struct puffs_cred * pcr, int ioflag)

{
kauth_cred_t cred;
struct uio * uio;
int rv;

cred = cred_create(pcr);
uio = rump_uio_setup(buf, * resid,

offset, RUMPUIO_READ);
VLS(opc);
rv = RUMP_VOP_READ(opc, uio, ioflag, cred);
VUL(opc);

* resid = rump_uio_free(uio);
cred_destroy(cred);

return rv;
}

converts them back to a format that puffs understands.
To receive requests from puffs for vfs translation, p2k
pretends to be a file system and registers itself to puffs.

To give an example of p2k operation, we discuss read-
ing a file. This is illustrated by Figure 3, which includes
the full p2k read routine. We see the uio structure created
by rump uio setup () before calling the vnode oper-
ation and freed after the call while saving the results.
We also notice the puffs credit type being converted to
the kauthcred t type used in the kernel. This is done
by the p2k library’scred create () routine, which in
turn usesrump cred create (). TheVLS() andVUL()
macros in p2k to deal with NetBSD kernel virtual file
system locking protocol. They take a shared (read) lock
on the vnode and unlock it, respectively.

Mount utilities

Standard kernel file systems are mounted with utilities
such asmount efs , mount ffs , mount tmpfs , etc.
These utilities parse the command line arguments and
call themount () system call to attach the file system as
a part of the operating system namespace.

Our equivalent mountable rump file system counter-
parts are calledrump efs , rump ffs , rump tmpfs ,
etc. To maximize system integration and minimize dif-
ferences with the counterparts, these utilities share the
same command line argument parsing code with the
mount utilities and therefore have the same syntax - this
makes usage interchangeable. The rump utilities attach
the file system via p2k and puffs.

2.6 libukfs
The ukfs, or user-kernel file system, library provides
a standalone approach to using kernel file systems in
userspace (Case 2 from Figure 1). It does not mount the
file system as a part of the running operating system’s

Figure 4: Examples of ukfs interfaces

struct ukfs * ukfs_mount(const char * vfstype,
const char * devpath,
const char * mntpath, int mntflags,
void * arg, size_t arglen);

int ukfs_modload(const char * libpath);

ssize_t ukfs_read(struct ukfs * u, const char * file,
off_t off, uint8_t * buf, size_t bufsize);

int ukfs_rmdir(struct ukfs * u, const char * dir);

directory namespace, but provides file system access via
ukfs library calls instead of system calls. While this
means that applications need special support for ukfs,
there is no need for file system kernel support on the ap-
plication host platform.

Two classes of interfaces are provided by libukfs, and
two interfaces from each class are shown in Figure 4.
Both classes are discussed below:
Initialization. For a file system to be usable, it must
be mounted. The mount routine returns a pointer han-
dle of typestruct ukfs which is passed to all other
calls. This handle is analogous to the mountpoint path in
a mounted file system.

Additionally, routines for dynamically loading file
system libraries are provided. This is similar to loading
kernel modules, but since we are talking about userspace,
dlopen () is used and the file system module attach
method is called. This facilitates creating and shipping
applications independent of what file systems they sup-
port, provided of course that they only use interfaces
above the virtual file system layer.
File system access.Accessing file system images is
done with calls in this class. Most calls have an interface
similar to system calls, but as they are all self-contained
calls, all interfaces take a filename instead of for example
requiring a separate open before passing a file descriptor
to a call. The rootpath is the root of the mounted file
system, but the library provides tracking of the current
working directory, so passing non-absolute paths is also
possible.

If an application wishes to make lower level calls for
performance or granularity reasons, it is free to do so
even if it additionally uses ukfs routines.

3 Implementation
Most of the details in implementation can be resolved
with creative hacking and knowledge about the kernel
file system and virtual memory internals. This section
deals with major interests in the implementation. While
the discussion is written with NetBSD terminology, it at-
tempts to take into account the general case with all op-
erating systems.
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3.1 System Calls
As mentioned when discussing ukfs in Chapter 2.6, the
ukfs interface is very similar to the system call interface.
While the backend of each call is handled by the file sys-
tem, in the kernel the system call entry points perform
various tasks before calling the vfs interfaces. For ex-
ample, themkdir () system call does a lookup for node
to be created and callsVOPMKDIR() only if the desired
node does not already exist.

A reimplementation of the kernel syscall entrypoints
for file system calls was initially attempted. While it
was possible to do so, getting all the error handling done
exactly correctly proved to be a challenge. Therefore a
scheme to use the kernel system call entry points directly
was crafted.

In NetBSD, parts of the system call code are autogen-
erated from a master table. This is done for the benefit of
e.g. automatic argument marshalling and demarshalling.
We used this autogenerator to our advantage by mark-
ing system calls relevant to rump with ”RUMP” in the
master table and then edited the code generator script
to create entry points for rump. As a result, the inter-
facerump sys syscall () performs the same tasks as
syscall (), but instead of trapping to the kernel, makes
only a function call to librump. For example, calling
rump sys pread () does the same aspread () from
a normal application (and of courserump sys open ()
must be called first get a valid file descriptor for use in
the call).

3.2 Locking and Multithreading
File systems make heavy use of locking to avoid data cor-
ruption. Most file systems do not create separate threads,
but use the context of the requesting thread to do the op-
erations. In case of multiple requests there may be multi-
ple threads in the file system and they must synchronize
access. Still, some file systems create explicit threads,
e.g. for garbage collection.

To support multithreaded file systems in userspace, we
have four different issues to solve: locks, threads, in-
terrupt priority level and legacy interfaces. The stan-
dard userspace library for supporting these routines
is libpthread, so we map the kernel counterparts to
libpthread.
Locks and condition variables. The primitives in
NetBSD are modeled closely after the ones in So-
laris [22]. There are three different classes: mutexes,
rwlocks and cv’s. These map almost directly to pthread
interfaces. The only differences are that the kernel rou-
tines are typically of typevoid while the pthread rou-
tines return a success value. However, as getting an error
from e.g.pthread mutex lock () means a program-
ming error such as trying to lock a mutex already locked
by the calling thread, failures can be handled by asserts.

Threads. The kernel provides interfaces to create and
destroy threads. Apart from some esoteric arguments
such as binding the thread to a specific CPU, which we
ignore, the kernel thread interfaces can be emulated di-
rectly by mapping to a pthread library call.
Interrupt priority level. Interrupt priority level is
a monitor-type synchronization mechanism used espe-
cially in non-preemptive uniprocessor kernels to mask
CPU interrupts during critical sections. NetBSD allows
fine-grained control over which levels to disable and still
uses the facility to some degree, although with MP ker-
nels other locking is also required to protect critical sec-
tions from processors not running in interrupt context.

We map interrupt priority levels to pthread rwlocks.
Raising the interrupt priority level is a per-CPU opera-
tion and is mapped to a read lock. This way multiple
threads can ”mask” the same interrupts simultaneously,
and a single thread can raise the ipl multiple times. An
”interrupt” is issued when a read or write operation on
the storage device completes. This takes a write lock and
therefore makes sure that no threads are currently exe-
cuting in the critical section.
Legacy interfacesA historic BSD interface still in use
in some parts of the kernel istsleep (). It is a facil-
ity for waiting for events and maps to pthread condition
variables.
Observations. It is clear that the NetBSD kernel and
pthread locking and threading interfaces are very close to
each other. However, there are minimal differences such
as the naming and of course under the hood the imple-
mentations are different. Providing a common interface
for both [12] would be a worthwhile exercise in engineer-
ing for a platform where this was not considered initially.

3.3 puffs as a rump file system.
Using rump, puffs can be run in userspace on top of
rump and a regular userspace file system on top of it. At
first thought, running the kernel portion of a userspace
file system framework in userspace sounds like a weird
curiosity. However, upon closer examination, it gives
the benefit of being able to access any file system via
ukfs, regardless of whether it is a kernel file system or
a userspace file system. Since puffs provides emulation
for the FUSE interface as well, any FUSE file system
is usable through the same interface too. For instance, a
utility which lists the directory tree of a file system works
regardless of if the file system is the NetBSD kernel FFS
or FUSE ntfs-3g.

Naturally, it would be possible to call userspace file
system interfaces from applications without a system as
complex as rump. However, since we already do have
rump, we can provide totalintegration for all file sys-
tems with this scheme. It would be entirely possible to
make ukfs use different callpaths based on the type of

6



Figure 5: Userspace File Servers with rump
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file system used. However, that would require protocol
conversion in ukfs to e.g. FUSE. Since the puffs stack al-
ready speaks all the necessary protocols, it is much more
elegant to run everything through it.

We assume userspace file servers are precompiled bi-
naries and do not require any modification to them.
Rather, we use a model with two processes. The
userspace file server is executed in a separate process and
operates completely normally. However, instead of re-
ceiving requests from the kernel it actually receives them
from the application process. This is illustrated in Fig-
ure 5. The result is the ability run binary userspace file
servers as rump file systems.

3.4 Installation

rump is installed for userspace consumers as libraries.
There are a number of separate libraries: librump (rump-
kern), librumpuser (rumpuser), libukfs, libp2k, and fi-
nally all the individual file system libraries, e.g. li-
brumpfsefs, librumpfsntfs and so forth.

Since the kernel environment is constantly in a flux,
the standard choice of bumping the major library version
each time the ABI changes did not seem reasonable - it
would require a library ABI bump for every kernel ABI
change. Instead, currently the compatibility between li-
brump and the file system libraries is handled exactly like
for kernel modules: both librump and the file system li-
braries are embedded with the ABI version they were
built against. When a file system library is attached to
librump, the versions are compared, and if incompatible
the attach routine returnsEPROGMISMATCH.

3.5 Foreign Platforms
Different kernel version. An interesting implication of
rump file systems is the ability to mount file systems for
a different kernel version. While it is possible to load
and unload kernel modules on the fly, they are closely
tied by the kernel ABI. Since a rump file system is a
self-contained userspace entity, it is possible to use a file
system from a newer or older kernel or even mix-and-
match. Reasons include taking advantage of a new file
system feature without having to reboot or avoiding a bug
present in newer code.

NetBSD rumps on Linux. Running NetBSD rumps
on Linux means using NetBSD kernel file systems on a
Linux platform. As Linux does not support puffs, libp2k
cannot be used. A port to FUSE would be required. De-
spite this, the file system code can be used via ukfs and
accessing a file system image using NetBSD kernel code
on Linux has been verified to work. A notable fact is that
structures are returned from ukfs using the ABI from the
file system, e.g.struct dirent is in NetBSD format
and must be interpreted by callers as such. A platform
independent format for ukfs may be devised later.

Linux kernel file systems on NetBSD.Running Linux
kernel file systems on NetBSD is interesting because
there are several file systems written against the Linux
kernel which are not available natively in NetBSD or in
more portable environments such as userspace via FUSE.
Currently, our prototype Linux implementation supports
only jffs2 [31]. This file system was chosen as the initial
target because of its relative simplicity and because it has
a potential real-world use case in NetBSD, as NetBSD
lacks a wear leveling flash file system.

An emulation library targeted for Linux kernel inter-
faces, lump, was written from scratch. In addition, a
driver emulating the MTD flash interface used by jffs2
for the backend storage was implemented.

Finally, analogous to libp2k, we had to match the in-
terface of puffs to the Linux kernel virtual file system
interface. The main difference was that the Linux ker-
nel has thedcachename cache layer in front of the
virtual file system nodes instead of being controlled
from within each file system individually. Other tasks
were mostly straightforward, such as converting the
struct kstat type received from Linux file systems
to thestruct vattr type expected by puffs and the
NetBSD kernel.

ABI Considerations. Linking code compiled with the
NetBSD kernel headers to code compiled with Linux
headers is technically not legal. There are no guaran-
tees that that the application binary interfaces for both are
identical and will therefore work when linked together.

The only problem that was discovered when testing on
i386 hardware was related to theoff t type. On Linux,
off t is 32bit by default, while it is always 64bit on
NetBSD. Making the type 64bit on Linux made every-
thing work.

4 Evaluation

To evaluate the usefulness of rump and rump file sys-
tems, we discuss them from the perspectives of security,
development uses, the maintenance cost of rump, perfor-
mance, and application use. We also estimate the dif-
ferences between a rump environment and a real kernel
environment and the impact of the differences.
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4.1 Security
General purpose OS file systems are commonly written
assuming that the file system image to be mounted con-
tains trusted input. While this was true a long time ago,
in the age of USB sticks and DVDs it no longer holds.
Still, almost all users mount untrusted file systems us-
ing kernel code. Even the Linux manual page for mount
warns: ”It is possible for a corrupted file system to cause
a crash”. This is trivial to observe by mounting a suitably
corrupted file system.

However, we suspect that the problem is more severe
and that by carefully crafting a file system image for the
machine to be attacked, a security attack beyond a simple
denial-of-service could be mounted.

Using the approach described in this paper, the file
system code dealing with the untrusted image is isolated
in its own domain, thus mitigating the possibility for at-
tack. As was seen in Table 1, the size difference be-
tween a real kernel file system and the kernel portion of
a userspace file system is considerable, about five-fold.
Since an OS usually supports more than one kernel file
system, the code size difference in reality is much higher.

To give an example of a useful scenario, a recent
NetBSD mailing list posting described a problem with
mounting a FAT file system from a USB stick causing a
kernel crash. By using a mountable rump file system, this
problem with untrusted input would have been reduced
to an application core dump. The problematic image was
received from the reporter and problem in the kernel file
system code was debugged and dealt with - using rump.

golem> rump_msdos ˜/img/msdosfs.img /mnt
panic: buf mem pool index 23
Abort (core dumped)
golem>

4.2 Development and Debugging
Anyone who has ever done kernel development knows
that the kernel is not the most pleasant environment for
debugging and iteration. A common approach is to first
develop the algorithms in userspace and later integrate
them with the kernel environment. However, this adds
an extra phase to development.

The following items attempt to capture ways in which
the method described in this paper is superior to any sin-
gle preexisting method.

• no separate development cycle: There is no need
for a separate userspace development cycle before
writing kernel code.

• same environment: userspace operating systems
and emulators boot the operating system to a sep-
arate environment. Migrating for example applica-
tions (e.g. OpenOffice or Firefox) and network con-
nections there is challenging. Since rump integrates

as a mountable file system on the development host,
this problem does not exist.

• no bit-rot : There is no maintenance cost for case-
specific userspace code because it does not exist.

• short test cycle: The code-recompile-test cycle
time is very short and a crash results in a core dump
and inaccessible files, not a kernel panic and total
application failures.

• userspace tools: Userspace dynamic analysis tools
such as Valgrind [25] can be used to instrument the
code. A normal userspace debugger can be used.

• complete isolation: Changing interface behavior
for e.g. fault and crash injection [18, 26] purposes
can be done without worrying about bringing the
whole system down.

As an example, support for allocation of an in-fs jour-
nal was added to the NetBSD ffs journalling solution re-
cently. The author, Simon Burge, used rump and ukfs for
development. He described the process thusly: ”Instead
of rebooting with a new kernel to test new code, I was
just able to run a simple program, and debug any issues
with gdb. It was also a lot safer working on a simple file
system image in a file.” [7].

Another benefit is rapid prototyping. One of the
reasons for implementing the log-structured file system
(LFS) cleaner in userspace on 4.4BSD was the ability to
easily try different cleaning algorithms [27]. Using rump
file systems it is easy to prototype and test different algo-
rithms without having to increase implementation com-
plexity by requiring an additional component in a differ-
ent domain. Notably, if the code is written so that it as-
sumes the cleaner in a different domain, the complexity
remains in place even when not performing development.
With rump file systems the algorithms can be run purely
in a single domain once they have been developed and
tested to work.

Although it is impossible to measure the ease of de-
velopment by any formal method, we would like to draw
the following analogy about the convenience of devel-
opment: kernel development on real hardware is to us-
ing emulators as using emulators is to developing as a
userspace program.

Differences between environments

rump file systems do not duplicate all corner cases ac-
curately with respect to the kernel. For example, Zhang
& Ghose [33] list problems related to flushing resources
as the implementation issues with using BSD VFS. The-
oretically, the flushing behavior can be different if the
file system code is running in userspace, and therefore
some bugs might be left unnoticed. On the flip-side, the
potentially different behavior might expose bugs other-
wise very hard to detect when running in the kernel. The
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Table 2: Commit analysis for rump source tree
Total commits (HEAD) 336
Unique committers 30
Build fixes 14 (4.1%)
Functionality fixes 5 (1.5%)

framework does not obviously possess exactly the same
timing properties and intricacies as the real kernel envi-
ronment. Our position is that this is not a huge issue.

Differences can also be a benefit. Varying usage
patterns can expose bugs where they were hidden be-
fore. For example, the recent NetBSD problem report
kern/38057 described a FFS bug which occurs when the
file system device node is not on FFS itself, e.g. /dev on
tmpfs. Commonly, /dev is on FFS, so regular use did not
trigger the problem. However, since this does not hold
when using FFS through rump, the problem is triggered
more easily.

4.3 Maintaining rump in NetBSD
As rump implements environment dependent code in
parallel with the rest of the kernel, the implementation
needs to keep up with the changing kernel interfaces.
There are two kinds of possible breakage: the kind result-
ing in compilation failure and the kind resulting in non-
functional compiled code. The statistics in Table 2 have
been collected from version control logs from the period
August 2007 - September 2008, during which rump has
been part of the official NetBSD source tree. The num-
ber of commits represents the number of changes to the
main branch. Counting all branches, the number is over
double.

The number of build fixes is calculated from the
amount of commits that were done after the kernel was
changed and rump not build anymore as a result. For ex-
ample, a file system being changed to require a kernel
interface not yet supported by rump is this kind of fail-
ure. Commits, where the rump tree was patched along
with the kernel proper were not counted in with this fig-
ure.

Similarly, functionality fixes include changes to kernel
interfaces which prevented rump from working, in other
words the build worked but running the code failed. Reg-
ular bugs were not counted in with this, only changes
related to other kernel changes.

Unique committers represents the number of people
from the NetBSD community who committed changes
to the rump tree. The most common case was to keep up
with changes in other parts of the kernel.

Based on our observations, the most important factor
in keeping a system such as rump functional in a chang-
ing kernel is educating developers about its existence and
how to test it. Initially there was a lot of confusion about

Figure 6: Lines of Code History
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how to test build rump, but things have since gotten bet-
ter and breakage has become less frequent.

While examining Table 2, it should be kept in mind
that over the same period of time the NetBSD kernel un-
derwent very heavy restructuring to better support mul-
tiprocessor architectures. As it was the heaviest set of
changes over the past 15 years, the data should be con-
sidered ”worst case” instead of ”typical case”.

For an idea of how much code there is to maintain,
Figure 6 analyses the number of lines of code monthly
for the period the rump framework has been integrated
into NetBSD. The count is again without empty lines or
comments.

Over a year, the number of lines of environment de-
pendent code (rumpkern + rumpuser) has gone up from
1443 to 3531 (245%) while the number of code lines
used directly from the kernel has gone up from 2894 to
19017 (657%). Features have been added, but much of
this has been done with environment independent code.
Not only does this reduce code duplication, but it makes
rump file systems behave closer to kernel file systems on
a detailed level.

4.4 Performance
The goal of this work is not to advance state-of-the-art in
microkernel performance - we can still use the file sys-
tem as part of a monolithic kernel if performance is the
paramount criterion. The purpose of these measurements
is to show that performance is at a level which can be
considered usable.

To measure the performance of rump, we chose to
modify the Postmark [20] benchmark to use the ukfs
interface. This approach was chosen instead of bench-

9



Figure 7: Postmark, all operations
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marking the transparently mounted case to avoid measur-
ing the performance of puffs instead of the performance
of rump.

The conversion of Postmark was done in a straightfor-
ward fashion simply by replacing calls to system calls
with the relevant ukfs call, e.g.rmdir () was replaced
with ukfs rmdir (). However, since the ukfs interface
is more about convenience than performance, it was op-
timized slightly. For instance, sinceukfs write () in-
ternally opens a file, writes to it and closes it, calling it
multiple times in a row is inefficient. Rather, the rump
system calls to open a file, write to it multiple times and
finally close it were used.

To establish a reference, the regular unmodified Post-
mark was run with the same parameters on the same file
system using a mounted file system running in the kernel.
This run was performed with the stdio buffering option
of Postmark turned off.

Two file systems were tested. The FFS tests were done
on a hard drive partition, while msdosfs (FAT) was run
on a USB stick flash backend. Async rump means that
forced flushes were disabled and is explained further be-
low. The results are presented in Figure 7.

To understand the results, the conceptual difference
between the normal case and the rump case is illus-
trated in Figures 8 and 9. An in-kernel file system has
much more control over how it flushes its buffers. In
userspace on NetBSD we only have three device opera-
tions available: read, write and full cache flush (fsync).
Basic FFS [23] depends heavily on synchronous meta-
data writes for correct operation. The kernel can flush

Figure 8: Kernel File System
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only the buffers it desires, while if data writes are inter-
mingled with metadata writes, every metadata flush from
userspace demands the flush of all outstanding buffers.
The slowdown of flushes is evident from the speed dif-
ference to async mode, where no forced flushes happen
during operation. The FAT implementation does not use
synchronous writes as heavily, and therefore the speed
difference is much more modest.

Also, a single file system operation requires numer-
ous disk operations. For example, extending a file must
read the file inode, search for free space, allocate the free
space, update the inode and write the data.

Part of the performance gap could be addressed by
adding an additional interface to userspace to better be
able to control the syncing of writes. Also, currently the
rump disk driver flushes all writes one-by-one. Pooling
them is more efficient. However, as we see performance
acceptable for our purposes, this is not a high priority
task.

4.5 Use in Applications

System utilities. Many userspace applications dealing
with file systems reimplement functionality necessary for
understanding the file system. For instance, thefsckpro-
gram needs to understand the on-disk layout in order to
be able to repair a damaged file system. The kernel code
naturally understands the on-disk layout and also pro-
vides routines for accessing it. But since kernel code
was historically not available in userspace, this function-
ality was in part reimplemented in a form suitable for
userspace. The result is of course functionality duplica-
tion and added maintenance load.

The list of userspace programs using code from the ffs
codebase and therefore requiring an application-specific
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Figure 10: Binary code size comparison

size

kB

0

100

200

300

400

500

600

700

objs bins rump ffs

reimplementation of some functionality is:badsect, clri ,
dump, dumpfs, fsck ffs, fsdb, fsirand, newfs, quotacheck
and tunefs. Additionally, themakefs[24] utility, which
creates a file system image from a given directory tree,
uses hand modified kernel file system code. Reimple-
mentation using ukfs would make the utility work using
standard, unmodified kernel code.

The only downside for using rump instead of code
hand adjusted for userspace is the size difference. A
comparison for the ffs file system is presented in Fig-
ure 10.

The figure ”objs” represents the combined size of ffs
binary objects from the compilation directories above
mentioned utilities, while ”bins” is the combined result-
ing binary sizes. The true amount of binary code size for
userspace reimplementation is somewhere between these
two. The relevant rump libraries (rumpkern, rumpuser,
ukfs) are represented by ”rump” and the ffs file system
size is represented by ”ffs”.

While the size increase of a few hundred kilobytes
seems unnoteworthy these days, for some embedded sys-
tem manufacturers it is unacceptable. One idea is to try
to use binary code from the file system kernel module
instead of requiring a separate binary library. Unfortu-
nately, this will not benefit scenarios where the boot ker-
nel is stored in a location inaccessible at runtime.
File system applications. The best-known application
suite for dealing with file system images is probably
mtools [4]. It enables to access and modify FAT file
systems purely from a userspace application without any
kernel support. Additionally, since FAT was commonly

used on floppy disks, which usually were less than reli-
able, a kernel mount could easily hang or crash the sys-
tem.

However, mtools implements support only for FAT. As
the rump suite is file system independent, a set of utili-
ties which work on all supported kernel file systems can
be done. The fs-utils [32] project provides a plethora of
utilities which behave like standard Unix utilities, but ac-
cess file system images by means of ukfs. Examples of
utilities provided by fs-utils arefsu ls , which lists the
contents of an image andfsu touch , which modifies
a file’s timestamp while creating it if it does not already
exist.

5 Related Work

The Alpine [13] network protocol development infras-
tructure provides an environment for running kernel code
in userspace. It is implemented before the system call
layer by overriding certain libc symbols and is run in the
same process context as an application. This approach
both makes it unsuitable for statically linked programs
and creates difficulties with shared global resources such
as theread ()/write () calls used for I/O beyond net-
working. Furthermore, from a file system perspective,
this kind of approach shuts out kernel-initiated file sys-
tem access, e.g. NFS servers.

Rialto [12] is an operating system with a unified inter-
face both for userspace and the kernel making it possible
to run most code in either environment. However, this
system was designed from ground-up that way. Inter-
esting ideas include the definition of both internal and
external linkage for an interface. While the ideas are in-
spiring, we do not have the luxury to redo everything.

Mach is capable of running Unix as a user pro-
cess [15]. Lites [16] is a Mach server which can run a
wide variety of binaries from different Unix flavors at
the same time. It is is based on the 4.4BSD Lite code
base. Debugging and developing 4.4BSD file systems
under Mach/Lites is possible by using two Lites servers:
one for running the debugger and one running the file
system being developed, including applications using the
file system. If the Lites server being debugged crashes,
applications inside it will be terminated. Being a sin-
gle server solution, it does not provide isolation from the
trusted computing base, either. A multiserver microker-
nel such as SawMill [14] addresses the drawbacks of a
single server, but does not permit a monolithic mode or
use of the file system code as an application library.

Operating systems running in userspace, such as User
Mode Linux [11], make it possible to run the entire op-
erating system as a userspace process. The main aims
in this are providing better debugging & development
support and isolation between instances. However, for
development purposes, this approach does not provide
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isolation between the component under development and
the core of the operating system - rather, they both run in
the same process. This results in complexity in, for ex-
ample, using fault injection and dynamic analysis tools.
Neither does a userspace operating system integrate into
the host, i.e. it is not possible to mount the userspace
operating system as a file server. Even if that could be
addressed, booting an entire kernel every time a ukfs ap-
plication is run is a very heavyweight solution.

Sun’s ZFS [6] file system ships with a userspace test-
ing library, libzpool. In addition to some kernel inter-
face emulation routines, it consists of the Data Man-
agement Unit and Storage Pool Allocator components
of ZFS compiled from the kernel sources. The ztest
userspace program plugs directly into these interfaces for
running tests. This approach has several shortcomings
when compared to rumps. First, it does not test the en-
tire file system code architecture, for example the VFS
interface layer. The effort for getting the VFS interface
(in ZFS terms known as theZFS POSIX Layeror ZPL)
right was specifically listed as the hardest part in port-
ing ZFS to FreeBSD [10]. Second, it does not facilitate
userspace testing with real applications because it can-
not be mounted. And third, the test program is specific
to ZFS.

Many projects reimplement file system code for
userspace purposes. Examples include the already ear-
lier mentioned mtools [4] and e2fsprogs [1]. Their func-
tionality provided overlaps that which is readily already
provided by the kernel. Especially e2fsprogs must track
Linux kernel features and perform an independent reim-
plementation.

fuse-ext2 [3] is a userspace file server built on top of
e2fsprogs. It implements an a translator from FUSE [2]
to e2fsprogs. The functionality provided by fuse-ext2
is the same as that if rumpext2fs, but requires specif-
ically written code and maintenance. Similarly, the
ChunkFS [17] prototype is fully mountable, but it is im-
plemented on top of FUSE [2] and userspace interfaces
instead of the kernel file system interface.

Simulators [9, 30] can be used to run traces against
file systems. Thekkath [30] et al go as far as to run
the HPUX FFS implementation in userspace. However,
these tools execute against a recorded trace and do not
permit mounting.

6 Conclusions and Future Work

In this paper we defined and described a Runnable
Userspace Meta Program (rump) framework for using
preexisting kernel file system code in userspace. There
are two different use modes for the framework: the puffs-
to-vfs mode in which file systems are mounted so that
they can be accessed like any other mounted file system,
and a standalone mode in which applications can use file

system routines through the ukfs library interface. The
first mode brings a multiserver microkernel touch to a
monolithic kernel Unix OS, but gives the user the option
of monolithic operation for scenarios where absolutely
maximal performance counts. The second mode enables
reuse of the available kernel code in applications such as
those involved in file system repair and image access.

The NetBSD implementation was evaluated. We dis-
covered that the system has security benefits especially
for file systems on untrusted removable media. It made
debugging and developing kernel file system code easier
and more convenient, but did not require additional case-
specific ”glue code” for making kernel code runnable in
userspace. The issues regarding the maintenance of rump
were examined by looking at a year’s worth of version
control system commits. The build had broken 14 times
and functionality 5 times. These were attributed to the
lack of a proper regression testing facility and developer
awareness. The uses for kernel file system code in appli-
cations were discussed.

The performance of rump file systems was measured
against a standard kernel mount and observed to be dom-
inated by I/O speed, e.g. ffs was 19% slower when us-
ing synchronous metadata writes and 319% faster when
using asynchronous metadata. We found this accept-
able and did not concentrate on optimizing performance,
since, as was already mentioned, the same code can be
run inside the kernel in case performance is key.

Future work will concentrate on making rump file
system libraries and file system kernel modules binary-
equivalent. This will completely defer the choice of ker-
nel or userspace usage until runtime without requiring
two sets of almost equivalent binaries. Further integra-
tion with system utilities such as fsck and makefs will
also be attempted.

As a concluding remark, the technology has shown
real world use and having kernel file systems from ma-
jor open source operating systems available as portable
userspace components would vastly increase system
cross-pollination and reduce the need for reimplemen-
tations. We encourage kernel programmers to not only
to think about code from the classical machine depen-
dent/machine independent viewpoint, but also from the
environment dependent/environment independent per-
spective to promote code reuse.
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