
File system virtual appliances:

Third-party file system implementations without the pain

Blinded for submission

Abstract. File system virtual appliances (FSVAs) ad-

dress a major headache faced by third-party FS devel-

opers: OS version compatibility. By packaging their FS

implementation in a VM, separate from the VM that runs

user applications, they can avoid the need to provide an

FS port for every kernel version and OS distribution. A

small FS-agnostic proxy, maintained by the core OS de-

velopers, connects the FSVA to whatever kernel version

the user chooses. Evaluation of prototype FSVA support

in Linux, using Xen as the VM platform, demonstrates

that this separation can be efficient and maintain desired

OS and virtualization features. Experiments with three

existing FSs demonstrate that the FSVA architecture can

insulate FS implementations from user OS differences

that would otherwise require explicit porting changes.

1 Introduction

Building and maintaining third-party file systems (FSs)

is painful. Of course, OS functionality is notoriously dif-

ficult to develop and debug, and FSs are more so than

most because of their size and interactions with other OS

components (e.g., the virtual memory system). But, for

third-party FSs, which are FSs not explicitly maintained

by the OS implementers as a core part of the OS, there is

an additional rarely-appreciated challenge: dealing with

changes from one OS version to the next.

One would like to believe that the virtual file system

(VFS) layer [21] present in most OSs insulates the FS

implementation from the rest of the kernel, but the re-

ality is far from this ideal. Instead, even when the

VFS interfaces remain constant, internal FS compatibil-

ity rarely exists between one kernel version and the next.

Changes in syntax, locking semantics, memory manage-

ment, and preemption practices create differences that

require version-specific code in the FS implementation.

For “native” FSs supported by the kernel implementers

(e.g., ext2 and NFS in Linux), appropriate corrections

are made in the FS as a part of the new kernel version.

For third-party FSs, however, they are not. As each new

version is released, whether as a patch or a complete re-

placement, the third-party FS maintainers must figure out

what changed, modify their code accordingly, and pro-

vide the new FS version. Because users of the third-

party FS may be using any of the previously supported

User VM

Applications

libc 2.8 (4/2008)

Linux 2.6.25 (4/2008)

F
e
d
o
ra
 9
 (
4
/2
0
0
8
)

FSVA

FS applications

libc 2.3.2 (3/2003)

Linux 2.6.18 (9/2006)

D
e
b
ia
n
 S
a
rg
e

(6
/2
0
0
5
)

OpenAFS 1.5.10 (10/2006)

Hypervisor

Hardware

Figure 1: A file system runs in a VM provided by the third-

party FS vendor. A user continues to run their preferred OS en-

vironment (including kernel version, default distribution, and

library versions). By decoupling the user and FS OSs, one al-

lows users to use any OS environment without needing a corre-

sponding FS port from the FS vendor. This illustrated example

is used as a case study in §5.2.

OS versions, all must be maintained and the code be-

comes riddled with version-specific “#ifdef”s, making it

increasingly difficult to understand and modify correctly.

The pain and effort involved with third-party FSs cre-

ate a large barrier for those seeking to innovate, and

they wear on those who choose to do so. Most re-

searchers sidestep these issues by prototyping in just

one OS version. Many also avoid kernel programming

by using user-level FS implementations, via NFS-over-

loopback (e.g., [6, 8, 25]) or a mechanism like FUSE

(e.g., [5, 16, 37]), and some argue that such an ap-

proach sidesteps version compatibility issues. But, it re-

ally doesn’t. First, performance and semantic limitations

prevent most production FSs from relying on user-level

approaches. Second, and more fundamentally, user-level

approaches do not insulate an FS from application-level

differences among OS distributions (e.g., shared library

availability and file locations) or from kernel-level issues

(e.g., handling of memory pressure). So, third-party FS

developers address the problem with brute force.

This paper promotes a new approach (see Figure 1) for

third-party FSs, leveraging virtual machines to decouple

the OS version in which the FS runs from the OS version

used by the user’s applications. The third-party FS is dis-

tributed as a file system virtual appliance (FSVA), a pre-

packaged virtual machine (VM) loaded with the FS. The

FSVA runs the FS developers’ preferred OS version, with

which they have performed extensive testing and tuning.

The user(s) run their applications in a separate VM, using

their preferred OS version. Because it runs in a distinct

VM, the third-party FS can be used by users who choose

OS versions to which it is never ported.

For this FSVA approach to work, an FS-agnostic proxy

must be a “native” part of the OS—it must be maintained

across versions by the OS implementers. The hope is

that, because of its small size and value to a broad range

of third-party FS implementers, the OS implementers

would be willing to adopt such a proxy. FUSE, a ker-

nel proxy for user-level FS implementations, has been

integrated into Linux, NetBSD, and OpenSolaris, and we

envision a similar adoption path for the FSVA proxy.

This paper details the design and implementation of

FSVA support in Linux, using Xen as the VM platform.

The Xen communication primitives allow for reasonable

performance—for example, an OpenSSH build consis-

tently runs less than 15% slower than over native in-

kernel FSs.1 Careful design is needed, however, to en-

sure FS semantics, maintain OS features like a unified

buffer cache, minimize OS changes in support of the

proxy, and avoid loss of virtualization features such as

isolation, resource accounting, and migration. Our pro-

totype system realizes all of these design goals.

The efficacy of the FSVA architecture is demonstrated

with a number of case studies. Three real file systems

(OpenAFS, ext2, and NFS) are transparently provided,

via an FSVA, to applications running on a different VM,

which can be running a different OS version (e.g., Linux

kernel versions 2.6.18 vs. 2.6.25). No changes were re-

quired to the FS implementation in the FSVA. In con-

trast, analysis of the change logs for these file systems

shows that significant developer effort was required to

make them compatible, in the traditional approach.

2 Supporting third-party FSs

A third-party FS is developed and maintained indepen-

dently of the OS with which it is used. It links into in-

terfaces provided by that OS, after the fact. This section

discusses inter-version compatibility issues arising from

this “third party” approach and mitigation strategies.

2.1 OS version compatibility

Based on customer demand, third-party FS vendors must

port their FS to different OS versions, some of which in-

1By tuning communication, we reduced the overhead to <3% for

both ssh-build and Postmark. We were unable to redo the entire evalu-

ation section in time, but will do so for the final version.

clude changes to internal kernel interfaces. For example,

the Linux kernel’s internal interfaces often change across

minor releases. In addition to kernel-level changes, user-

space environments often differ among Linux distribu-

tions. For example, there is variation in the pre-installed

programs and libraries, file locations, and daemon con-

figuration syntax and locations. While most pronounced

for Linux, with its independent and decentralized devel-

opment process, this problem poses challenges for FS

vendors targeting any OS.

In-kernel FS implementations are tightly coupled to in-

ternal kernel interfaces. FSs must adhere to the VFS in-

terface, in order to present a unified interface to appli-

cations and share common caches [21]. In addition to

the VFS interface, FS implementations depend on inter-

nal memory allocation, threading, networking (for dis-

tributed FSs), and device access (for local FSs) interfaces

and semantics. To support memory mapped file I/O and a

unified buffer cache, FSs are also closely coupled to the

virtual memory subsystem [17]. The result of all these

“extra” dependencies is that, even if the VFS interface

were held constant (which it is not), FS implementations

would still require updates across kernel versions.

To further shed light on these difficulties, we inter-

viewed developers of four third-party FSs: GPFS [31],

OpenAFS (an open-source implementation of AFS [20]),

Panasas DirectFLOW [38], and PVFS [9]. All four FSs

have been widely deployed for many years. We report

their developers’ first-hand experiences with maintaining

the Linux client-side FS code.

Interface syntax changes. The first changes that an FS

developer encounters in a new OS update are interface

syntax changes, due to compilation errors. The following

is a representative list. Many examples were conveyed to

us by these developers, and we gleaned others from look-

ing at OpenAFS and PVFSs’ source control management

systems’ logs. Some examples, with the corresponding

Linux kernel version in parentheses, include:

Callbacks: the vector I/O readv, writev VFS call-

backs were replaced with the asynchronous

I/O aio read, aio write callbacks (2.6.19).

sendfile was replaced by splice (2.6.23).

Virtual memory: the virtual memory page fault han-

dlers, which can be overridden by a file system,

changed interfaces (2.6.23).

Header files: config.h was removed (2.6.19).

Caching: the kernel cache structure constructors’ and

destructors’ parameters changed (2.6.20).

Structures: the per-inode blksize field was removed

(2.6.19). The process task structure no longer con-

tains the thread pointer (2.6.22).

2

While some of these changes may seem trivial, they are

time-consuming and riddle source code with version-

specific #ifdefs that complicate code understanding

and maintenance. Furthermore, every third-party FS

team must deal with each problem as it occurs. Exam-

ination of the open-source OpenAFS and PVFS change

logs shows both FSs contain fixes for these (and many

other similar) issues. We also encountered these issues

while porting our proxy, though as we will discuss, the

proxy is a simpler component than an entire third-party

FS. Moreover, in our envisioned deployment path, proxy

ports would be done once by the OS implementers, rather

than by every third-party FS team.

Policy and semantic changes. Even if interfaces remain

constant across OS releases, implementation differences

can have subtle effects on FSs that are hard to debug. The

following examples illustrate this:

Memory pressure: some RedHat Enterprise Linux 3 ker-

nels are not very robust in low memory situations.

In particular, the kernels’ can block during alloca-

tion despite the allocation flags specifying no block-

ing. This resulted in minutes-long delays in dirty

data writeback under low-memory situations. Red-

Hat acknowledged the semantic mismatch but did

not fix the issue [30]. An FS vendor was forced

to work around the bug by carefully controlling the

number of dirty pages (via per-kernel-version pa-

rameters) and I/O sizes to the data server (thereby

negatively impacting server scalability).

Write-back: Linux uses a write-back control data struc-

ture (WBCDS) to identify dirty pages that should

be synced to storage. An FS fills out this data struc-

ture and passes it to the generic Linux VFS code.

Linux 2.6.18 changed the handling of a sparsely-

initialized WBCDS, such that only a single page of

a specified page range was actually synced. This

caused an FS to mistakenly assume that all pages

had been synced, resulting in data corruption.

Stack size: RedHat distributions often use a smaller ker-

nel stack size (4 K instead of the default 8 K). To

avoid stack overflow, once this was discovered, an

FS implementation used continuations to pass re-

quest state across server threads. Continuations

have been cumbersome for the developers and com-

plicate debugging. This example illustrates how one

supported platform’s idiosyncrasies can complicate

the entire FS, not just the OS-specific section.

Locking: existing inode attribute fields required the in-

ode lock to be held during access, whereas previ-

ously no locking was required.

Radix tree: the kernel provides a radix tree library. A

Linux kernel update required the least significant bit

of stored values be 0 (2.6.20), breaking an FS that

was storing arbitrary integers.

Because the above changes were not documented, each

third-party FS team had to discover them by code analy-

sis and kernel debugging, and then work around them.

Overall statistics. To appreciate the magnitude of the

problem, consider the following statistics. Panasas’s

Linux portability layer supports over 300 configura-

tions2. PVFS developers estimate that 50% of their

maintenance effort is spent dealing with Linux kernel is-

sues. The most frequently revised file in the OpenAFS

client source code is the Linux VFS-interfacing file. An

OpenAFS developer estimates that 40% of Linux kernel

updates necessitate an updated OpenAFS release.

2.2 Existing approaches and shortcomings

User-level file systems. Most OS vendors maintain bi-

nary compatibility for user-level applications across OS

releases. As a result, user-level FSs have been proposed

as a vehicle for portable FS implementations [5, 25, 37].

This is done either through a small kernel module that

reflects FS calls into user-space [5, 16, 37] or through a

loopback NFS server that leverages existing kernel NFS

client support [6, 8, 25].

User-level FSs are not sufficient, for several reasons.

First, and foremost, user-level FSs still depend on the

kernel to provide low-level services such as device ac-

cess, networking, and memory allocation. Unexpected

or unrobust behavior in these components will still affect

a user-level FS. For instance, the above memory pressure

example would not be solved by user-level FSs. Second,

user-level FSs provide no assistance with user-space dif-

ferences, such as shared library availability and OS con-

figuration file formats and locations.

User-level FSs also face performance and semantic prob-

lems. They require more context switches and data

copies than an in-kernel FS implementation. They can

also deadlock under low-memory situations [25]. Such

deadlocks can be avoided by using a purely event-driven

structure, as the SFS toolkit [25] does, but at the cost

of restricting implementer flexibility. When using inter-

faces not explicitly designed for user-level FSs, such as

NFS loopback, user-level FS semantics are limited by the

information (no close calls) and control (NFS’s weak

cache consistency) available to them.

Language-based approaches. FiST [39] provides a

2Due to differences among distributions and processor types,

Panasas clusters Linux platforms by a tuple of <distribution name, dis-

tribution version, processor architecture>. Currently, Panasas supports

45 Linux platforms. In addition, within each platform, Panasas has a

separate port for each kernel version. The result is that Panasas sup-

ports over 300 configurations.

3

language-based alternative to portable FS implementa-

tion, via a specialized language for FS developers. The

FiST compiler generates OS-specific kernel modules.

So, given detailed information about all relevant in-

kernel interfaces, updated for each OS version, FiST

could address inter-version syntax changes. But, FiST

was not designed to offer assistance with policy and

semantic changes. Also, FS developers are unlikely

to adopt a specialized language unless it is expressive

enough to address all desirable control, which is far from

a solved problem.

Coccinelle [27] is a program transformation tool that au-

tomatically updates Linux device driver updates after an

API change. While Coccinelle could handle some of the

FS interface syntax changes that we described, it would

be unable to mitigate the policy and semantic problems.

The latter are OS design artifacts that require much more

intrusive FS changes.

Software engineering approaches. The software en-

gineering community has studied the general problem

of variability management. Software product lines

(SPL) [11] is a technique that advocates a disciplined

approach to finding and reusing common functionality

(and interfaces) among related products. In a single ven-

dor environment, or when multiple vendors agree on a

common interface, SPL can be effective.

Unfortunately, different OS vendors (and even differ-

ent releases of the same OS) have proven unwilling to

agree on a common VFS interface. Different design

choices, backward compatibility, and tight coupling to

other (changing) OS components (e.g., the virtual mem-

ory subsystem) mean that the differences in OSs’ VFS

interfaces and syntax are here to stay. Overcoming pol-

icy and semantic differences is even more challenging.

Some differences (e.g., the stack size example) arise

from entirely non-FS-related OS design choices.

2.3 FSVAs = VM-level FSs

The FSVA approach promoted in this paper is simi-

lar in spirit to user-level FSs. As before, a small FS-

independent proxy is maintained in the kernel. But, in-

stead of a user-level process, the proxy allows the FS to

be implemented in a dedicated VM. This approach ad-

dresses the compatibility challenges discussed above and

leverages the increasing adoption of virtualization.

Figure 2 illustrates the FSVA architecture3. User applica-

tions run in a user’s preferred OS environment (i.e., OS

3The figure illustrates “native” virtualization, in that OSs execute in

VMs atop a hypervisor. The FSVA architecture can also be used with

“hosted” virtualization, where the FSVA runs in a VM hosted by the

user OS.

User VM FSVA

Hypervisor

FS applications

FSVA proxy

File systemUser proxy

VFS

Applications

FS sys calls

VFS calls VFS callsFSV
A RP

Cs

Figure 2: FSVA architecture. An FS and its (optional) man-

agement applications run in a dedicated VM. A FS-agnostic

proxy running in the client OS and FSVA pass VFS calls via an

efficient RPC transport.

distribution and kernel version).4 An FS implementa-

tion executes in a VM running the FS vendor’s preferred

OS environment. In the user OS, an FS-independent

proxy registers as an FS with the VFS layer. The user

proxy transports all VFS calls to a proxy in the FSVA

that sends the VFS calls to the actual FS implementation.

The two proxies perform translation to/from a common

VFS interface and cooperate to maintain OS and VM fea-

tures such as a unified buffer cache (§3.4) and migration

(§3.6), respectively.

Using an FSVA, a third-party FS developer can tune and

debug their implementation to a single OS version with-

out concern for the user’s particular OS version. The FS

will be insulated from both user-space and in-kernel dif-

ferences in user OS versions, because it interacts with

just the one FSVA OS version. Even issues like the poor

handling of memory pressure can be addressed by sim-

ply not using such a kernel in the FSVA—the FS im-

plementer can choose an OS version that does not have

ill-chosen policies, rather than being forced to work with

them because of a user’s OS choice.

2.4 Discussion

The utility of FSVAs stems from isolating a FS imple-

mentation from user OSs. User-level FSs and language-

based approaches can hide VFS syntax differences, but

provide little help with OS policy and semantic differ-

ences. In fact, all three approaches provide a stable in-

terface to the FS by implementing an adaptor from the

changing VFS interface. But, only FSVAs execute the

FS in a completely isolated environment so as to avoid

dealing with low-level OS issues like stack size, locking

semantics, and robustness under low memory.

4The FS executing in an FSVA may be the client component of

a distributed FS. To avoid client/server ambiguities, we use the terms

user and FSVA to refer to the FS user and VM executing the FS imple-

mentation, respectively.

4

FSVAs do not preclude a FS vendor from porting their

FS to a different OS (release). They might still do so to

get new features, for improved performance, or for OS

bug fixes. But, FSVAs enable such porting to occur at

the FS vendor’s pace, not the customers’ pace. The FS

vendor can skip porting to most OS releases and select a

new robust/stable OS version when desired.

The user OS and FSVA proxies are dependent on the hy-

pervisor interface. Consequently, a proliferation of hy-

pervisors could make it difficult for OS vendors to sup-

port the proxies for every hypervisor. Fortunately, there

are only a few widely-used hypervisors. Furthermore,

the hypervisor-specific code is a small fraction of the

proxies (about one quarter of the total code size). Ad-

ditionally, for a particular hypervisor, the RPC code is

unlikely to change significantly over time given thin hy-

pervisor interfaces. Thus, we believe it is reasonable to

expect OS vendors to support common hypervisors.

The FSVA architecture provides extensibility in two

manners. First, resources previously applied to version

compatibility can instead go toward feature addition and

tuning. Second, features that would be too burdensome

to support for every OS can now be implemented. Third,

FS vendors have the flexibility to select a specialized OS

in the FSVA (say, with scheduling better tailored to FS

workloads). Due to space constraints, we will not ex-

plore extensibility further in this paper. Details and ex-

amples are available in a technical report [7].

3 FSVA design

This section describes FSVA design choices intended to

achieve the following goals:

Generality The FSVA should be as FS-agnostic as the

generic aspect of the associated VFS allows it to be.

It should not make any assumption about FS behav-

ior, such as consistency semantics.

No FS changes To simplify adoption and deployment,

FS vendors should not have to modify their FS to

run in an FSVA.

Maintain OS features Support existing user OS fea-

tures such as a unified buffer cache, security poli-

cies, and memory mapping. Applications should

not be aware of the FSVA separation.

Minimal OS changes To encourage OS vendor adop-

tion, the user and FSVA proxies should require min-

imal changes to the OS.

Maintain VM virtues Existing virtualization features

such as migration, checkpointing, performance iso-

lation, and resource accounting should not be ad-

versely affected.

Efficiency FSVAs should have minimal overheads.

3.1 User OS proxy to FSVA interface

Together, the first three goals allows third-party FS de-

velopers to exploit FSVAs, knowing that the kernel-

maintained proxies will work for them, without being re-

quired to change their FS or the OS within which they

implement it. (They may choose to make changes, for

efficiency, but can rely on unchanged FS semantics.)

Achieving these goals, however, dictate characteristics

of the interfaces between the component, especially be-

tween the proxies in the user OS and FSVA OS.

To illustrate the above point, consider the following de-

sign question: should the user OS proxy directly handle

some VFS calls, without involving the FSVA? For exam-

ple, should some mutating operations (such as create

or write) be handled in the user OS and modifications

asynchronously sent to the FSVA? Should some read-

only operations (such as read or getattr) utilize user

OS-cached data? Avoiding calls into the FSVA would

lead to higher performance.

Unfortunately, embedding such functionality in the user

OS proxy would decrease generality and couple the

FSVA and user OSs. For example, many FSs carefully

manage write-back policies to improve performance and

achieve correctness—if the user OS performed write-

back caching without giving control to the FSVA, it

would lose this control and face issues such as the mem-

ory pressure and write-back issues described in §2.1.

Such user OS proxy write-back would also break con-

sistency protocols, like NFS, that require write-through.

Similar problems arise for read caching in the user OS

proxy: callback schemes would be needed for consis-

tency, unless shared memory were used; a shared mem-

ory metadata cache would force the two OSs to use a

common format for their cached metadata. Systems like

POFS [29] and XenFS [24] choose to accept some of

these consequences for improved performance.

Our goals dictate a VFS-like interface between the prox-

ies and that the user OS proxy forward calls rather than

handling them. Most Unix OSs have similar VFS in-

terfaces, both in the operation types (e.g., open, create,

write) and state (e.g., file descriptors, inodes and direc-

tory entries). Consequently, the VFS interfaces in the

two OSs will be similar and differences can be normal-

ized by the proxies. In addition to VFS operations, the

inter-proxy interface includes additional calls to support

a unified buffer cache and migration of a user-FSVA VM

pair.

5

3.2 Metadata duplication

In order to reduce OS changes, FS metadata is duplicated

in the user OS and the FSVA. Consider the following ex-

ample: in Linux, the program loading and core dumping

code directly reads inode fields such as the file size with-

out going through VFS calls. Put another way, there is

no VFS call for “read file size.” The result is that, to sup-

port in-kernel usage, the user OS must contain an inode

for that file. The FSVA will likely retain an inode for that

same file to handle cached operation on subsequent calls.

Thus, an inode copy exists in each VM.

Metadata duplication can be avoided at the cost of a large

number of OS changes to wrap this and similar instances

of inode access. But, practically, this would complicate

the adoption of the user proxy by OS vendors. Given that

inodes and directory entries are small data structures, we

opted to duplicate metadata. As we describe in §3.4, data

pages are not duplicated.

Functionally, the user OS’s caching is a read- and write-

through “functionality-supporting” cache. While read-

only and mutating operations are always handled in the

FSVA, the cache enables existing user OS features such

as memory mapping and FS-based process execution to

continue working.

For distributed FSs with cache consistency callbacks, it

is possible that a user OS may contain stale metadata.

For example, an open file’s attributes may be updated in

the FSVA through a cache consistency callback. But it is

unlikely that this inconsistency will be visible to the user.

OSs already call into the FS in response to application

operations that require up-to-date attributes. This will

cause the user proxy to call the FSVA and get the updated

metadata.

3.3 One user OS per FSVA

A fundamental FSVA design decision is whether to share

an FSVA among multiple user VMs. In our initial de-

sign, the sharing benefits of a single FSVA serving mul-

tiple user VMs favored a single FSVA approach. Com-

mon inter-VM FS metadata and data would be “automat-

ically” shared, the number of any cache consistency call-

backs would be reduced (e.g., for AFS), greater batching

opportunities exist, and there exists potential for better

CPU cache locality [22]. Indeed, POFS and XenFS use

this single FS server approach [24, 29].

There is a well-known tension between sharing and iso-

lation. A consequence is that the sharing opportunities

provided by a single-FSVA design do not come for free.

A single FSVA complicates a unified buffer cache (§3.4),

resource accounting and isolation (§3.5), and user VM

migration (§3.6). In each of the following subsections,

we discuss how a shared FSVA would complicate these

features. Consequently, below we argue for a 1–to–n

mapping from user VMs to FSVAs.

3.4 Unified buffer cache

Early Unix OSs had separate caches for virtual memory

pages and file system data. This had data and control

disadvantages. On the data side, disk blocks were some-

times duplicated in both caches. On the control side,

there was no single overall eviction policy, leading to

suboptimal cache size partitioning. Unified buffer caches

(UBCs) fix both problems [17, 32]. A single cache stores

both virtual memory pages and FS data, avoiding data

copies and enabling a single overall eviction policy.

An analogous problem to intra-OS separate caching (be-

tween an OS’s page and buffer caches) exists when an FS

runs in another VM: inter-OS separate caching (between

two OSs’ UBCs). To avoid extensive OS changes, we

cannot coalesce the two OSs’ caches into a single cache

— the OSs may have different data structures and expect

exclusive access to hardware (e.g., in order to read and

set page access bits). Instead, we maintain the illusion

of a single cache by using shared memory (to avoid data

copies) and by coupling the two caches together (to use

a single eviction policy). The user and FSVA proxies

maintain this illusion transparently to the two OSs.

We avoid data duplication by using the hypervisor’s

shared memory facilities. The user and FSVA prox-

ies map application and buffer cache data between the

two OSs. This fixes the data-side problems of separate

caching.

Providing a single overall eviction policy is more difficult

because each OS has its own memory allocation needs

and knowledge. On one hand, since applications exe-

cute in the user OS, the user OS allocates virtual mem-

ory pages and is aware of their access behavior (i.e., their

access frequency). On the other hand, since I/O is per-

formed in the FSVA (both in response to user requests

and due to FS features such as read-ahead and write-

back), the FSVA allocates FS buffer pages and is aware

of their access behavior.

The semantic gap between the two caches can be fixed by

informing one of the OSs of the other OS’s memory allo-

cation and access behavior. Since most of the allocations

in the FSVA are in response to user requests, we chose to

inform the user OS of the FSVA’s memory allocation and

access behavior. This also preserves the user OS’s cache

eviction semantics and performance behavior.

The FSVA proxy registers callbacks with the FSVA

buffer cache’s allocation and access routines. On ev-

ery response to the user, the FSVA proxy piggybacks

6

page allocation and access information. On receiving a

page allocation message, the user proxy allocates a ghost

page [12, 28] in its UBC and returns that page to the

hypervisor, thereby balancing the memory usage among

the OSs. On receiving a page access message, the user

proxy calls the OS’s page accessed function, to update

the ghost page’s status in the context of the OS’s eviction

strategy. When the user OS later evicts this ghost page,

the user proxy calls the FSVA to evict the corresponding

page. The net result is a coupling of the two OSs’ UBCs

and a single overall cache eviction policy.

Compared to VM memory ballooning [35], our inter-

VM UBC is VM-selective and proactive. While balloon-

ing attempts to optimize a machine’s overall memory us-

age, we only wish to couple a user VM and its FSVAs.

This preserves the deployment-friendly ability of assign-

ing a single memory limit to the user-FSVA VM pair and

avoids inefficient memory allocation. Additionally, our

fine-granularity knowledge of the FSVA’s FS allocation

enables us to proactively balance the two VMs’ memory

usage.

Our design choice of a single FSVA per user greatly sim-

plified the UBC design. In a shared FSVA design, prop-

erly attributing page allocations and accesses to a specific

user is complicated by concurrent requests and latent FS

work, such as write-back and read-ahead. The FSVA OS

and FS would require modifications to ensure proper at-

tribution.

3.5 Resource accounting

Virtualization provides coarse-grained physical resource

sharing among users. This low-level sharing avoids the

performance crosstalk that plagues OS-level resource

multiplexing [4]. In addition, coarse-grained physical re-

source sharing simplifies per-VM resource accounting,

enabling flexible scheduling policies and accurate billing

(e.g., in a shared data center).

When a user has one or more FSVAs, resource usage in

the FSVAs should be charged to the user VM. This al-

lows an administrator to continue setting a single coarse-

grained resource policy for user VMs. Logically, the user

VM and its FSVAs form a single unit for the purpose of

resource accounting.

Associating only a single user per FSVA simplifies re-

source accounting. If multiple users share an FSVA, the

hypervisor would not be able to map FSVA resource uti-

lization to user VMs. Instead, the FSVA would itself

have to track per-user resource usage and inform the hy-

pervisor. For shared block or network driver VMs [15],

tracking per-user resource usage is viable, owing to the

small number of requests types and their fairly regular

costs [18]. But, FSVAs provide a much richer interface to

users: there are many (VFS) operation types and an op-

eration can have significantly varying performance costs

(e.g., reads that hit or miss in cache). Latent OS work

(e.g., cache pressure causing a previously written dirty

page to be sent to the server) further complicates OS-

level resource accounting. Thus, our design of a single

user per FSVA simplifies resource accounting by lever-

aging the hypervisor’s existing coarse-grained resource

accounting mechanisms.

3.6 Migration

One appealing feature of virtualization is the ability to

migrate VMs without OS or application support. In addi-

tion, live migration minimizes VM downtime, reducing

interference to user applications [10]. If a VM relies on

another VM for a driver [15], the VM’s driver connection

is reestablished to a driver VM in the new physical host.

This is relatively simple since driver VMs are (mostly)

stateless and have idempotent operations.

FSVAs complicate migration. In contrast to driver VMs,

FSVAs potentially contain large state on behalf of a user

VM and the FSVA interface is non-idempotent. To al-

low unmodified FSs running in an FSVA to support mi-

gration, we migrate an FSVA along with its user VM.

This approach leverages VM migration’s existing abil-

ity to transparently move VMs. Since some FS opera-

tions are non-idempotent, care must be taken to preserve

exactly-once semantics. This is complicated by migra-

tion causing physical page mappings to change. The user

and FSVA proxies transparently fix the page mappings

and retransmit any in-flight requests and responses. Fur-

thermore, we maintain live migration’s low unavailabil-

ity by synchronizing the two VMs’ background transfer

and suspend/resume.

Having only a single user per FSVA simplifies migration.

In contrast, a shared FSVA would require FS involve-

ment in migrating private state belonging to the specific

user being migrated.

3.7 Miscellaneous

Virtualization requirements. The above design re-

quires two basic capabilities from a hypervisor: inter-

VM shared memory and event notification. Popular hy-

pervisors provide such mechanisms [4, 33]. The use

of paravirtualization [4], software virtualization [34],

or hardware-assisted virtualization is an implementation

detail and does not affect the above design.

Security. Maintaining the user OS’s security checks and

policies is required in order to maintain the same applica-

7

tions semantics. Unix OSs perform generic permission-

based access checks and security auditing in the VFS

layer. Since the user proxy sits below the VFS layer,

the existing VFS security checks continue to work. In

the FSVA, the proxy calls directly into the FS, thereby

bypassing the FSVA OS’s security checks. In contrast to

generic OS security checks, FS-specific security features

may require extra effort, as described in §3.8.

Having a single user per FSVA avoids the security con-

cerns inherent in a shared FSVA design. Also, any DoS-

like activity (e.g., opening a large number of files) only

harms the one user OS.

3.8 Limitations

Despite an FS implementation executing in a different

VM, the FSVA design endeavors to preserve FS behav-

ior from the application’s point of view. But there are a

number of limitations with the FSVA architecture.

Out-of-VFS-band state. The FSVA design fails to cap-

ture out-of-VFS-band FS state. For example, AFS [20]

uses Kerberos authentication [26]. With Kerberos, a user

runs a program to obtain credentials, which are stored

under /tmp on a per-process-group basis. The AFS VFS

handlers retrieve those Kerberos credentials. To pre-

serve the applications’ authentication semantics, the use

of Kerberos authentication in AFS requires the creden-

tials to be copied from the user OS to the FSVA. Since

Kerberos is also used by other FSs, the user and FSVA

proxies should probably be Kerberos-aware. However,

the general problem of out-of-VFS-band state requires

FS cooperation.

Incompatible FS semantics. A semantic mismatch ex-

ists if the user and FSVA OSs have incompatible VFS

interfaces. For example, connecting a Unix FSVA to a

Windows user OS brings up issues with regards to file

naming, permission semantics [36], and directory no-

tifications. Consequently, we envision a single FSVA

for every “OS type.” This paper focuses on an FSVA

for Unix OSs, which tend to share similar VFS inter-

faces [21] and POSIX semantics [13]. It may be possible

to create a superset interface to support both Windows

and Unix users [14], but this is beyond our scope.

Memory overhead. There is a certain memory overhead

to an FSVA, due to an extra OS and metadata duplication.

Two factors mitigate this overhead. First, the FS vendor

is likely to only use a small subset of the OS, leading to a

small OS image. Second, since the FS vendor distributes

a single FSVA, it is feasible for them to fine-tune the VM.

Nevertheless, the FSVA architecture may not be appro-

priate for environments with severe memory pressure.

4 FSVA implementation

We implemented FSVA support in Linux using Xen. To

demonstrate FS portability, we ported the user proxy to

two different Linux kernels: 2.6.18 (released in Septem-

ber 2006) and 2.6.25 (released in April 2008).

An FSVA runs as an unprivileged VM. We modified the

Xen management console scripts to support installing

and removing connections between a user VM and a

FSVA. When a connection is initiated, the user and FSVA

proxies set up a shared memory region (containing a

ring of requests and responses) and an event notification

channel (for inter-VM signaling). This RPC layer closely

resembles Xen’s block and network drivers’ RPC layers.

Once a connection is made, a user can mount any FS

already mounted in the FSVA. The user proxy registers

as an FS with the user OS. During a mount operation,

the mount options specify the FSVA identity and mount-

point.

Most of our code is implemented in user OS and FSVA

kernel modules. But, we had to make three small changes

to Linux and Xen. First, to allow applications to mem-

ory map FSVA pages, we modified the Linux page fault

handler to call the user proxy when setting and remov-

ing page table entries that point to an FSVA page. Xen

requires a special hypercall for setting user-space page

table entries that point to another VM’s pages. Second,

to support a unified buffer cache, we added hooks to

the kernel’s buffer cache allocation and “page accessed”

handlers. Third, to support migration, we modified the

hypervisor to zero out page table entries that point to an-

other VM at migration time. In total, these three changes

constituted ∼40 lines of code (LOC).

Our migration-supporting RPC layer consists of ∼2000

LOC. The user and FSVA proxies contain ∼4000 and

∼2700 LOC, respectively. As a reference point, the

Linux NFSv3 client code is ∼11,000 LOC.

4.1 Inter-proxy interface

The majority of VFS operations have a simple imple-

mentation structure. The user proxy’s VFS handler finds

a free slot on the RPC ring, encodes the relevant inodes,

directory entries, and flags in a generic format, and sig-

nals the FSVA of a pending request via an event notifica-

tion. Upon receiving the notification, the FSVA decodes

the request and calls the FS’s VFS handler. Responses

are handled in a reverse fashion. To avoid deadlocks like

those described in §2.1 and §2.2, the user proxy does not

perform any memory allocations in its RPC path.

Table 1 lists the interface between the user and FSVA

proxies. Most of the RPCs correspond to VFS calls such

as mount, getattr, and read. As described below, there

8

Type Operations

Mount mount, unmount

Metadata getattr, setattr, create, lookup,

mkdir, rmdir, link, unlink,

readdir, seek, truncate, rename,

symlink, readlink

Stateful ops open, release

Data read, write, map page, unmap page

Misc. dentry validate, flush, fsync,

permission

UBC invalidate page, evict page

Migration restore grants

Table 1: The FSVA interface. Most of the calls correspond

to VFS calls, with the exception of three RPCs that support

migration and a unified buffer cache.

is also an RPC to support migration and two RPCs to

support a unified buffer cache.

There are two types of application I/O: ordinary

read/write and memory mapped read/write. For ordinary

I/O, the application provides a user-space buffer. The

user proxy utilizes Xen’s shared memory facility to cre-

ate a set of grants for the application buffer—each grant

covers one page. The I/O request contains a grant list.

The FSVA proxy uses the grants to map the application

buffer into the FSVA address space. The FS can then

perform I/O to/from the buffer. After the I/O completes,

the FSVA proxy unmaps the grant and sends the I/O re-

sponse to the user. The user proxy then can recycle the

grant.

Memory mapped I/O is more involved than ordinary I/O.

For example, consider memory mapped read operations.

When an application memory maps a file, the OS sets

the application’s memory page permissions to trigger a

page fault when accessed. For reads, the OS page fault

handler does two things. If the corresponding FS page is

not in the page cache, the FS’s readpage VFS handler

is called. Once in the page cache, the application’s page

table pointer is then changed to point to the page. To

work with an OS’s memory mapping facilities, the user

proxy’s readpage VFS handler calls the FSVA to read

a page (if necessary) and grant access to it. The user

proxy then maps that page into the kernel’s buffer cache.

Application page table pointers are set on-demand in the

page fault handler. When the application unmaps the file,

the user proxy’s release page handler unmaps the grant

and then calls the FSVA to allow it to recycle the grant.

4.2 Unified buffer cache

To maintain a UBC, the user proxy must be notified of

page allocations and accesses in the FSVA. We added

hooks to Linux so that the FSVA is informed of these

events. When either event occurs, the FSVA proxy

queues a notification. A list of these notifications are

piggybacked to the user proxy on the next reply.

Linux allocates buffer cache pages in only one function,

making it simple for us to capture allocation events. For

page access events, there are two ways in which a page is

marked as accessed. First, when an FS looks up a page in

the page cache, the search function automatically marks

the page as accessed in a kernel metadata structure. We

added a hook to this function. Second, the memory con-

troller sets the accessed bit for page table entries when

their corresponding page is accessed. However, since all

FSVA accesses to FS pages are through the search func-

tions, we ignore this case. (Application access to mem-

ory mapped files will cause the user, not the FSVA, page

table entries to be updated.)

Page evictions in the FSVA are usually triggered by the

user OS. However, in some rare cases, the FSVA must

ask the user OS to evict pages. Consider a file truncation.

Ultimately, the FSVA decides which pages to invalidate.

This choice is synchronously communicated to the user

OS, ensuring that any memory-mapped pages are invali-

dated.

On machine startup, Linux allocates bookkeeping struc-

tures for every physical memory page. Since the FSVA’s

memory footprint can grow almost to the size of the ini-

tial user VM, we start the FSVA with this maximum

memory size. This ensures that the FSVA creates the

necessary bookkeeping structures for all the pages it can

ever access. After the boot process completes, the FSVA

proxy returns most of this memory to the hypervisor.

4.3 Migration

There are three steps to migrating a user-FSVA VM pair.

First, the two VMs’ memory images must be simulta-

neously migrated, maintaining the low unavailability of

Xen’s live migration. Second, given how Xen migration

works, the user-FSVA RPC connection and the shared

memory mappings must be reestablished. Third, in-flight

requests and responses that were affected by the move

must be reexecuted.

There are two migration facilities in Xen. Ordinary mi-

gration consists of saving a VM’s memory image in one

host and restoring that image in another. Live migration

minimizes downtime via background copying of a VM’s

memory image, while the VM continues executing in the

original host. After sufficient memory copying is per-

formed, Xen suspends a VM, copies the remaining pages

to the destination host, and resumes the VM.

We modified Xen’s migration facility to simultaneously

9

copy two VMs’ memory images in parallel. To maintain

live migration’s low downtime, we synchronize the back-

ground transfer of the two memory images and the sus-

pend/resume events. For example, if the FSVA’s memory

image is larger than the user VM, we delay the suspen-

sion of the user VM until the FSVA is ready to be sus-

pended. This ensures that the user VM is not suspended

at the destination host waiting for the FSVA to be mi-

grated. Since the user VM is dependent on the FSVA,

the user VM is suspended first and restored second.

When a VM is resumed, its connections to other VMs are

broken. Thus, the user and FSVA proxies must reestab-

lish their RPC connection and shared memory mappings.

A shared memory mapping in Xen depends on the two

VMs’ numerical IDs and physical page addresses. Af-

ter migration completes, both values are likely different.

Consequently, all shared memory mappings between the

two VMs must be reestablished through the hypervisor.

We use Xen’s batched hypercall facility to speed up this

process. A side-effect is that the FSVA proxy must main-

tain a list of all shared pages to facilitate this reestablish-

ment. The user proxy performs a special RPC to retrieve

this list from the FSVA.

Because the user-FSVA RPC connection is broken dur-

ing migration, in-flight requests and responses must be

resent. To enable retransmission, the user OS retains a

copy of each request until it receives a response. To en-

sure exactly-once RPC semantics, unique request IDs are

used and the FSVA maintains a response cache. Read

operations are assumed to be idempotent and hence the

response cache is small. The FSVA garbage collects a

response upon receiving a request in the request ring slot

corresponding to that response’s original request.

5 FSVA evaluation

This section evaluates our FSVA prototype. First, it

demonstrates that FSVAs allow two different Linux envi-

ronments to use the same third-party FS implementation.

Second, it quantifies the performance overheads of our

FSVA prototype. Third, it illustrates the efficacy of our

inter-VM unified buffer cache and live migration support.

5.1 Experimental setup

Except for the NFS and OpenAFS servers, all ex-

periments are performed on quad-core 1.86 GHz Xeon

E5320 machines with 6 GB of memory, a 73 GB SAS

drive (for ext2 experiments), and a 1 Gb/s Broadcom

NetXtreme II BCM5708 Ethernet NIC. Unless noted, all

computers run 64-bit Linux kernel 2.6.18 with the lat-

est Debian testing distribution. To get the best disk per-

formance, VMs use a local disk partition for storage,

instead of file-backed storage. The NFS server is a 2-

CPU Xeon 3 GHz, 2 GB of memory, a 250 GB 7200 rpm

Seagate SATA disk, and an in-kernel NFS server imple-

mentation. The OpenAFS server is a Sun Ultra 2 En-

terprise machine, with 2x300 Mhz Ultra Sparc II pro-

cessors, 1 GB of memory, a 100 Mb/s Ethernet NIC, an

Arena Industrial II external RAID with 6x120GB Sea-

gate SCSI drives, and Solaris 10 with kernel 120011-14.

Unless otherwise stated, the experiments compared two

setups: a user VM versus a user VM connected to an

FSVA. This allows us to focus on the overhead that sep-

arating the FS into a FSVA introduced. The inter-VM

unified buffer cache allowed us to specify the same mem-

ory size in both experimental setups; the user-FSVA VM

pair do not benefit from any extra caching. To ensure

comparable CPU access, the single user VM setup was

given two CPUs, while the user-FSVA VM pair were

each given one CPU.

5.2 Cross-version FSs via FSVAs

The FSVA architecture is intended to address the cross-

version compatibility challenges faced by third-party FS

developers. We test its ability to do so with FSs running

in FSVAs with very different Linux environments than

those of a benefitting user VM. Here, we focus on the

setup shown in Figure 1. The FSVA runs an old Debian

Sarge distribution (2005), libc 2.3.2 (2003), and Linux

kernel 2.6.18 (2006). In contrast, the user VM runs a

bleeding-edge Linux environment: Fedora 9 (in alpha

release), libc 2.8 (release candidate), and Linux 2.6.25

(released in April 2008). Both OSs are 32-bit — it was

simpler to compile AFS for 32-bit Linux, and the main-

line Linux kernel tree currently only supports 32-bit Xen

VMs.

We used OpenAFS client version 1.5.10 (2006) as the

test FS. OpenAFS is a compelling test case due to its

sheer size. It is one of the most complex open-source

third-party FSs available. The client kernel module

consists of ∼31,000 OS-independent LOC and ∼7,000

Linux-specific LOC. It also contains a number of user-

level programs for tasks such as volume management.

As we noted earlier, one of the OpenAFS lead developers

estimated that 40% of kernel updates necessitate a new

OpenAFS release. Indeed, our user VM’s kernel (2.6.25)

caused a new OpenAFS release (1.5.35), and there were

25 other releases (many for OS version compatibility)

between it and the one used in the FSVA.

We ported the user proxy to kernel 2.6.25. (Such porting

would be unnecessary if Linux adopts the user proxy.)

No porting of OpenAFS was needed. The user VM

mounts and uses the FSVA’s OpenAFS, despite the OS

10

version differences. As one example, we compiled

OpenSSH v4.7p1 in the user VM. Compilation exercises

most of the VFS calls and heavily uses memory-mapped

I/O in the configure phase. When executed on the FSVA’s

OS version (as a user VM) directly over the OpenAFS

client, the compilation time was 91.5 s. When executed

in the user VM connected to the FSVA, the run time was

105.4 s, a 15% overhead. Clearly, there is an overhead

for passing every VFS operation across the FSVA, espe-

cially with Xen’s relatively unoptimized (for fast RPC)

communication mechanisms. But, it enables a complex

FS such as OpenAFS to provide the same semantics to a

user OS environment, despite not being ported from an

OS version that is 1.5 years older.

5.3 Microbenchmarks

To understand the causes of the FSVA overhead, we

used high-precision processor cycle counters to measure

a number of events. Table 2 lists the results.

The send VIRQ operation refers to sending an event no-

tification to another VM. A VM wishing to share a page

with another VM performs the create and destroy grant

operations (which involve no hypercalls), while the VM

mapping the page performs the map and unmap grant

operation (each involving one hypercall). It is interesting

to note that it is more efficient to “share” a single page

through two memory copies (say, over a dedicated stag-

ing area) than through the grant mechanism. However,

since Xen allows batched hypercalls, the grant mecha-

nism is faster than memory copies when sharing more

than one page due to the amortized hypercall cost.

An RPC requires two event notifications and two thread

switches, one each on the user OS and the FSVA. Those

four operations correspond to 6 µs of the 9.64 µs null

RPC latency we observed. The rest of the RPC time

(3.64 µs) is taken up by locking the shared RPC ring,

copying the request and response data structures onto the

ring, and other miscellaneous operations.

We now compare the latencies of two representative

FSVA RPCs: getattr and readpage. We measured the

latencies over ext2 and over an FSVA running ext2. The

FSVA getattr latency is equal to the latency of the un-

derlying ext2’s getattr plus the null RPC plus a few

microseconds for encoding and decoding the inode iden-

tifier and attributes. The additional time in the FSVA

readpage, as compared to getattr, is due to the grant

calls.

5.4 Reducing communication overhead

When faced with a high RPC cost, one has two options:

either reduce the number of RPCs or reduce the RPC

Operation Latency Operation Latency

Null hypercall 0.68 Send VIRQ 1.52

Thread switch 1.58 4 KB memcpy 1.73

Create grant 0.43 Destroy grant 0.33

Map grant 1.69 Unmap grant 2.10

Null RPC 9.64

getattr (ext2) 1.37 getattr (FSVA/ext2) 15.3

readpage (ext2) 1.73 readpage (FSVA/ext2) 21.2

Table 2: FSVA microbenchmarks. Latencies are in µs.

cost. Reducing the number of RPCs would necessitate

caching data or metadata at the user VM, which would

clash with our ideal of preserving FS semantics without

FS changes. As a result, we are focusing on reducing

the RPC cost. When multiple processors are available,

a well-known technique for reducing IPC cost is to use

polling as a signalling mechanism [1]. We have imple-

mented this, and the results are very good. OpenSSH

build over a FSVA running ext3 is within 2.1% of the

runtime of executing directly over ext3. Time constraints

prevented redoing of the entire evaluation section, but the

final version of this paper will include these results.

5.5 Unified buffer cache

To demonstrate the unified buffer cache, we ran an exper-

iment with an application alternating between FS and vir-

tual memory activity. The total memory for the user VM

and FSVA is 1 GB. As described in §4.2, both VMs are

started with 1 GB of memory. Once the user and FSVA

kernel modules are loaded, the FSVA returns most of its

memory to Xen, thereby limiting the overall memory us-

age to 1 GB plus the size of the FSVA’s OS (which we

call the overhead).

Figure 3 shows the amount of memory each VM con-

sumes. Starting with a cold cache, the application reads

a 900 MB file through memory mapped I/O. This causes

the FSVA’s memory size to grow to 900 MB, plus its

overhead. The application then allocates 800 MB of

memory and touches these pages, triggering Linux’s lazy

memory allocation. As the allocation proceeds, the user

VM evicts the clean FS pages to make room for the vir-

tual memory pressure. These eviction decisions are sent

to the FSVA; the FSVA then returns the memory to the

user VM. Linux apparently evicts a a large batch of file

pages initially, then trickles the remainder out.

In the third phase, the application performs a 500 MB or-

dinary read from a file. This requires FS pages to stage

the data being read. Since the application has not freed

its previous 800 MB allocation, and swapping is turned

off for this experiment, the virtual memory pages cannot

be evicted. The result is that only the remaining space

11

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 0 100 200 300 400 500

R
A

M
 (

M
B

)

Time (s)

FSVA
User

Total

read 900 MB from file

use 800 MB of

anonymous pages
read 500 MB

from file

Figure 3: Unified buffer cache. This figures shows the

amount of memory consumed by the user and FSVA VMs. As

applications shift their memory access pattern between file sys-

tem and virtual memory usage, the unified buffer cache dynam-

ically allocates memory among the two VMs while maintaining

a constant total memory allocation.

(just over 200 MB) can be used to stage reads; the uni-

fied buffer cache constrains the FSVA to this size. Page

eviction batching is responsible for the dips in the figure.

5.6 Migration

To evaluate the FSVA’s effect on unavailability during

live migration, we wrote a simple benchmark that contin-

uously performs read operations on a memory-mapped

file. This allows us to measure the slowdown introduced

by migrating the user-FSVA VM pair. Every microsec-

ond, the benchmark reads one byte from a memory-

mapped file and sends a UDP packet containing that byte

to another machine. This second machine logs the packet

receive times, providing an external observation point.

To establish baseline live migration performance, we ran

our benchmark against the root NFS filesystem of a sin-

gle VM with 512 MB of memory. During live migration,

the unavailability period was 0.29 s. We then repeated

this test against the same FS exported from an FSVA to

a user VM. The two VMs’ memory allocation was set to

512 MB plus the overhead of the FSVA’s operating sys-

tem, which was approximately 92 MB. Unavailability in-

creased to 0.51 s. This increase is caused by the extra OS

pages that need to be copied during the suspend phase, as

well as the overhead of our RPC layer and shared mem-

ory restoration. We believe this overhead is relatively

independent of the overall memory size, but we were un-

able to run larger migration experiments due to limita-

tions in preallocated shadow page tables that Xen uses

during migration.

6 Additional related work

File systems and VMs. Several research projects have

explored running a file system in another VM, for a va-

riety of reasons. POFS [29] provides a higher-level file

system interface to a VM, instead of a device-like block

interface, in order to gain sharing, security, modular-

ity, and extensibility benefits. XenFS [24] provides a

shared cache between VMs and shares a single copy-

on-write file system image among VMs. Our FSVA ar-

chitecture adapts these ideas to address the cross-version

compatibility problems of third-party FSs. The differing

goals lead to many design differences. For example, we

pass all VFS calls to the FSVA to remain FS-agnostic,

whereas they try to handle many calls in the user OS to

improve performance. We use separate FSVAs for each

user VM to maintain virtualization features, such as mi-

gration and resource accounting, whereas they focus on

using a single FS per physical machine to increase effi-

ciency. We also support migration and a unified buffer

cache.

OS structure. The FSVA architecture is an application

of microkernel concepts [2, 19]. Microkernels execute

OS components in privileged servers. Doing so allows

independent development and flexibility. But, traditional

microkernels require significant changes to OS structure.

FSVAs leverage VMs and existing hypervisor support to

avoid the upfront implementation costs that held back

microkernels. Libra enables quick construction of spe-

cialty OSs by reusing existing OS components in another

VM [3]. In contrast to Libra, our FSVA design seeks

deep integration between the user OS and the FSVA.

LeVasseur et al. reuse existing device drivers by running

them in a VM [23]. This is very similar to FSVAs’ reuse

of unmodified file system implementations. The chal-

lenge faced is dealing with the richer FS interface while

retaining OS and virtualization features.

7 Conclusion

FSVAs offer a solution to the cross-version compatibility

problems that plague third-party FS developers. The FS

can be developed, debugged, and tuned for one OS ver-

sion and bundled with it in a preloaded VM (the FSVA).

Users can run whatever OS version they like, in a sep-

arate VM, and use the FSVA like any other file system.

Case studies show this approach works for a range of

FS implementations across distinct OS versions, with

minimal performance overheads and no visible semantic

changes for the user OS.

12

References
[1]

[2] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Teva-

nian, and M. Young. Mach: A new kernel foundation for UNIX

development. Summer USENIX Conference, pages 93–112.

Usenix Association, 1986.

[3] G. Ammons, J. Appavoo, M. Butrico, D. D. Silva, D. Grove,

K. Kawachiya, O. Krieger, B. Rosenburg, E. V. Hensbergen, and

R. W. Wisniewski. Libra: a library operating system for a jvm in

a virtualized execution environment. VEE, pages 44–54. ACM,

2007.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of vir-

tualization. SOSP, pages 164–177. ACM, 2003.

[5] B. N. Bershad and C. B. Pinkerton. Watchdogs: Extending the

UNIX File System. USENIX Winter Conference, pages 267–275.

USENIX Association, 1988.

[6] M. Blaze. A cryptographic file system for UNIX. ACM CCS,

pages 9–16. ACM, 1993.

[7] Blinded for submission.

[8] B. Callaghan and T. Lyon. The automounter. USENIX Winter

Conference, pages 43–51. USENIX Association, 1989.

[9] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A

Parallel File System for Linux Clusters. Annual Linux Showcase

and Conference, pages 317–327. USENIX Association, 2000.

[10] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield. Live migration of virtual machines.

NSDI, pages 273–286. USENIX Association, 2005.

[11] P. Clements and L. Northrop. Software product lines: practices

and patterns. Addison-Wesley, 2001.

[12] M. Ebling, L. Mummert, and D. Steere. Overcoming the Network

Bottleneck in Mobile Computing. WMCSA, 1994.

[13] H. Eifeldt. POSIX: a developer’s view of standards. USENIX

ATC, pages 24–24. USENIX Association, 1997.

[14] M. Eisler, P. Corbett, M. Kazar, D. S. Nydick, and C. Wagner.

Data ONTAP GX: a scalable storage cluster. FAST, pages 23–23.

USENIX Association, 2007.

[15] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and

M. Williamson. Reconstructing I/O. Technical report. University

of Cambridge, Computer Laboratory, 2004.

[16] FUSE. FUSE: filesystem in userspace, 2008.

http://fuse.sourceforge.net.

[17] R. A. Gingell, J. P. Moran, and W. A. Shannon. Virtual Memory

Architecture in SunOS. USENIX Summer Conference, pages 81–

94, 1987.

[18] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat. Enforcing

Performance Isolation Across Virtual Machines in Xen. Middle-

ware, pages 342-362, 2006.

[19] P. B. Hansen. The nucleus of a multiprogramming system. Com-

mun. ACM, 13(4):238–241. ACM, 1970.

[20] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,

M. Satyanarayanan, R. N. Sidebotham, and M. J. West. Scale

and performance in a distributed file system. TOCS, 6(1):51–81.

ACM, 1988.

[21] S. R. Kleiman. Vnodes: an architecture for multiple file system

types in Sun Unix. Summer USENIX Conference, pages 238–

247. USENIX Association, 1986.

[22] J. R. Larus and M. Parkes. Using Cohort-Scheduling to Enhance

Server Performance. USENIX ATC, pages 103–114. USENIX

Association, 2002.

[23] J. LeVasseur, V. Uhlig, J. Stoess, and S. Gotz. Unmodified de-

vice driver reuse and improved system dependability via virtual

machines. OSDI, pages 17–30. USENIX Association, 2004.

[24] Mark Williamson. XenFS, 2008.

http://wiki.xensource.com/xenwiki/XenFS.

[25] D. Mazieres. A toolkit for user-level file systems. USENIX ATC.

USENIX Association, 2001.

[26] B. C. Neuman and T. Ts’o. Kerberos: an authentication ser-

vice for computer networks. IEEE Communications, 32(9):33–

38, Sep. 1994.

[27] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Document-

ing and automating collateral evolutions in linux device drivers.

Eurosys.

[28] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and

J. Zelenka. Informed prefetching and caching. SOSP, pages 79–

95. ACM Press, 1995.

[29] B. Pfaff. Improving Virtual Hardware Interfaces. PhD thesis.

Stanford, October 2007.

[30] RedHat. Bug 111656: In 2.4.20.-20.7 mem-

ory module, rebalance laundry zone() does

not respect gfp mask GFP NOFS, 2004.

https://bugzilla.redhat.com/show_bug.cgi?id=111656.

[31] F. Schmuck and R. Haskin. GPFS: A Shared-Disk File System

for Large Computing Clusters. FAST, page 19. USENIX Asso-

ciation, 2002.

[32] C. Silvers. UBC: an efficient unified I/O and memory caching

subsystem for NetBSD. USENIX ATC, pages 54–54. USENIX

Association, 2000.

[33] VMWare. Virtual Machine Communication Interface, 2008.

http://pubs.vmware.com/vmci-sdk/index.html.

[34] VMWare. VMWare ESX Server Product Overview, 2008.

http://www.vmware.com/products/vi/esx/.

[35] C. Waldspurger. Memory resource management in VMware ESX

server. OSDI, pages 181–194, 2002.

[36] A. Watson, P. Benn, and A. G. Yoder. Multiprotocol Data Access:

NFS, CIFS, and HTTP. Technical report. Network Appliance,

2001.

[37] N. Webber. Operating system support for portable filesystem ex-

tensions. USENIX Winter Conference, pages 219–228. USENIX

Association, 1993.

[38] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller,

J. Small, J. Zelenka, and B. Zhou. Scalable performance of the

Panasas parallel file system. FAST, pages 1–17. USENIX Asso-

ciation, 2008.

[39] E. Zadok and J. Nieh. FiST: A language for stackable file sys-

tems. USENIX ATC, pages 55–70. USENIX Association, 2000.

13

http://fuse.sourceforge.net
http://wiki.xensource.com/xenwiki/XenFS
https://bugzilla.redhat.com/show_bug.cgi?id=111656
http://pubs.vmware.com/vmci-sdk/index.html
http://www.vmware.com/products/vi/esx/

	Introduction
	Supporting third-party FSs
	OS version compatibility
	Existing approaches and shortcomings
	FSVAs = VM-level FSs
	Discussion

	FSVA design
	User OS proxy to FSVA interface
	Metadata duplication
	One user OS per FSVA
	Unified buffer cache
	Resource accounting
	Migration
	Miscellaneous
	Limitations

	FSVA implementation
	Inter-proxy interface
	Unified buffer cache
	Migration

	FSVA evaluation
	Experimental setup
	Cross-version FSs via FSVAs
	Microbenchmarks
	Reducing communication overhead
	Unified buffer cache
	Migration

	Additional related work
	Conclusion

