
VSWAPPER: A Memory Swapper for Virtualized Environments

Nadav Amit Dan Tsafrir Assaf Schuster

Technion – Israel Institute of Technology

{namit,dan,assaf}@cs.technion.ac.il

Abstract
The number of guest virtual machines that can be consoli-
dated on one physical host is typically limited by the mem-
ory size, motivating memory overcommitment. Guests are
given a choice to either install a “balloon” driver to coordi-
nate the overcommitment activity, or to experience degraded
performance due to uncooperative swapping. Ballooning,
however, is not a complete solution, as hosts must still fall
back on uncooperative swapping in various circumstances.
Additionally, ballooning takes time to accommodate change,
and so guests might experience degraded performance under
changing conditions.

Our goal is to improve the performance of hosts when
they fall back on uncooperative swapping and/or operate
under changing load conditions. We find that the associ-
ated poor performance is caused by various types of su-
perfluous swap operations, ruined swap file sequentiality,
and uninformed prefetch decisions upon page faults. We ad-
dress these problems by implementingVSWAPPER, a guest-
agnostic memory swapper suited for virtual environments
that allows efficient, uncooperative overcommitment. With
inactive ballooning,VSWAPPERyields up to an order of mag-
nitude performance improvement. Combined with balloon-
ing, VSWAPPER can achieve up to double the performance
under changing load conditions.

Categories and Subject Descriptors D.4.2 [Operating Sys-
tems]: Storage Management—Virtual memory, Main mem-
ory, Allocation/deallocation strategies, Storage hierarchies

General Terms Design, Experimentation, Measurement,
Performance

Keywords Virtualization; memory overcommitment; mem-
ory balloon; swapping; paging; page faults; emulation; vir-
tual machines; hypervisor

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’14, March 1–4, 2014, Salt Lake City, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541969

1. Introduction
The main enabling technology for cloud computing is ma-
chine virtualization, which abstracts the rigid physical in-
frastructure and turns it into soft components easily managed
and used. Clouds and virtualization are driven by strong eco-
nomic incentives, notably the ability to consolidate multiple
guest servers on one physical host. The number of guests
that one host can support is typically limited by the physi-
cal memory size [4, 23, 25, 85]. So hosts overcommit their
memory to increase their capacity.

Memory overcommitment of guest virtual machines is
commonly done through a special “balloon” driver installed
in the guest [82]. Balloons allocate pinned memory pages at
the host’s request, thereby ensuring guests will not use them
so that they can be utilized for some other purpose. When a
balloon is “inflated”, it prompts the guest operating system
to do memory reclamation on its own, which often results in
the guest swapping out some of its less used pages to disk.

Ballooning is a common-case optimization for memory
reclamation and overcommitment, but, inherently, it is not
a complete solution [26, 66, 82, 86]. Hosts cannot rely on
guest cooperation, because: (1) clients may have disabled or
opted not to install the balloon [8, 51, 72]; (2) clients may
have failed to install the balloon due to technical difficulties
[75, 76, 77, 78, 79, 80, 81]; (3) balloons could reach their
upper bound, set by the hypervisor (and optionally adjusted
by clients) to enhance stability and to accommodate various
guest limitations [12, 17, 57, 67, 73, 82]; (4) balloons might
be unable to reclaim memory fast enough to accommodate
the demand that the host must satisfy, notably since guest
memory swapping involves slow disk activity [29, 44, 82];
and (5) balloons could be temporarily unavailable due to
inner guest activity such as booting [82] or running high
priority processes that starve guest kernel services. In all
these cases, the host must resort to uncooperative swapping,
which is notorious for its poor performance (and which has
motivated ballooning in the first place).

While operational, ballooning is a highly effective opti-
mization. But estimating the memory working set size of
guests is a hard problem, especially under changing condi-
tions [25, 33, 43], and the act of transferring memory pages
from one guest to another is slow when the memory is over-
committed [13, 29, 34, 44]. Consequently, upon change, it

takes time for the balloon manager to appropriately adjust
the balloon sizes and to achieve good results. Hosts might
therefore rely on uncooperative swapping during this period,
and so guests might experience degraded performance until
the balloon sizes stabilize.

We note in passing that the use of ballooning constitutes
a tradeoff that embodies both a benefit and a price. The ben-
efit is the improved performance achieved through curbing
the uncooperative swapping activity. Conversely, the price
for clients is that they need to modify their guest operating
systems by installing host-specific software, which has vari-
ous undesirable consequences such as burdening the clients,
being nonportable across different hypervisors, and entail-
ing a small risk of causing undesirable interactions between
new and existing software [37]. The price for vendors is that
they need to put in the effort to support different drivers for
every guest operating system kernel and version. (We spec-
ulate that, due to this effort, for example, there is no balloon
driver available for OS X under KVM and VirtualBox, and
the latter supports ballooning for only 64-bit guests [15].)
Therefore, arguably, reducing the overheads of uncoopera-
tive swapping could sway the decision of whether to employ
ballooning or not.

Our goal in this paper is twofold. To provide a superior
alternative to baseline uncooperative host swapping, to be
used by hosts as a performant fall back for when balloons
cannot be used. And to enhance guests’ performance while
ballooning is utilized under changing load conditions. We
motivate this goal in detail in Section 2.

We investigate why uncooperative swapping degrades the
performance in practice and find that it is largely because of:
(1) “silent swap writes” that copy unchanged blocks of data
from the guest disk image to the host swap area; (2) “stale
swap reads” triggered when guests perform explicit disk
reads whose destination buffers are pages swapped out by
the host; (3) “false swap reads” triggered when guests over-
write whole pages previously swapped out by the host while
disregarding their old content (e.g., when copying-on-write);
(4) “decayed swap sequentiality” that causes unchanged
guest file blocks to gradually lose their contiguity while be-
ing kept in the host swap area and thereby hindering swap
prefetching; and (5) “false page anonymity” that occurs
when mislabeling guest pages backed by files as anonymous
and thereby confusing the page reclamation algorithm. We
characterize and exemplify these problems in Section 3.

To address the problems, we designVSWAPPER, a guest-
agnostic memory swapper to be used by hypervisors.VSWAP-
PER is implemented as a KVM extension and is comprised
of two components. The first is the Swap Mapper, which
monitors the disk I/O performed by a guest while maintain-
ing a mapping between its unmodified memory pages and
their corresponding origin disk blocks. When such mapped
memory pages are reclaimed, they need not be written to
the host swap file; instead the Mapper records their location

in the guest’s virtual disk for future reference and discards
them, thereby eliminating the root cause of silent writes,
stale reads, decayed sequentiality, and false page anonymity.
The second component is the False Reads Preventer, which
eliminates false reads by emulating faulting write instruc-
tions directed at swapped out pages. Instead of immediately
faulting-in the latter, the Preventer saves the written data in
a memory buffer for a short while, hoping the entire buffer
would fill up soon, which would then obviate the need to
read. We describeVSWAPPERin detail in Section 4.

We evaluateVSWAPPER in Section 5 and find that when
memory is tightVSWAPPER is typically significantly bet-
ter than baseline swapping and is oftentimes competitive
to ballooning. At its worst,VSWAPPER is respectively 1.1x
and 2.1x slower than baseline and ballooning. At its best,
VSWAPPER is respectively 10x and 2x faster than baseline
and ballooning, under changing load conditions. In all cases,
combining VSWAPPER and ballooning yields performance
comparable to the optimum.

Finally, we discuss the related work in Section 6, outline
possible future work in Section 7, and conclude in Section 8.

2. Motivation
2.1 The Benefit of Ballooning

Current architectural support for machine virtualizational-
lows the host operating system (OS) to manage the mem-
ory of its guest virtual machines (VMs) as if they were pro-
cesses, and it additionally allows the guest OSes to do their
own memory management for their internal processes, with-
out host involvement.

Hardware provides this capability by supporting a two-
level address translation mechanism (Figure 1). The upper
level is controlled by the guest and is comprised of page
tables translating “guest virtual addresses” to “guest physical
addresses”. The lower level is controlled by the host and
is comprised of tables translating guest physical addresses
to “host physical addresses”. A guest physical address is
of course not real in any sense. The host can (1) map it
to some real memory page or (2) mark it as non-present,
which ensures the host will get a page fault if/when the guest
attempts to access the non-present page. Consequently, when
memory is tight, the host can temporarily store page content
on disk and read it back into memory only when handling the
corresponding page faults [60]. We denote the latter activity
asuncooperative swapping, because the host can conduct it
without guest awareness or participation .

The problem with uncooperative swapping is that it might
lead to significantly degraded performance due to unin-
tended interactions with the memory management subsys-
tem of the guest OS. A canonical example used to highlight
the problematic nature of uncooperative swapping is that of
double paging[20, 22, 82], whereby the guest kernel at-
tempts to reclaim a page that has already been swapped out
by the host, a fact which is unknown to the guest since it

guest

host

TLB fill

hardware

guest page

 table

host page

 table

GVA HPA

TLB

GPA => HPA

GVA => GPA

Figure 1. TLB translates guest virtual address (GVA) to
host physical address (HPA), disregarding guest physical address
(GPA). Upon a miss, the TLB fill hardware finds the missing trans-
lation by walking the guest and host page tables to translateGVAs
to GPAs and GPAs to HPAs, respectively. The hardware delivers
a page fault to the host if it encounters a non-present GPA⇒HPA,
allowing the host to fault-in the missing guest page, on demand.
(Reproduced from [16].)

guest memory

guest memory

balloon

guest memory

deflate inflate

virtual

disk

swap out swap in

Figure 2. Inflating the balloon increases memory pressure and
prompts the guest to reclaim memory, typically by swapping out
some of its pages to its virtual disk. Deflating relieves the memory
pressure. (Reproduced from [82].)

is uncooperative. When such an event occurs, it causes the
page contents to be faulted-in from the host swap area, only
to be immediately written to the guest swap area, generating
wasteful I/O activity that host/guest cooperation would have
obviated.

To circumvent this sort of difficulties, Waldspurger pro-
posed to delegate to the guest the decision of which pages
to reclaim, by utilizingmemory ballooning[82]. A mem-
ory balloon is a paravirtual pseudo-driver installed in the
guest. The balloon communicates with, and gets instruc-
tions from, the host through a private channel. It is capa-
ble of performing two operations:inflating and deflating,
which respectively mean allocating and freeing pages pinned
to the guest’s memory. Inflating increases memory demand,
thereby prompting the guest to run its page reclamation pro-
cedure and do memory swapping on its own (Figure 2). The
pinned pages can then be used by the host for other purposes.

Ballooning is the prevailing mechanism for managing
memory of guest virtual machines.

 0

 10

 20

 30

 40

baseline
only

balloon +
baseline

vswapper
only

balloon +
vswapper

ru
nt

im
e

[s
ec

]

38.7

3.1 4.0 3.1

Figure 3. Time it takes a guest to sequentially read a 200MB
file, believing it has 512MB of physical memory whereas in fact
only having 100MB. (This setup is analyzed in detail later on.) The
results shown are the best we have observed in favor of ballooning.

2.2 Ballooning is Not a Complete Solution

Memory ballooning typically provides substantial perfor-
mance improvements over the baseline uncooperative swap-
ping. Ballooning likewise often outperforms theVSWAPPER

system we propose in this paper. An extreme example is
given in Figure 3. The baseline is 12.5x slower than bal-
looning. And while VSWAPPER alone offers a significant
improvement over the baseline (9.7x faster), it is still 1.3x
slower than the ballooning configurations. One might there-
fore perceive swapping as irrelevant in virtualized setupsthat
employ balloons. But that would be misguided, because bal-
looning and swapping are complementary.

Since its inception, ballooning has been positioned as a
common-case optimization to memory reclamation,not a
complete solution [82]. Ballooning cannot be a complete so-
lution, because, inherently, hypervisors cannot exclusively
rely on any mechanism that requires guest cooperation, as
there is no way to ensure that the latter would cooperate.
Thus, for correctness, host-level swapping must be avail-
able to forcibly reclaim guest memory when necessary. In-
deed, when introducing ballooning, Waldspurger noted that
“[d]espite its advantages, ballooning does have limitations.
The balloon driver may be uninstalled, disabled explicitly,
unavailable while a guest OS is booting, or temporarily un-
able to reclaim memory quickly enough to satisfy current
system demands. Also, upper bounds on reasonable balloon
sizes may be imposed by various guest OS limitations” [82].
The latter size is limited, for example, to 65% of the guest’s
memory in the case of VMware ESX [12, 83].

Another reason that might result in guests lacking a
balloon is installation and configuration problems [75, 76,
77, 78, 79, 80, 81]. Installing hypervisor tools and making
them work appropriately is not always easy. For example,
Googling the quoted string “problem with vmware tools”
returns 118,000 hits, describing many related issues that
users experience. Ballooning makes the problem somewhat
more pronounced if/when clients need to experiment with

their software so as to configure memory reservations for
their VMs [17, 57, 67, 73].

Additionally, virtualization professionals attest that they
repeatedly encounter clients that disable ballooning or do
not install hypervisor tools due to misguided reasons. Bram-
bley reports that “[i]t happens more frequently than I would
ever imagine, but from time to time I find clients [that] have
not installed the VMware tools in their virtual machine [...]
Some times the tools install is overlooked or forgotten, but
every once in a while I am told something like: Does Linux
needed VMware tools? or What do the VMware tools do
for me anyways?” [8]. Ozar reports that “There’s plenty of
bad advice out on the web saying things like: just disable the
balloon driver” [51]. van Zanten concludes that the “Miscon-
ceptions on memory overcommit [amongst clients include
believing that] overcommit is always a performance hit; real
world workloads don’t benefit; the gain by overcommitment
is negligible; [and] overcommitment is dangerous” [72].

Regardless of the reason, balloons are sometimes unavail-
able or unusable. In such cases, the hypervisor falls back on
uncooperative swapping in order to do memory reclamation
and overcommitment. We submit that it is much preferable
to fall back onVSWAPPERrather than on baseline swapping.

2.3 Ballooning Takes Time

So far, we have consideredVSWAPPERas a more performant
alternative relative to baseline swapping, to only be used as
a fallback for when a balloon is not available or cannot be
utilized due to, e.g., reaching its size limit. We have noted
that VSWAPPERyields better performance than the baseline,
but we have seen that this performance is still inferior rela-
tive to when ballooning is employed (Figure 3). Ballooning,
however, is superior toVSWAPPERunder steady-state condi-
tions only. Steady-state occurs when (1) the balloon manager
has had enough time to reasonably approximate the memory
needs of the VMs and to inflate/deflate their balloons ac-
cordingly, and (2) the VMs have had enough time to react to
decisions of the balloon manager by swapping data in or out
as depicted in Figure 2.

Alas, the process of transferring memory pages from one
VM to another is slow [29], and estimating the size of guests’
working sets is hard, especially under changing conditions
[25, 33, 43]. Ballooning performance is hence suboptimal
under changing load conditions, during which the balloon
manager is approximating and adjusting the balloon sizes
and prompting the VMs to do swapping activity. Ballooning
is consequently recognized as “useful for shaping memory
over time, but inadequately responsive enough to ensure
that, for example, the rapidly growing working set of one
or more VMs can be instantly satisfied” [13]. Kim et al.
observe that “ballooning is useful to effectively reclaim idle
memory, but there may be latency, especially when inflating
a large balloon; more importantly, when an idle domain that
donates its memory becomes active, reclaimed memory must
be reallocated to it via balloon deflating [and] this process

 0

 50

 100

 150

 200

baseline
only

balloon +
baseline

vswapper
only

balloon +
vswapper

av
g.

 r
un

tim
e

[s
ec

]

153
167

88 97

Figure 4. Average completion time of ten guests running map-
reduce workloads in a dynamic setup that starts them 10 seconds
apart. (This setup is described in detail later on.)VSWAPPERcon-
figuration are up to twice as fast as baseline ballooning.

could be inefficient when an idle domain has a varying
working set, since prediction of the active working set size
is difficult” [34]. Likewise, Magenheimer et al. observe that
“if the light load is transient and the memory requirements
of the workload on the VM suddenly exceed the reduced
RAM available, ballooning is insufficiently responsive to
instantaneously increase RAM to the needed level” [44].

VSWAPPER proves to be a highly effective optimization
that can significantly enhance the performance under dy-
namic, changing memory load conditions. The effectiveness
of VSWAPPER is exemplified in Figure 4, which shows the
average completion time of ten VMs running map-reduce
workloads that are started 10 seconds apart. (The exact de-
tails of this experiment are provided in Section 5.2.) In this
dynamic scenario, non-VSWAPPERballooning worsens per-
formance over baseline swapping by nearly 10%, and it
yields an average runtime that is up to 2x slower than the
VSWAPPER configurations. Ballooning is about 10% worse
in theVSWAPPERconfigurations as well. It is counterproduc-
tive in this setup, because the balloon sizes are inadequate,
and there is not enough time for the balloon manager to ad-
just them.

We thus conclude that not only isVSWAPPERan attractive
fallback alternative for when ballooning is nonoperational,
it is also an effective optimization on top of ballooning
that significantly enhances the performance under dynamic
conditions.

2.4 The Case for Unmodified Guests

Earlier, we have provided evidence that show that clients
sometimes have trouble installing and correctly configuring
hypervisor tools, and that there are those who refrain from
installing the tools because they wrongfully believe the tools
degrade or do not affect the performance. Arguably, such
problems would become irrelevant if hypervisors are imple-
mented in a way that provides fully-virtualized (unmodified)
guests with performance that is comparable to that of mod-
ified guests. We do not argue that such a goal is attainable,
butVSWAPPERtakes a step in this direction by improving the

performance of unmodified guests and being agnostic to the
specific kernel/version that the guest is running.

A guest OS isparavirtualif it is modified in a manner that
makes it aware that it is being virtualized, e.g., by installing
hypervisor tools. Paravirtualization has well-known merits,
but also well-known drawbacks, notably requiring the effort
to continuously provide per-OS support for different kernels
and versions. In particular, it is the responsibility of thehy-
pervisor vendor to make sure that a balloon driver is avail-
able for every guest OS. Thus, from the vendor’s perspective,
it could be easier to maintain only one mechanism (the likes
of VSWAPPER), as it works the same for all OSes.

Avoiding paravirtualization could similarly be advanta-
geous for clients in terms of portability. The balloon drivers
of KVM, vSphere, XenServer, Hyper-V, etc. are incompati-
ble, such that the per-guest driver of one will not work with
another. In the era of IaaS clouds, it is in the interest of
clients to be able to move their VMs from one cloud provider
to another without much difficulty, based on the technical
and economical merits of the cloud systems, optimally in a
transparent manner [9, 42, 46]. Having paravirtualizationin-
terfaces negates this interest, as they are hypervisor specific.
For example, installing the tools of the hypervisor used by
Amazon EC2 will not serve VMs in Microsoft Azure and
vice versa. Also, every additional installation and removal
of hypervisor tools risks triggering problems, compatibility
issues, and undesirable interactions between new and exist-
ing software [37]. Anecdotal evidence based on interaction
with enterprise cloud clients indeed suggests that they tend
to prefer not to install hypervisor tools if the price in terms
of their workloads’ performance is reasonable [18].

A final benefit of refraining from installing a balloon in
a guest is that it prevents the situation ofover-ballooning,
whereby the guest OS experiences a sudden spike in mem-
ory demand that it cannot satisfy, causing it to terminate
some of its running applications before the balloon man-
ager deflates its balloon. We have conducted some limited
experiments with the VMware hypervisor, vSphere 5.1, and
learned that in this environment over-ballooning seems to be
a rare corner case.1 Conversely, in the KVM/QEMU-based
experimental setup we utilize in this paper, over-ballooning
was a more frequent event, prompting our Ubuntu guests
to terminate running applications with their out-of-memory
(OOM) or low-memory killers under memory pressure. Us-
ing VSWAPPER without ballooning eliminated this problem
as depicted in Figure 5.

3. Problems in Baseline Swapping
If we are to improve the performance of virtual systems that
employ uncooperative swapping, we need to have a thorough
understanding of why it really hinders performance. We have

1 Triggered, for example, when two guests allocate (what theyperceive
to be) pinned memory that collectively amounts to 1.5x of thephysical
memory available to the hypervisor.

 100
 120
 140
 160
 180
 200
 220
 240
 260

512MB
240MB

128MB

ru
nt

im
e

[s
ec

]

guest’s physical memory size

baseline
mapper (= vswapper-preventer)
vswapper
balloon + baseline

Figure 5. Over-ballooning in our KVM/QEMU experimental
setup, when compressing the Linux kernel code with pbzip2 from
within a 512MB guest whose actual physical memory size is dis-
played along the X axis. Ballooning delivers better performance,
but the guest kills bzip2 when its memory drops below 240MB.

characterized the root causes of the degraded performance
through careful experimentation. The aforementioned dou-
ble paging problem did not turn out to have a dominant ef-
fect or notable volume in our experiments, probably because
bare metal (non-virtualized) swapping activity is typically
curbed so long as the system is not thrashing [4], and be-
cause the uncooperative guest believes it operates in such
an environment, where memory is sufficient.2 The problems
that did turn out to have a meaningful effect and that we were
able to address are listed next.

Silent Swap Writes: So long as memory is plentiful, a
significant part of the memory of general purpose OSes is
dedicated to caching file content long after the content is
used, in the hope that it will get re-used in the future [4].
When memory gets tight, unused content is discarded and
the corresponding memory frames are freed by the OS.

In a virtual setup with uncooperative swapping, it is the
host that decides which pages to swap, whereas the guest
OS remains unaware. The host can nonetheless make an in-
formed decision, as it too maintains per-frame usage statis-
tics, allowing it to victimize unused pages. If a victim page
is dirty, the host writes it to its swap area so as to later be
able to recover the correct data.

The question is what to do if the page being reclaimed is
clean. One alternative is to just discard the page. But then
the host would need: (1) to track and maintain correspon-
dence between guest memory pages and the original file
blocks from which they were read; (2) to handle subtle con-
sistency issues (to be addressed later on); and (3) to treat
clean and dirty reclaimed pages differently, mapping the for-
mer to the original file and the latter to its swap area. The eas-
ier alternative—that hypervisors like KVM and VMware’s
vSphere favor [74, p. 20]—is to keep all reclaimed guest
pages in the host swap area, saving them there even if they

2 Conversely, when a guest is cooperative, the explicit purpose of inflating
the balloon is to prompt the guest to swap out pages, and when that happens
double paging is probably more likely.

VM
image

host
swap
area

disk

DRAM

P P

P

(1)
vm

reads
page,
and

then…

(2)
host

 swaps
page

(creates
copy)

P

P

Figure 6. Silent swap writes.

disk

DRAM (1)
VM reads P2 to “frame”

holding P, but the “frame”
is actually swapped out,

so the host first…

VM
image

host
swap
area

disk

DRAM (2)
handles

the
page-

fault by
reading

P

(3)
only to
over-
write

it with
P2

P

P2

P2

P2

P2

P

P2

P

P

P2

P2

P

g
u

e
st

 v
ie

w

h
o

st
 v

ie
w

Figure 7. Stale swap reads.

VM
image

host
swap
area

disk

DRAM

P

P (1)
vm

writes
to P’s

“frame”
so the
host…

(2)
reads P,

only
for the
VM to
over-
write

it

P

Figure 8. False swap reads.

are clean and identical to their origin file blocks. Worse, cur-
rent x86 server hardware does not yet support dirty bits for
guest pages,3 so hosts assume that reclaimed pages areal-
waysdirty. Since hosts write to disk data that is already there,
we denote this activity assilent swap writes(see Figure 6).4

Stale Swap Reads: Suppose a guest generates an explicit
I/O request to read some block from its (virtual) disk into
one of its memory pages, denotedP . The virtual I/O oper-
ation generated by the guest triggers an exit to the host that
generates a corresponding physical I/O request directed at
the physical disk. PageP is hence designated to be the des-
tination of the physical I/O operation as well.

Consider what happens ifP was previously reclaimed by
the host. In such a case, the host would experience a page
fault as part of the processing of the virtual I/O request,
before the corresponding physical request is issued.P ’s old

3 The expected features of Intel’s next generation “Haswell”server archi-
tecture (to be released not before the end of 2014 [84]) include support for
access and dirty bits for guest pages [70].
4 The chosen term is analogous to “silent stores”, which characterize cases
whereby a value being written by the store machine operationmatches the
exact value already stored at that corresponding memory location [40].

content would thus be faulted-in, only to be overwritten
shortly after by the physical I/O operation and the newly
read block. We denote such host reads, whose outcome is
never read and is instantly superseded by subsequent reads,
asstale swap reads(see Figure 7).

Note that after a file block is read, so long as the uncoop-
erative guest keeps it in its file cache, it will never again be
accompanied by a stale read, because stale reads only occur
due to explicit guest I/O requests by definition.

False Swap Reads: Memory management performed by
guests includes activities like zeroing pages before they are
(re)allocated [55], copying memory pages on write (COW)
[32], and migrating pages from one DRAM location to an-
other due to memory compaction [14], e.g., for super paging
[21, 49]. Whether by copying memory or zeroing it, guests
often overwrite full pages without regard to their old content.
Such activity has no unwarranted side effects in bare metal
setups. But in virtual setups with uncooperative swapping,
the target page being overwritten might be swapped out, gen-
erating an outcome similar to that of stale reads. Namely, the
old content would be read and immediately overwritten. We
denote such useless reads asfalse swap reads(see Figure 8).

The difference between stale and false reads is the com-
putational entity that does the overwriting. It is the disk de-
vice that overwrites the stale reads via direct memory access
(DMA). And it is the (guest) CPU that overwrites the false
reads by copying or zeroing content. Clearly, it will be harder
to identify and eliminate false reads, because the host has no
a priori knowledge about whether the CPU is going to over-
write an entire target page or only part of it; in the latter case,
the reads are necessary and hence are not false.

Decayed Swap Sequentiality: OSes perform file prefetch-
ing to alleviate the long latencies that programs endure
when forced to wait for disk reads. The most rewarding
and straightforward read pattern to anticipate is sequential
access. It is easy for the OS to notice. And it is easy to issue
reads for subsequent parts of the file beforehand. Addition-
ally, contiguous file pages tend to be contiguous on disk,
minimizing the movement of the head of the hard drive and
thus making prefetching relatively inexpensive.

Being an OS, the guest does its own prefetching from its
virtual disk. The host merely acts as proxy by issuing the
I/O operations generated by the guest. But things change
when memory becomes scarcer under uncooperative swap-
ping. When the host reclaims pages, it swaps their content
out. And from this point onward, any prefetch activity re-
lated to those pages is inevitably performed by only the host,
as the uncooperative guest is not even aware that the pages
are not there. Importantly, the swap prefetch activity isexclu-
sively initiated by the host page fault handler when it must
swap in previously swapped out content. Namely, (swap) file
prefetching is in fact a memory management issue.

The problem that consequently arises is the outcome of a
detrimental guest-host interaction. Unaware that memory is

scarce, the guest too aggressively prefetches/caches file con-
tent from its virtual disk. So the host swaps out some other
guest pages to accommodate the excessive memory demand.
It therefore happens that cached file content from the guest
virtual disk ends up in host swap area. But whereas the con-
tent blocks are contiguous on the virtual disk, they become
scattered and uncoupled in the swap area, because spatial lo-
cality is secondary when victimizing pages for reclamation
(as opposed to usage, which is primary). Host swap prefetch-
ing therefore becomes ineffective, such that the longer the
execution, the more pronounced the effect. We call this phe-
nomenondecayed swap sequentiality.

False Page Anonymity: Memory pages backed by files are
callednamed pages. Such are the pages of loaded executa-
bles and of files mapped to memory [50]. Conversely, mem-
ory pages not backed by files are calledanonymous pages.
Such are pages of heaps and stacks of processes. Notice that
any page that could be moved to the swap area is anonymous,
or else it would have been backed by some other (non-swap)
file. As explained above, all the guest disk image pages are
classified by the host as anonymous. This (mis)classification
turns out to have negative consequences.

OSes are generally configured to have some preference
to evict named pages when the need arises, because they
can be reclaimed faster without write-back to swap, and be-
cause file access patterns typically exhibit more spatial lo-
cality than access to pages residing in the swap [53], mak-
ing named pages easier to prefetch. Alas, guests are unable
to enjoy such a preferential reclamation with uncooperative
swapping, as the host (mis)classifies all their pages as anony-
mous. Worse, when the hypervisor is hosted (as is the case
with QEMU/KVM), the hypervisor executable code within
the otherwise-anonymous guest address space is classified as
named, making the host OS inclined to occasionally reclaim
these vital pages, thereby hindering performance further.We
characterize this deficiency asfalse page anonymity.

3.1 Demonstration

Having enumerated the problems in uncooperative swapping
that we have identified, we now experimentally demonstrate
the manifestation of each individual problem in isolation.
We use a simple experiment whereby one guest iteratively
runs a Sysbench benchmark configured to sequentially read
a 200MB file. The guest believes it has 512MB, whereas
in fact it is allocated only 100MB and all the rest has been
reclaimed by the host. The results are depicted in Figure 9.

The performance of baseline uncooperative swapping is
roughly U-shaped (Figure 9a), taking about 40 seconds in
the first iteration, which are halved in the second iteration,
only to gradually work their way back to 40 seconds in
the final iteration. The first iteration performance is largely
dominated by stale swap reads. Those occur when the guest
performs explicit I/O reads from its virtual disk, bringing
content into memory that have been reclaimed by the host.

The counterproductive activity is evident when examining
the number of page faults experienced by the host while
executing its own code in service of the guest (Figure 9b;
first iteration). From the second iteration onward, no stale
reads occur because the guest stops generating explicit I/O
requests, believing it caches the entire file in memory and
servicing all subsequent reads from its file cache. Thus, it is
the absence of stale reads from all iterations but the first that
accounts for the left side of the aforementioned U-shape.

With the exception of the first iteration, all page faults
shown in Figure 9b are due to the hosted hypervisor code
faulted-in while it is running. The code was swapped out
because it was the only named part of the guest’s address
space, a problem we have denoted as false page anonymity.
The problem becomes more pronounced over time as evident
by the gradual increase in the baseline curve in Figure 9b.

Contributing to the gradually worsened performance
(second half of U-shape) is the increasingly decayed sequen-
tially of the host swap area. The file content is read to mem-
ory and then swapped out to disk, over and over again. As the
content moves back and forth between disk and memory, it
gradually loses its contiguity. Special locality is diminished,
and host swap prefetching becomes ineffective. This nega-
tive dynamic is evident when plotting the number of page
faults that fire when the guest accesses its memory in Figure
9c. Such faults occur due to nonpresent GPA⇒HPA map-
pings5 while theguestis running (as opposed to Figure 9b,
which depicts faults that occur while thehostis running, ser-
vicing explicit virtual I/O requests generated by the guest).
Every such page fault immediately translates into a disk read
from the host swap area, which may or may not succeed to
prefetch additional adjacent blocks. Importantly, only ifthe
prefetch is successful in bringing the next file block(s) to be
accessed will the next memory access(es) avoid triggering
another page fault. Thus, amplified sequentiality decay im-
plies greater page fault frequency, which is what we see in
Figure 9c for the baseline curve. (Conversely, theVSWAPPER

curve implies no decay, as it is horizontal.)
Baseline uncooperative swapping copies unchanged blocks

of data to the swap area, although the corresponding source
blocks are identical and stored within the guest disk image.
We have denoted this phenomenon as silent swap writes. We
find that the volume of this activity is significant, but that it
contributes equally to the degraded performance exhibited
by all iterations (Figure 9d).

The remaining problem we have not yet demonstrated is
that of false reads, which occur when the guest attempts
to overwrite memory pages that have been reclaimed by
the host, e.g., when reallocating and initializing a page that
previously held some information the guest no longer needs.
We did not encounter false reads in the above Sysbench
benchmark because it reads, rather than writes. We therefore
extend the benchmark such that after it finishes all the read

5 See Figure 1 for the meaning of the acronyms GPA and HPA.

 0

 10

 20

 30

 40

 50

 1 2 3 4 5 6 7 8

se
co

nd
s

(a)

sysbench
runtime

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8ho
st

 p
ag

e
fa

ul
ts

 [1
00

0s
]

(b)

stale reads &
false anonymity

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7 8gu
es

t p
ag

e
fa

ul
ts

 [1
00

0s
]

(c)

decayed
sequentiality

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6 7 8

se
ct

or
s

[1
00

0s
]

(d)

silent
writes

baseline
vswapper

balloon+base

Figure 9. Sysbench iteratively reads a 200MB file within a 100MB guest that believes it has 512MB. The X axis shows the iteration
number. The Y axis shows: (a) the benchmark’s runtime; (b) the number of page faults triggered while the host code is running (first iteration
faults are caused by stale reads, and the rest are due to falsepage anonymity); (c) number of page faults triggered while the guest code is
running (a result of decayed sequentially); and (d) the number of sectors written to the host swap area (a result of silentwrites).

 0

 5

 10

 15

 20

 25

ru
nt

im
e

[s
ec

]

baseline
vswapper w/o preventer
vswapper
balloon + baseline (crashed)

 0

 25

 50

 75

 100

 125

di
sk

 o
ps

 [t
ho

us
an

ds
]

Figure 10. Effect of false reads on a guest process that allocates
and accesses 200MB.

activity, it forks off a process that allocates and sequentially
accesses 200MB. The simplest way to get a sense of the
affect of false reads on this newly added microbenchmark is
to measure its performance when usingVSWAPPERwithout
and with its False Reads Preventer component. Figure 10
shows the results. (The balloon performance is missing since
it crashed the workload due to over-ballooning.) Comparing
the twoVSWAPPERconfigurations, we see that enabling the
Preventer more than doubles the performance and that the
performance is tightly correlated to the disk activity.

4. VSWAPPER Design and Implementation
We mitigate the problems of uncooperative swapping by
introducing two new mechanisms. The first is the Swap
Mapper (§4.1), which tracks the correspondence between
disk blocks and guest memory pages, thereby addressing the
problems of silent writes, stale writes, decayed sequentially,
and false page anonymity. The second mechanism is the
False Reads Preventer (§4.2), which temporarily buffers data
written by unaware guests to swapped out pages, thereby
addressing the problem of false reads.

4.1 The Swap Mapper

The poor performance of uncooperative swapping is tightly
related to how guests utilize page caches, storing in memory
large volumes of currently unused disk content because they

(wrongfully) believe that memory is plentiful. Hypervisors
need to learn to cope with this pathology if they are to ef-
ficiently exercise uncooperative swapping. The Swap Map-
per achieves this goal by tracking guest I/O operations and
by maintaining a mapping between corresponding disk and
memory locations. When used carefully (so as to avoid sub-
tle consistency issues), the mapping equips the hypervisor
with the much-needed ability to treat relevant guest pages
as file-backed. This ability counteracts the harmful effectof
large page caches within unaware guests, because it allows
the hypervisor to reasonably identify the pages that popu-
late the cache and to efficiently discard them when the need
arises, without suffering from undesirable consequences.

The Mapper’s goal is to bride a semantic gap. It needs to
teach the hypervisor which guest pages are backed by which
disk blocks. This goal could in principle be achieved through
intrusive modifications applied to the guest [59] or through
exhaustive memory/disk scans. But we favor a much simpler
approach. Our Mapper leverages the fact that guests’ disk
I/O is overwhelmingly implemented via emulation [65] or
paravirtualization [3, 54], whereby the hypervisor services
all I/O request directed at the virtual disk. The Mapper can
thus interpose on this activity and maintain the required
association between disk blocks and memory pages.

The core of our Mapper implementation is simple. In the
KVM/QEMU environment, each guest VM resides within
(and is serviced by) a regular user-level QEMU process. The
guest I/O requests are trapped by QEMU, which uses stan-
dardread andwrite system calls to satisfy the requests. Our
Mapper replaces these reads/writes withmmap system calls
[50], which provide the basic functionality of mapping guest
pages to disk blocks, out of the box. The pages thus become
named and are treated by the host Linux kernel accordingly.
We establish “private” mappings (via standardmmap flags),
which preserve the per-page disk association only so long as
the page remains unchanged. A subsequent write instruction
directed at the page will prompt the host kernel to copy-on-
write the page and to make it anonymous. Thus, the disk-
to-memory association is correctly maintained only as long

as the content of the memory page is identical to the cor-
responding disk blocks. Future memory store operations by
the unaware guest willnot alter the disk.

As a result of this change, native uncooperative swapping
done by the host Linux kernel automagically becomes more
effective. Since the pages are named, they are evicted more
frequently than anonymous pages, as their reclamation and
retrieval is more efficient [53] (no false page anonymity).
Specifically, when the kernel’s page frame reclaiming mech-
anism selects a guest page for eviction, it knows the page
is backed by a file, so it discards the page by discarding
the mapping, instead of by swapping the page out (no silent
swap writes). Later on, if/when the reclaimed page is ac-
cessed, the kernel knows from where to retrieve it using the
information associated with the faulting non-present pageta-
ble entry. Realizing the page is backed by a file, the kernel
re-maps it instead of swapping it in, disregarding the specific
target memory frame (no stale swap reads). At that point,
host prefetch mechanisms perform disk read-ahead, benefit-
ing from the sequential structure of the original guest disk
image (no decayed swap sequentiality).

Data Consistency: While the core idea is simple, we need
to resolve several issues to make the Mapper correct, as the
mmap mechanism was not designed to be used in such a
way. The first problem stems from the fact that a memory
mapped file region can, in parallel, be written to through
ordinary I/O channels. To exemplify this difficulty, suppose
that (1) a named pageP with contentC0 is mapped to
memory, that (2)P previously resided in DRAM because
the guest accessed it via the memory, that (3)C0 currently
resides on disk becauseP ’s frame was reclaimed by the host,
and that (4) the guest has now issued an explicit disk I/O
write directed at the blocks holdingC0 in order to write to
them new contentC1. In this situation, it would be an error
to naively process the latter I/O write, because, later, if the
guest readsP via memory, it will rightfully expect to getC0,
but it will instead erroneously getC1 (afterP is faulted in).

To solve the problem, we modify the hostopen system
call to support a new flag, used by QEMU whenopening
the guest virtual disk file. The flag instructs the kernel to
invalidate page mappings when associated disk blocks are
being written to through the corresponding file descriptor.
Invalidation involves readingC0 and delaying the processing
of C1 until C0 is fetched. Then, the mapping is destroyed and
C1 is finally written to disk. The host kernel (not QEMU) is
the natural place to implement this semantic extension, as
the kernel maintains the page mappings.

Host Caching & Prefetching: It is generally recommended
to turn off host caching and prefetching for guest disk images
[28, 39, 61, 62]. The reasoning is that guest OSes do their
own caching/prefetching, and that they are inherently bet-
ter at it because the hypervisor suffers from a semantic gap.
(For example, a guest knows about files within its virtual
disk, whereas, for the hypervisor, the disk is just one long se-

quence.) For this reason, all non-VSWAPPERconfigurations
in the evaluation section (§5) have host caching disabled.
Conversely,VSWAPPER must utilize the host “caching” for
the prosaic reason thatmmaped pages reside in the page
cache. Our implementation, however, carefully makes sure
that, beyond this technicality, the host page cache never truly
functions as a cache; namely, it holds virtual disk blocks only
if they are currently residing in guest memory. Thus, when a
guest writes to a host filed-backed page, the page is COWed
(due to being privately mapped), and thenVSWAPPERexplic-
itly removes the source page from the page cache.

In all configurations, host prefetching activity is prompted
by page faults. It is limited to reading content that is already
cached by the guest and has been reclaimed due to uncooper-
ative swapping. But whereas non-VSWAPPERconfigurations
only prefetch from their host swap area, theVSWAPPERde-
sign allows it to prefetch these pages from the disk image.

Using the host page cache does not break crash consis-
tency guarantees of guest filesystems. KVM supports crash
consistency by default with its “writethrough” disk caching
mode, which synchronizes writes to the disk image upon
guest flush commands [30]. Guests are notified that their
flushes succeed only after the synchronization, thereby en-
suring the Mapper does not deny crash consistency.

Guest I/O Flow: Explicit disk read requests issued by the
guest are translated by QEMU to areadv system call in-
vocation, which reads/scatters a contiguous block sequence
to/within a given vector of guest pages. There is nommapv

equivalent. So, instead, the Mapper code within QEMU initi-
ates reading the blocks to the page cache by invokingreada-

head (an asynchronous operation). It then iteratively ap-
plies mmap to the pages, using the “populate”mmap flag.
The latter ensures that the readahead completes and that the
pages are mapped in QEMU’s page tables, thereby respec-
tively preventing future major and minor page faults from
occurring when QEMU accesses the pages. Alas, an un-
desirable side-effect of using “populate” is that the pages
will be COWed when they are first accessed. We therefore
patch the host’smmap to support a “noCOW” flag and thus
avoid this overhead. Lastly, the Mapper iteratively invokes
ioctl, requesting KVM to map the pages in the appropriate
GPA⇒HPA table so as to prevent (minor) page faults from
occurring when the guest (not QEMU) accesses the pages.

A second issue that immediately follows is how to cor-
rectly mmap a guest pageP that is being written to a disk
block B via a write request that has just been issued by the
guest. Due to our newly addedopen flag,B is notmmaped
right before the request is processed, even ifB was accessed
in the past. Conversely, we wantB to bemmaped right after
the request is processed, such that, later, ifP is reclaimed,
we will not need to swap it out. The Mapper therefore:
(1) writesP into B using thewrite system call, (2) waits
for the write to complete, (3)mmaps P to B, and (4) only
then notifies the guest that its request is completed.

Page Alignment: An inherent constraint of file-backed
memory is that it mandates working in whole page gran-
ularity. The standardmmap API indeed dictates that both
the file offset and the mapped memory address should be
4KB-aligned. The Mapper therefore must arrange things
such that virtual disk requests emitted by guests would com-
ply with this requirement. Our Mapper imposes compliance
by informing the guest that its virtual disk uses 4KB logical
sector size upon the creation of the virtual disk image. This
approach will not work for preexisting guest disk images that
utilize a smaller block size. Such preexisting images will re-
quire a reformat. (We remark that disks are expected to grad-
ually shift to employing a 4KBphysicalblock size [11].)

4.2 The False Reads Preventer

A dominant contributor to the poor performance of unco-
operative swapping is the host’s inability to a-priori know
when guests overwrite entire pages and discard their old con-
tent. Such events routinely happen, e.g, when guests allocate
pages to new processes. Unaware, the hypervisor needlessly
reads the old content if it happens to be swapped out, a costly
operation paid only because the host does not understand the
guest semantics. The False Reads Preventer alleviates this
problem by trapping guest write instructions directed at a
swapped out pages, emulating them, and storing their result
in page-sized, page-aligned buffers. If a buffer fills up, the
Preventer maps it to the guest, thereby eliminating the use-
less disk accesses, which we have denoted as “false reads”.

The Preventer does not utilize any knowledge about guest
OS internals, nor does it resort to paravirtual guest/host col-
laboration that others deem necessary [59]. Instead, it op-
timistically intercepts and emulates guest write instructions
directed at swapped out pages, hoping that all bytes com-
prising the page would be overwritten soon and thus would
obviate the need to read the old content from disk. When
that happens, the Preventer stops emulating and repurposes
its write buffer to be the guest’s page.

The Preventer can sustain the emulation of all writes and
of all reads directed at already-buffered data. But emulation
is slow, so we stop emulating a page when a predetermined
interval has elapsed since the page’s first emulated write
(1ms), or if the write pattern is not sequential. We further
avoid emulating a newly accessed page if too many pages
are already being emulated (32). (The two values—1ms and
32—were empirically set.) In both cases, the corresponding
missing page is read asynchronously. The guest is allowed
to continue to execute so long as it does not read unavailable
data; if it does, then the Preventer suspends it. When the disk
content finally arrives, the Preventer merges the buffered and
read information, and it resumes regular execution.

The Preventer design is architected to avoid a data hazard
created by the fact that, in addition to the guest, the guest’s
memory pages can also be directly accessed by QEMU,
which is the user-level part of the hypervisor that resides in
an ordinary (non-virtualized) process. To preserve correct-

component user (QEMU) kernel sum
Mapper 174 235 409
Preventer 10 2451 2461
sum 184 2686 2870

Table 1. VSWAPPERlines of code.

ness and consistency, QEMU must observe exactly the same
data as its guest, motivating the following design.

Let P be a reclaimed page frame that is being emulated.
The data we maintain forP includes the time ofP ’s first em-
ulated write, a page-sized buffer that stores emulated writes
at the same offset as that of the real writes, the number of
buffered bytes, and a bitmap marking all the buffered bytes,
utilized to decide if reads can be emulated and to determine
how to merge with the original disk content. The data struc-
ture also contains a reference to the original memory map-
ping of the reclaimed page (avm area struct denoted here
asMold), to be used for reading the preexisting data in case
a merge is required. Upon the first emulated write toP , we
break the association betweenP andMold, and we associate
P with a newvm area struct (denotedMnew).

Note thatP is respectively accessed by QEMU and the
guest via HVAs and GVAs (see Figure 1), such that the two
types of accesses trigger different page fault handlers. Fault-
ing HVAs trigger a “regular” handler (denotedh), whereas
faulting GVAs trigger a special virtualization handler (de-
notedg).6 The Preventer associatesMnew with anh handler
that, when invoked, terminates the emulation by performing
the merger between the buffer and the old content, reading
the latter viaMold if it is needed; QEMU is suspended until
h finishes, ensuring it will always get up-to-date data when it
faults. In contrast, the Preventer patchesg to sustain the em-
ulation by buffering writes and servicing reads if their data
has been previously buffered. Wheng decides to terminate
the emulation (e.g., because 1ms has elapsed since the first
write), it initiates the termination by invokingh.

We have identified a number of emulated instructions that
allow the Preventer to recognize outright that the entire page
is going to be rewritten, e.g., when the x86 REP prefix is
used [31]. The Preventer short-circuits the above mechanism
when such instructions are encountered. We expect that ad-
vanced binary translation techniques [1] could do better.

The number of lines of code ofVSWAPPER is detailed in
Table 1. TheVSWAPPERsource code is publicly available [2].

5. Evaluation
We implementVSWAPPERwithin QEMU [63] and KVM, the
Linux kernel-based hypervisor [35]. We run our experiments
on a Dell PowerEdge R420 server equipped with two 6-
core 1.90GHz Intel Xeon E5-2420 CPUs, 16GB of memory,

6 This handler services “extended page table (EPT) violations”, which occur
when the hardware traverses GPA⇒HPA page table entries (bottom of
Figure 1) that are marked non-present, e.g., due to uncooperative swapping.

 0

 100

 200

 300

 400

51
2

44
8

38
4

32
0

25
6

19
2

(a)

disk operations
[thousands]

 0

 100

 200

 300

 400

51
2

44
8

38
4

32
0

25
6

19
2

(b)

written sectors
[thousands]

 0

 1

 2

 3

51
2

44
8

38
4

32
0

25
6

19
2

(c)

pages scanned
[millions]

Figure 11. Pbzip’s 8 threads compressing Linux within a guest
whose actual memory size is displayed along the X axis (in MB).

 20

 21

 22

 23

51
2

44
8

38
4

32
0

25
6

19
2

(a)

runtime
[minutes]

baseline
mapper

vswapper
balloon+base

 0

 20

 40

 60

 80

 100

51
2

44
8

38
4

32
0

25
6

19
2

(b)

preventer remaps
[thousands]

Figure 12. Compiling the Linux kernel source code with Kern-
bench. (The X axis is the same as in Figure 11.)

and a 2TB Seagate Constellation 7200 enterprise hard drive.
Host and Linux guests run Ubuntu 12.04, Linux 3.7, and
QEMU 1.2 with their default settings. The Windows guest
runs Windows Server 2012. Guests have 20GB raw image
disk drives, paravirtual disk controllers, and 1–2 VCPUs as
indicated. We disable kernel memory deduplication (KSM)
and compression (zRAM) to focus on ballooning. We con-
strain guest memory size using container groups (“cgroups”)
as recommended [38]. The host caching policy is as speci-
fied in §4.1.

We evaluate five configurations: (1) “baseline” solely re-
lies on uncooperative swapping; (2) “balloon” employs bal-
looning and falls back on uncooperative swapping; (3) “map-
per” denotesVSWAPPERwithout the Preventer; (4) “vswap-
per” consists of both Mapper and Preventer; and (5) “balloon
+ vswapper” combines ballooning andVSWAPPER. We typ-
ically run each experiment 5 times and present the average.
When balloon values are missing it is because the workload
crashed due to over-ballooning (§2.4).

5.1 Controlled Memory Assignment

We begin by executing a set of experiments whereby we
systematically reduce and fixate the size of the memory as-
signed to a 1-VCPU Linux guest, such that the guest be-
lieves it has 512MB of memory but it may actually have less.
Balloon configuration communicate this information to the
guest by appropriately inflating the balloon driver, whereas
baseline andVSWAPPER configurations leave the guest un-
aware. The exact memory size allocated to the guest is dis-
played along the X-axis of the respective figures.

Pbzip2: In our first experiments set, the guest runs pbzip2,
which is a parallel implementation of the bzip2 block-sorting
file compressor [19]. We choose this multithreaded bench-
mark to allow the baseline configuration to minimize un-
cooperative swapping overheads by leveraging the “asyn-
chronous page faults” mechanism employed by Linux guests
[48]. Asynchronous pages faults exploit inner-guest paral-
lelism to allow guests to continue to run despite experiencing
page faults caused by host swapping (the host delivers a spe-
cial page fault exception advising the guest to context switch

or else it would block). We evaluate the guest performance
by applying pbzip2 to the Linux kernel source code.

The execution time is shown in Figure 5, indicating that
despite the asynchronous faults, the baseline performanceis
rapidly worsened with memory pressure, yielding an execu-
tion time up to 1.66x slower than ballooning.VSWAPPERand
its mapper-only configuration improve upon the baseline,
respectively yielding performance within 1.03–1.08x and
1.03–1.13x of ballooning, since they significantly reduce the
number of disk operations (Figure 11a). Baseline disk opera-
tions include a notable component of writes, which is largely
eliminated byVSWAPPER((Figure 11b), thus making it ben-
eficial for systems that employ solid state drives (SSDs).

Kernbench: For our second benchmark evaluation, we re-
produce an experiment reported in a VMware white paper
[74] in which the authors executed Kernbench—a standard
benchmark measuring the time it takes to build the Linux
kernel [36]—inside a 512MB guest whose actual memory
allocation was 192MB. Relative to the runtime measured
when the guest was allocated the entire 512MB, the authors
reported 15% and 4% slowdowns with baseline uncoopera-
tive swapping and ballooning, respectively. Although our ex-
perimental environment is different, we observe remarkably
similar overheads of 15% and 5%, respectively (Figure 12a).

The performance of the baseline, mapper, andVSWAPPER

configurations relative to ballooning is 0.99–1.10x, 1.00–
1.05x, and 0.99–1.01x faster/slower, respectively. The Pre-
venter eliminates up 80K false reads (Figure 12b), reducing
guest major page faults by up to 30%.

Eclipse: Our final controlled memory experiments set ex-
ecutes Eclipse workloads that are part of the DaCapo Java
benchmark suite [5]. (Eclipse is a popular integrated de-
velopment environment.) Java presents a challenge for vir-
tual environments, as its garbage collector subsystem causes
an LRU-related pathological case of degraded performance
when the physical memory allocated to the guest is smaller
than the Java virtual machine (JVM) working set [74].

Figure 13 depicts the benchmark results, executed us-
ing OpenJDK and a 128MB heap. While it manages to
run, ballooning is 1–4% faster than the other configurations,

 150

 200

 250

 300

 350

512 448 384 320 256

ru
nt

im
e

[s
ec

]

guest memory limit [MB]

baseline
mapper
vswapper
balloon+base

Figure 13. Eclipse IDE workload from the
DaCapo benchmark suite.

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4 5 6 7 8 9 10

gu
es

t a
ve

ra
ge

 r
un

tim
e

[s
ec

]

guests

balloon+base
baseline
vswapper
balloon+vswap

Figure 14. Phased execution of multiple
guests running the MapReduce runtime.

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100

m
em

or
y

si
ze

 [M
B

]

time [sec]

guest page cache
excluding dirty

tracked by mapper

Figure 15. Size of page cache as time pro-
gresses. (From the Eclipse benchmark.)

but Eclipse is occasionally killed by the ballooning guest
when its allocated memory is smaller than 448MB. Rela-
tive to VSWAPPER, the baseline and mapper configurations
are 0.97–1.28x and 1.00–1.08x faster/slower, respectively.

5.2 Dynamic Memory Assignment

So far, we have utilized benchmarks whereby the amount of
memory allocated to guests is fixed. Virtualization setups,
however, commonly run multiple guests with memory de-
mands that dynamically change over time. To evaluate the
performance in this scenario, we execute a workload whose
dispatch is phased so that guests start the benchmark exe-
cution one after the other ten seconds apart. Handling such
workloads is challenging for balloon managers, yet similar
resource consumption spikes in virtualization environments
are common [64].

In our dynamic experiments set, we vary the number of
guests from one to ten. Each guest runs the Metis Mapreduce
runtime for multicores [7, 45, 52], which comes with a
benchmark suite comprised of 8 applications. The results we
present here are of the word-count application, which uses
a 300MB file holding 1M keys. The memory consumption
of Metis is significant, as it holds large tables in memory,
amounting to roughly 1GB in this experiment. We assign
each guest with 2 VCPUs and 2GB of memory, and we
limit the host memory to 8GB so it would have to eventually
overcommit. (We note that each guest virtual disk is private,
and soVSWAPPER does not exploit file caching to improve
performance by saving fewer data copies.)

We employ MOM, the Memory Overcommitment Man-
ager [41], to manage and adapt the balloon sizes. MOM is
a host daemon which collects host and guest OS statistics
and dynamically inflates and deflates the guest memory bal-
loons accordingly. MOM requires that we use libvirt [6], a
virtualization API for controlling virtual machines.

Figure 14 presents the average runtime as a function of
the number of guests comprising the experiment. Running
seven or more guests creates memory pressure. And from
that point on we observe a cascading effect, as guests exe-

cution is prolonged due to host swap activity and therefore
further increases memory pressure. Clearly, the slowdown is
lowest when usingVSWAPPER, whereas memory ballooning
responds to guest memory needs belatedly. Relative to the
combination of ballooning andVSWAPPER, we get that: bal-
looning only, baseline, andVSWAPPERare 0.96–1.84x, 0.96–
1.79x, and 0.97–1.11x faster/slower, respectively, suggesting
that the combination is the preferable configuration.

5.3 Overheads and Limitations

Slowdown: VSWAPPERintroduces slowdowns which might
degrade the performance by up to 3.5% when memory is
plentiful and host swapping is not required. The slowdowns
are mostly caused by our use of Linuxmmap, which was ad-
vantageous for simplifying our prototype but results in some
added overheads. Firstly, because usingmmap is slower
than regular file read [27]. And secondly, because an (exit-
inducing) COW is required when a named page is modified,
even if there are no additional references to that page. The
latter overhead could be alleviated on hardware that supports
dirty bits for virtualization page tables, which would allow
VSWAPPER to know that pages have changed only when it
needs to, instead of immediately when it happens.

Another source of overhead we have uncovered is in-
troduced by the page frame reclamation mechanism, which
scans the pages in search for eviction candidates when the
need arises. Due to subtleties related to how this mechanism
works in Linux, the impact ofVSWAPPERis such that it up to
doubles the length of the mechanism traversals when mem-
ory pressure is low (Figure 11c).

The aforementioned 3.5% overhead can be compared to
the overhead of “Geiger”, a guest page cache monitoring
mechanism by Jones et al., which introduced overheads of
up to 2% [33]. Part of the 1.5% difference is probably ac-
counted for by the fact that Geiger was evaluated on a sys-
tem that did not support guest memory virtualization in hard-
ware, forcing the hypervisor to write-protect newly mapped
pages in the baseline setup and thereby creating exits that
Geiger leveraged for tracking.

Memory Consumption: The Mapper’s use of the native
Linux memory area data structures (vm area struct and
i mmap) increases memory consumption and might frag-
ment the hypervisor address space. These structures con-
sumes 200 bytes, so theoretically, in the worst case, the over-
head might be 5% of the guest memory size, if every 4KB
page requires its own structure. Underlying this upper bound
is our decision to use the already existingmmap mechanism.
A dedicated mechanism for tracking guests page cache can
achieve a similar goal with only 20 bytes per page [33]. Em-
pirically, Mapper consumed not more than 14MB across all
of our experiments.

The Mapper is quite successful in tracking only the mem-
ory pages that reside in the guest page cache. The Map-
per’s effectiveness is illustrated in Figure 15, which shows
that the memory size it tracks coincides with the size of the
guest page cache excluding dirty pages. The Mapper cor-
rectly avoids tracking dirty pages, as they do not correspond
to disk blocks. The Mapper occasionally tracks more pages
than found in the page cache (time≈50 in Figure 15), be-
cause guests sometimes repurpose pages holding disk con-
tent for other uses. The Mapper will break the disk associa-
tion of these pages when they are subsequently modified.

The Mapper would lose track of disk-backed pages if
guests perform memory migration, e.g., for superpages [21,
49]. This drawback could be eliminated in a straightfor-
ward manner via paravirtual interfaces [71]; the question
of whether it could be efficiently done for fully virtualized
guests remains open, but the wealth of efficient memory
deduplication techniques [23] suggests the answer is yes.

5.4 Non-Linux Guests and Hosts

Windows: We validate the applicability ofVSWAPPER

to non-Linux guests using a VM running Windows 2012
Server. Windows does not align its disk accesses to 4KB
boundaries by default. The hypervisor should therefore re-
port the disk uses 4KB physicaland logical sectors to en-
force the desired behavior. Our patched QEMU reports a
4KB physical sector size. But alas, QEMU virtual BIOS
does not support 4KB logical sectors. We therefore format-
ted the Windows guest disk before installation as if the BIOS
reported 4KB logical sectors by: creating aligned partitions,
setting the cluster size to be 4KB, and using large file record
segments (FRS). We remark that despite this configuration
we still observed sporadic 512 bytes disk accesses.

Our first experiment consisted of Sysbench reading a
2GB file from within a single VCPU 2GB guest that is al-
located only 1GB of physical memory. The resulting aver-
age runtime withoutVSWAPPERwas 302 seconds, which was
reduced to 79 seconds withVSWAPPER. Our second experi-
ment consisted of bzip2 running within the same guest with
512 MB of physical memory. The average runtime without
and withVSWAPPERwas 306 and 149 seconds, respectively.

balloon enabled balloon disabled
runtime (sec) 25 78
swap read sectors 258,912 1,046,344
swap write sectors 292,760 1,042,920
major page faults 3,659 16,488

Table 2. Runtime and swap activity of executing a 1GB sequen-
tial file read from within a Linux VM on VMware Workstation.

VMware: In our last experiment we attempt to experimen-
tally demonstrate that the benefit of using aVSWAPPER-like
system is not limited to just KVM. We use the VMware
Workstation 9.0.2 hypervisor as an example, running the
Sysbench benchmark to execute a sequential 1GB file read
from within a Linux guest. We set the host and guest mem-
ory to 512MB and 440MB, and we reserve a minimum of
350MB for the latter. The results (Table 2) indicate that dis-
abling the balloon more than tripled the execution time and
created substantial additional swap activity, coincidingwith
VMware’s observation that “guest buffer pages are unnec-
essarily swapped out to the host swap device” [74]. (It is
interesting to note that a similar benchmark on KVM using
VSWAPPERcompleted in just 12 seconds.)

6. Related Work
Uncooperative memory overcommitment can be performed
using memory hot-plug. Physical memory hot-plug is an ar-
chitectural feature which can be used to notify a guest OS
that memory DIMMs were added or removed to its sys-
tem and by these means update it of the hypervisor memory
constraints. Since memory hot-plug use standard Advanced
Configuration and Power Interface (ACPI) notifications,
they can be supported without guest OS porting. Nonethe-
less, memory hot-unplugis a complicated operation—it can
take long time to complete due to memory migration, it
may fail [58], and it is not supported by popular OS, such
as Windows [26]. Importantly, exactly like a balloon, using
memory hot-plug might cause guest processes to fail due to
sudden memory pressure.

Many before us have noticed that ballooning has limita-
tions. A common approach to address them is to enhance the
balloon by introducing intrusive modifications to the guest
OS. CMM2 is a collaborative memory management mecha-
nism for Linux guests that takes well-informed paging deci-
sions based on page usage and residency information [59].
CMM2 can discard free and file-backed guest page frames
and thereby eliminate unwarranted swap writes. But unlike
VSWAPPER, CMM2 requires substantial intrusive guest col-
laboration to learn page states and to notify the guest OS that
pages are discarded. Transcendent memory [44] is a pool of
underutilized guest memory that may allow the hypervisor to
respond more quickly to guest memory needs. It too requires
the guest’s cooperation. Applications level ballooning [56]
can mitigate the negative repercussion of ballooning on ap-

plications that manage their own memory, but, likewise, it
requires intrusive modifications of applications.

Clearly, improved memory utilization can lead to greater
server consolidation. Such solutions include transparent
page sharing [10], cooperative page sharing [47], memory
deduplication [68] and sub-page level sharing [23]. All these
solutions are orthogonal to the way memory is overcommit-
ted and are therefore complementary solutions toVSWAP-
PER, not competing ones.

The techniques used byVSWAPPERmay resemble exist-
ing mechanisms which are used for different purposes. Disco
by Bugnion et al. [10] uses copy-on-write disks for effi-
cient disk sharing across multiple guests in order to elimi-
nate memory redundancy, and, to this end, they use memory
mappings of a single shared disk. As copy-on-write disks are
merely intended for sharing purposes, such systems were not
considered for uncooperative swapping enhancements and
are not used when disks are not shared. Lu and Shen [43] use
techniques somewhat similar to ours for purposes of guest
memory access tracing. To trace guest memory accesses ef-
ficiently, they use the hypervisor for caching pages evicted
by the guest. Thus, their mechanism is not designed and is
not suitable for efficient uncooperative swapping.

Cellular Disco [22] addresses two cases of unwarranted
disk traffic in virtualization environments: writes of unallo-
cated guest pages to the host swap, and double-paging in
which the guest swaps out a page that the hypervisor al-
ready swapped out. Neither of these cases are addressed by
VSWAPPER. Cellular Disco requires guest OS annotations to
avoid writing unallocated guest pages to the host swap. In
contrast,VSWAPPERrequires no such cooperation.

Jones et al. [33] developed the Geiger system for moni-
toring guests buffer cache. In their work, they exemplify how
the system can be used for eviction based secondary cache.
While the Mapper mechanism uses similar monitoring tech-
niques, it does so for a different purpose of improving host
swapping. Accordingly, unlike Geiger use-case, the Mapper
never allows the hypervisor to cache data which the guest
already evicted.

Useche [69] proposed to use asynchronous page faults
and write buffering in OSes, to allow non-blocking writes
to swapped-out pages. Their evaluation revealed that such a
system has limited potential, as the additional overhead often
surpasses the benefits obtained by reducing I/O wait time. In
contrast, our work shows that write buffering has great po-
tential when deployed by hypervisors to enhance uncooper-
ative swapping performance. The disparity in results is due
to the different nature and purposes of the systems. Useche
strives to handle page faults asynchronously in OS whereas
we eliminate them completely in hypervisors.

7. Future Work
VSWAPPER improves the performance of guests running on
uncooperative swapping hypervisors. But guests usually per-

form better when collaborative memory mechanisms are
used. Additional causes for low uncooperative swapping
performance can be addressed.

OSes gather knowledge about their pages and use it for
paging decisions. Although such information is located in
intrinsic OS data structures, the hypervisor may be able to
infer some of it and base its paging decisions on common
OS paradigms. For instance, since OSes tend not to page out
the OS kernel, page tables, and executables, the hypervisor
may be able to improve guest performance by adapting a
similar policy. This information can already be acquired by
monitoring the guest state upon guest page faults, yet hard-
ware enhancements may perform such tracking even more
efficiently. For example, if the use of guest page frames was
logged, the hypervisor could improve its page reclamation
policy by monitoring the guest use of a guest page frame
for kernel executable, consequently assigning low priority to
reclamation of this guest page frame.

This research studies the use ofVSWAPPERwithout mem-
ory ballooning. ButVSWAPPER can be used in conjunction
to ballooning, to compensate for ballooning disadvantages
when the host experiences transitory memory pressures.
VSWAPPERcan potentially decrease the overheads and disk
traffic and thereby improve performance. The interaction be-
tween the Mapper and memory ballooning should be further
studied. One aspect of such problem is that the Mapper in-
creases the similarity of the host page eviction policy and
that of the guest, and may therefore increase the likelihood
both would page out the same page, aggravating the double-
paging phenomena which increases disk traffic.

VSWAPPER techniques may be used to enhance live mi-
gration of guests and reduce the migration time and network
traffic by avoiding the transfer of free and clean guest pages.
Previous research suggested to do so by inflating a balloon
prior to live migration [24], yet the Mapper and the Preven-
ter techniques can achieve the same goal without guest co-
operation. Hypervisors that migrate guests can use memory
mappings instead of named memory pages; and hypervisors
to which a guest is migrated can avoid requesting memory
pages that are wholly overwritten by guests.

8. Conclusions
To this day, uncooperative host swapping is considered a
necessary evil in virtual setups, because it is commonly un-
avoidable but induces high overheads. We isolate, character-
ize, name, and experimentally demonstrate the major causes
for the poor performance. We proposeVSWAPPERto address
these causes, and we show thatVSWAPPERis highly effective
without or in addition to memory ballooning.

Availability
The source code ofVSWAPPERis publicly available [2].

Acknowledgments
We thank Ilya Kravets for his technical help. We thank the
reviewers and especially Carl Waldspurger, our shepherd,
for their insightful feedback, which has helped to improve
this paper greatly. This research was partially supported by
The Israel Science Foundation (grant No. 605/12) and by the
Hasso Plattner Institute.

References
[1] Ole Agesen, Jim Mattson, Radu Rugina, and Jeffrey Sheldon.

Software techniques for avoiding hardware virtualization
exits. InUSENIX Annual Technical Conference (ATC),
volume 12, 2011.

[2] Nadav Amit. VSwpapper code.http://nadav.amit.to/
vswapper, 2014.

[3] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim
Harris, Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew
Warfield. Xen and the art of virtualization. InACM
Symposium on Operating Systems Principles (SOSP), 2003.

[4] Robert Birke, Lydia Y Chen, and Evgenia Smirni. Data
centers in the wild: A large performance study. Technical
Report RZ3820, IBM Research, 2012.http://tinyurl.
com/data-centers-in-the-wild .

[5] Stephen M Blackburn, Robin Garner, Chris Hoffmann,
Asjad M Khang, Kathryn S McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z Guyer,
et al. The DaCapo benchmarks: Java benchmarking
development and analysis. InACM SIGPLAN Conference on
Object-Oriented Programing, Systems, Languages, and
Applications (OOPSLA), pages 169–190, 2006.

[6] Matthias Bolte, Michael Sievers, Georg Birkenheuer, Oliver
Niehörster, and André Brinkmann. Non-intrusive
virtualization management using libvirt. InConference on
Design, Automation and Test in Europe, pages 574–579,
2010.

[7] Silas Boyd-Wickizer, Austin T Clements, Yandong Mao,
Aleksey Pesterev, M Frans Kaashoek, Robert Morris, and
Nickolai Zeldovich. An analysis of Linux scalability to many
cores. InUSENIX Symposium on Operating Systems Design
& Implementation (OSDI), 2010.

[8] Rich Brambley. Why do I need to install VMware tools?
http://vmetc.com/2008/08/30/

why-do-i-need-to-install-vmware-tools/, 2008.

[9] Mary Brandel. The trouble with cloud: Vendor lock-in.
http://www.cio.com/article/488478/The Trouble

with Cloud Vendor Lock in, 2009.

[10] Edouard Bugnion, Scott Devine, Kinshuk Govil, and Mendel
Rosenblum. Disco: running commodity operating systems on
scalable multiprocessors.ACM Transactions on Computer
Systems (TOCS), 15(4):412–447, November 1997.

[11] P. Chicoine, M. Hassner, E. Grochowski, S. Jenness,
M. Noblitt, G. Silvus, C. Stevens, and B. Weber. Hard disk
drive long data sector white paper. Technical report, IDEMA,
2007.

[12] YP Chien. The yin and yang of memory overcommitment in
virtualization: The VMware vSphere 4.0 edition. Technical
Report MKP-339, Kingston Technology Corporation,
Fountain Valley, CA, 2010.http://media.kingston.
com/images/branded/MKP 339 VMware vSphere4.0

whitepaper.pdf.

[13] Orcale Cooperation. Project: Transcendent memory – new
approach to managing physical memory in a virtualized
system.https://oss.oracle.com/projects/tmem/,
2010. Visited: Dec 2013.

[14] Jonathan Corbet. Memory compaction.http://lwn.net/

Articles/368869/, 2010.

[15] Oracle Corporation. Virtual box manual.https://www.
virtualbox.org/manual/, 2013.

[16] Johan De Gelas. Hardware virtualization: the nuts and bolts.
ANANDTECH, 2008.http://www.anandtech.com/show/
2480/10.

[17] Frank Denneman. Impact of memory reservation.http://

frankdenneman.nl/2009/12/08/

impact-of-memory-reservation/, 2009.

[18] Michael Factor. Enterprise cloud clients tend to prefer
unmodified guest virtual machines. Private communication,
2013.

[19] Jeff Gilchrist. Parallel data compression with bzip2.In
IASTED International Conference on Parallel and
Distributed Computing and Systems (ICPDCS), volume 16,
pages 559–564, 2004.

[20] Robert P. Goldberg and Robert Hassinger. The double paging
anomaly. InACM National Computer Conference and
Exposition, pages 195–199, 1974.

[21] Mel Gorman and Andy Whitcroft. Supporting the allocation
of large contiguous regions of memory. InOttawa Linux
Symposium (OLS), pages 141–152, 2007.

[22] Kinshuk Govil, Dan Teodosiu, Yongqiang Huang, and
Mendel Rosenblum. Cellular Disco: resource management
using virtual clusters on shared-memory multiprocessors.In
ACM Symposium on Operating Systems Principles (SOSP),
pages 154–169, 1999.

[23] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan
Savage, Alex C. Snoeren, George Varghese, Geoffrey M.
Voelker, and Amin Vahdat. Difference engine: harnessing
memory redundancy in virtual machines.Communications of
the ACM (CACM), 53(10):85–93, 2010.

[24] Michael R Hines and Kartik Gopalan. Post-copy based live
virtual machine migration using adaptive pre-paging and
dynamic self-ballooning. InACM/USENIX International
Conference on Virtual Execution Environments (VEE), pages
51–60, 2009.

[25] Michael R Hines, Abel Gordon, Marcio Silva, Dilma
Da Silva, Kyung Dong Ryu, and Muli Ben-Yehuda.
Applications know best: Performance-driven memory
overcommit with Ginkgo. InIEEE Cloud Computing
Technology and Science (CloudCom), pages 130–137, 2011.

[26] Eric Horschman. Hypervisor memory management done
right. http://blogs.vmware.com/virtualreality/
2011/02/

http://nadav.amit.to/vswapper
http://nadav.amit.to/vswapper
http://tinyurl.com/data-centers-in-the-wild
http://tinyurl.com/data-centers-in-the-wild
http://vmetc.com/2008/08/30/why-do-i-need-to-install-vmware-tools/
http://vmetc.com/2008/08/30/why-do-i-need-to-install-vmware-tools/
http://www.cio.com/article/488478/The_Trouble_with_Cloud_Vendor_Lock_in
http://www.cio.com/article/488478/The_Trouble_with_Cloud_Vendor_Lock_in
http://media.kingston.com/images/branded/MKP_339_VMware_vSphere4.0_whitepaper.pdf
http://media.kingston.com/images/branded/MKP_339_VMware_vSphere4.0_whitepaper.pdf
http://media.kingston.com/images/branded/MKP_339_VMware_vSphere4.0_whitepaper.pdf
https://oss.oracle.com/projects/tmem/
http://lwn.net/Articles/368869/
http://lwn.net/Articles/368869/
https://www.virtualbox.org/manual/
https://www.virtualbox.org/manual/
http://www.anandtech.com/show/2480/10
http://www.anandtech.com/show/2480/10
http://frankdenneman.nl/2009/12/08/impact-of-memory-reservation/
http://frankdenneman.nl/2009/12/08/impact-of-memory-reservation/
http://frankdenneman.nl/2009/12/08/impact-of-memory-reservation/
http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html

hypervisor-memory-management-done-right.html,
2011.

[27] Yiming Hu, Ashwini Nanda, and Qing Yang. Measurement,
analysis and performance improvement of the Apache web
server. InIEEE International Performance Computing &
Communications Conference (IPCCC), pages 261–267,
1999.

[28] Khoa Huynh and Stefan Hajnoczi. KVM / QEMU storage
stack performance discussion. InLinux Plumbers
Conference, 2010.

[29] Woomin Hwang, Yangwoo Roh, Youngwoo Park, Ki-Woong
Park, and Kyu Ho Park. HyperDealer: Reference pattern
aware instant memory balancing for consolidated virtual
machines. InIEEE International Conference on Cloud
Computing (CLOUD), pages 426–434, 2014.

[30] IBM documentation. Best practice: KVM guest caching
modes.http://pic.dhe.ibm.com/infocenter/
lnxinfo/v3r0m0/topic/liaat/

liaatbpkvmguestcache.htm. Visited: Dec 2013.

[31] Intel Corporation. Intel 64 and IA-32 Architectures Software
Developer’s Manual, 2013.

[32] Francisco Javier, Thayer Fábrega, Francisco, and Joshua D.
Guttman. Copy on write.http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.33.3144, 1995.

[33] Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Geiger: Monitoring the buffer cache in a
virtual machine environment. InACM Architectural Support
for Programming Languages & Operating Systems
(ASPLOS), pages 14–24, 2006.

[34] Hwanju Kim, Heeseung Jo, and Joonwon Lee. XHive:
Efficient cooperative caching for virtual machines.IEEE
Transactions on Computers, 50(1):106–119, Jan 2011.

[35] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. KVM: the Linux virtual machine monitor. In
Ottawa Linux Symposium (OLS), 2007.

[36] Con Kolivas. KernBench project.freecode.com/
projects/kernbench.

[37] Ilia Kravets and Dan Tsafrir. Feasibility of mutable replay
for automated regression testing of security updates. In
Runtime Environments/Systems, Layering, & Virtualized
Environments workshop (RESoLVE), 2012.

[38] KVM. Tuning kernel for KVM. http://www.linux-kvm.
org/page/Tuning Kernel.

[39] KVM. Tuning KVM. http://www.linux-kvm.org/

page/Tuning KVM.

[40] Kevin M. Lepak and Mikko H. Lipasti. On the value locality
of store instructions. InACM/IEEE International Symposium
on Computer Architecture (ISCA), pages 182–191, 2000.

[41] Adam Litke. Automatic memory ballooning with MOM.
http://www.ibm.com/developerworks/library/

l-overcommit-kvm-resources/, 2011. Visited: Dec
2013.

[42] Pengcheng Liu, Ziye Yang, Xiang Song, Yixun Zhou, Haibo
Chen, and Binyu Zang. Heterogeneous live migration of

virtual machines. InInternational Workshop on
Virtualization Technology (IWVT), 2008.

[43] Pin Lu and Kai Shen. Virtual machine memory access
tracing with hypervisor exclusive cache. InUSENIX Annual
Technical Conference (ATC), pages 3:1–3:15, 2007.

[44] Dan Magenheimer, Chris Mason, Dave McCracken, and Kurt
Hackel. Transcendent memory and Linux. InOttawa Linux
Symposium (OLS), pages 191–200, 2009.

[45] Yandong Mao, Robert Morris, and Frans Kaashoek.
Optimizing MapReduce for multicore architectures.
Technical Report MIT-CSAIL-TR-2010-020, Massachusetts
Institute of Technology, 2010. URL
http://pdos.csail.mit.edu/metis/.

[46] Cade Metz. The meta cloud—flying data centers enter fourth
dimension.http://www.theregister.co.uk/2009/02/
24/the meta cloud/, 2009.

[47] Grzegorz Miłós, Derek G Murray, Steven Hand, and
Michael A Fetterman. Satori: Enlightened page sharing. In
USENIX Annual Technical Conference (ATC), 2009.

[48] Gleb Natapov. Asynchronous page faults - AIX did it. KVM
Forumwww.linux-kvm.org/wiki/images/a/ac/

2010-forum-Async-page-faults.pdf.

[49] Juan Navarro, Sitaram Iyer, Peter Druschel, and Alan Cox.
Practical, transparent operating system support for
superpages. InUSENIX Symposium on Operating Systems
Design & Implementation (OSDI), 2002.

[50] The Open Group.mmap - map pages of memory, 2004. The
Open Group Base Specifications Issue 6. IEEE Std 1003.1.
http://pubs.opengroup.org/onlinepubs/

009695399/functions/mmap.html.

[51] Brent Ozar. Top 10 keys to deploying SQL server on
VMware. http://www.brentozar.com/archive/2011/
05/keys-deploying-sql-server-on-vmware/, 2011.

[52] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary
Bradski, and Christos Kozyrakis. Evaluating MapReduce for
multi-core and multiprocessor systems. InIEEE
International Symposium on High Performance Computer
Architecture (HPCA), pages 13–24, 2007.

[53] Rikvan Riel. Linux page replacement design.http://

linux-mm.org/PageReplacementDesign, 2010.

[54] Rusty Russell. virtio: towards a de-facto standard forvirtual
I/O devices.ACM SIGOPS Operating Systems Review
(OSR), 42(5):95–103, 2008.

[55] Mark E. Russinovich and David A. Solomon.Microsoft
Windows Internals, Fourth Edition. Microsoft Press, 2004.

[56] Tudor-Ioan Salomie, Gustavo Alonso, Timothy Roscoe, and
Kevin Elphinstone. Application level ballooning for efficient
server consolidation. InACM SIGOPS European Conference
on Computer Systems (EuroSys), pages 337–350, 2013.

[57] Vinay Sastry. Virtualizing tier 1 applications MS SQL
server.http://blogs.totalcaos.com/
virtualizing-tier-1-sql-workloads, 2012.

[58] Joel H Schopp, Keir Fraser, and Martine J Silbermann.
Resizing memory with balloons and hotplug. InOttawa
Linux Symposium (OLS), volume 2, pages 313–319, 2006.

http://blogs.vmware.com/virtualreality/2011/02/hypervisor-memory-management-done-right.html
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbpkvmguestcache.htm
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbpkvmguestcache.htm
http://pic.dhe.ibm.com/infocenter/lnxinfo/v3r0m0/topic/liaat/liaatbpkvmguestcache.htm
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3144
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.3144
freecode.com/projects/kernbench
freecode.com/projects/kernbench
http://www.linux-kvm.org/page/Tuning_Kernel
http://www.linux-kvm.org/page/Tuning_Kernel
http://www.linux-kvm.org/page/Tuning_KVM
http://www.linux-kvm.org/page/Tuning_KVM
http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/
http://www.ibm.com/developerworks/library/l-overcommit-kvm-resources/
http://www.theregister.co.uk/2009/02/24/the_meta_cloud/
http://www.theregister.co.uk/2009/02/24/the_meta_cloud/
www.linux-kvm.org/wiki/images/a/ac/2010-forum-Async-page-faults.pdf
www.linux-kvm.org/wiki/images/a/ac/2010-forum-Async-page-faults.pdf
http://pubs.opengroup.org/onlinepubs/009695399/functions/mmap.html
http://pubs.opengroup.org/onlinepubs/009695399/functions/mmap.html
http://www.brentozar.com/archive/2011/05/keys-deploying-sql-server-on-vmware/
http://www.brentozar.com/archive/2011/05/keys-deploying-sql-server-on-vmware/
http://linux-mm.org/PageReplacementDesign
http://linux-mm.org/PageReplacementDesign
http://blogs.totalcaos.com/virtualizing-tier-1-sql-workloads
http://blogs.totalcaos.com/virtualizing-tier-1-sql-workloads

[59] Martin Schwidefsky, Hubertus Franke, Ray Mansell,
Himanshu Raj, Damian Osisek, and JongHyuk Choi.
Collaborative memory management in hosted Linux
environments. InOttawa Linux Symposium (OLS), volume 2,
2006.

[60] L. H. Seawright and R. A. MacKinnon. VM/370—a study of
multiplicity and usefulness.IBM Systems Journal,
18(1):4–17, Mar 1979.

[61] Prateek Sharma and Purushottam Kulkarni. Singleton:
system-wide page deduplication in virtual environments. In
International Symposium on High Performance Distributed
Computer (HPDC), pages 15–26, 2012.

[62] Balbir Singh. Page/slab cache control in a virtualized
environment. InOttawa Linux Symposium (OLS), volume 1,
pages 252–262, 2010.

[63] Balbir Singh and Vaidyanathan Srinivasan. Containers:
Challenges with the memory resource controller and its
performance. InOttawa Linux Symposium (OLS), page 209,
2007.

[64] Vijayaraghavan Soundararajan and Jennifer M. Anderson.
The impact of management operations on the virtualized
datacente. InACM/IEEE International Symposium on
Computer Architecture (ISCA), pages 326–337, 2010.

[65] Jeremy Sugerman, Ganesh Venkitachalam, and Beng-Hong
Lim. Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. InUSENIX Annual
Technical Conference (ATC), pages 1–14, 2001.

[66] Taneja Group. Hypervisor shootout: Maximizing workload
density in the virtualization platform.http://www.
vmware.com/files/pdf/

vmware-maximize-workload-density-tg.pdf, 2010.

[67] Ryan Troy and Matthew Helmke.VMware Cookbook.
O’Reilly Media, Inc., 2009. Section 4.1: Understanding
Virtual Machine Memory Use Through Reservations, Shares,
and Limits.

[68] Irina Chihaia Tuduce and Thomas R Gross. Adaptive main
memory compression. InUSENIX Annual Technical
Conference (ATC), pages 237–250, 2005.

[69] Luis Useche.Optimizing Storage and Memory Systems for
Energy and Performance. PhD thesis, Florida International
University, 2012.

[70] Bob Valentine. Intel next generation microarchitecture
codename Haswell: New processor innovations. In6th
Annual Intel Software Developer Conference & User Group,
June 2013.http://ftp.software-sources.co.il/
Processor Architecture Update-Bob Valentine.pdf.
Visited: Dec 2013.

[71] Rik van Riel. KVM and memory managment updates. KVM
Forumhttp://www.linux-kvm.org/wiki/images/1/
19/2012-forum-memory-mgmt.pdf, 2012.

[72] Gabrie van Zanten. Memory overcommit in production?
YES YES YES.http://www.gabesvirtualworld.com/
memory-overcommit-in-production-yes-yes-yes/,
2010.

[73] VMware, Inc.vSphere 4.1 - ESX and VCenter. VMware,
Inc., 2010. Section: “VMware HA Admission Control”.

http://tinyurl.com/vmware-admission-control.

[74] VMware, Inc. Understanding memory management in
VMware vSphere 5, 2011. Technical white paper.http://

www.vmware.com/files/pdf/mem mgmt perf

vsphere5.pdf.

[75] VMware Knowledge Base (KB). Problems installing
VMware tools when the guest CD-ROM drive is locked.
http://kb.vmware.com/kb/2107, 2011. Visited: Dec
2013.

[76] VMware Knowledge Base (KB). Troubleshooting a failed
VMware tools installation in a guest operating system.
http://kb.vmware.com/kb/1003908, 2012. Visited: Dec
2013.

[77] VMware Knowledge Base (KB). Unable to upgrade existing
VMware tools.http://kb.vmware.com/kb/1001354,
2012. Visited: Dec 2013.

[78] VMware Knowledge Base (KB). VMware tools may not
install on a windows guest operating system after upgrading
to a newer version of ESX/ESXi.http://kb.vmware.com/
kb/1012693, 2012. Visited: Dec 2013.

[79] VMware Knowledge Base (KB). Troubleshooting a failed
VMware tools installation in Fusion.http://kb.vmware.
com/kb/1027797, 2013. Visited: Dec 2013.

[80] VMware Knowledge Base (KB). Updating VMware tools
fails with the error.http://kb.vmware.com/kb/2007298,
2013. Visited: Dec 2013.

[81] VMware Knowledge Base (KB). Updating VMware tools
operating system specific package fails with dependency
errors and driver issues on RHEL 6 and CentOS 6.http://

kb.vmware.com/kb/2051322, 2013. Visited: Dec 2013.

[82] Carl A. Waldspurger. Memory resource management in
Vmware ESX server. InUSENIX Symposium on Operating
Systems Design & Implementation (OSDI), volume 36, pages
181–194, 2002.

[83] Carl A. Waldspurger. Default ESX configuration for balloon
size limit. Personal communication, 2013.

[84] Wikipedia. Haswell microarchitecture – expected server
features.http://en.wikipedia.org/wiki/Haswell
(microarchitecture)#Expected Server features,
2013. Visited: Dec 2013.

[85] Timothy Wood, Gabriel Tarasuk-Levin, Prashant Shenoy,
Peter Desnoyers, Emmanuel Cecchet, and Mark D. Corner.
Memory buddies: exploiting page sharing for smart
colocation in virtualized data centers.ACM SIGOPS
Operating Systems Review (OSR), 43:27–36, 2009.

[86] Xiaowei Yang. Evaluation and enhancement to memory
sharing and swapping in Xen 4.1. InXen Summit, 2011.
http://www-archive.xenproject.org/xensummit/

xensummit summer 2011.html.

http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://www.vmware.com/files/pdf/vmware-maximize-workload-density-tg.pdf
http://ftp.software-sources.co.il/Processor_Architecture_Update-Bob_Valentine.pdf
http://ftp.software-sources.co.il/Processor_Architecture_Update-Bob_Valentine.pdf
http://www.linux-kvm.org/wiki/images/1/19/2012-forum-memory-mgmt.pdf
http://www.linux-kvm.org/wiki/images/1/19/2012-forum-memory-mgmt.pdf
http://www.gabesvirtualworld.com/memory-overcommit-in-production-yes-yes-yes/
http://www.gabesvirtualworld.com/memory-overcommit-in-production-yes-yes-yes/
http://tinyurl.com/vmware-admission-control
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://www.vmware.com/files/pdf/mem_mgmt_perf_vsphere5.pdf
http://kb.vmware.com/kb/2107
http://kb.vmware.com/kb/1003908
http://kb.vmware.com/kb/1001354
http://kb.vmware.com/kb/1012693
http://kb.vmware.com/kb/1012693
http://kb.vmware.com/kb/1027797
http://kb.vmware.com/kb/1027797
http://kb.vmware.com/kb/2007298
http://kb.vmware.com/kb/2051322
http://kb.vmware.com/kb/2051322
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)#Expected_Server_features
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)#Expected_Server_features
http://www-archive.xenproject.org/xensummit/xensummit_summer_2011.html
http://www-archive.xenproject.org/xensummit/xensummit_summer_2011.html

	Introduction
	Motivation
	The Benefit of Ballooning
	Ballooning is Not a Complete Solution
	Ballooning Takes Time
	The Case for Unmodified Guests

	Problems in Baseline Swapping
	Demonstration

	VSwapper Design and Implementation
	The Swap Mapper
	The False Reads Preventer

	Evaluation
	Controlled Memory Assignment
	Dynamic Memory Assignment
	Overheads and Limitations
	Non-Linux Guests and Hosts

	Related Work
	Future Work
	Conclusions

