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Abstract

Virtualized servers run a diverse set of virtual machiness
(VMs), ranging from interactive desktops to test and de- 8 e
velopment environments and even batch workloads. Hy-¢
pervisors are responsible for multiplexing the underly- 5
ing hardware resources among VMs while providing de- g 2o
sired isolation using various resource management con
trols. Existing method4]8,43] provide many knobs for § e
allocating CPU and memory to VMs, but support for I/O
resource allocation has been quite limited. 10 resource”™ °
management in a hypervisor introduces significant new,
challenges and needs more extensive controls comparey
to the commodity operating systems.

This paper introduces a novel algorithm for 1O re-

source allocation in a _hyperwsor. _Our algor_|thm, memory allocation using sophisticated controls such as
mClock supports proportional-share fairness subject Yeservations, limits and sharés][43]. The current state

a minimum reservation and a maximum limit on the 10 of the art in terms of 10 resource allocation is however

allocati_on for VMs. We present thg dgsign and imple'much more rudimentary, and is limited to providing pro-
mentation of mClock as a prototype inside VMware Esxfportional sharesT19] to different VMs

hypervisor. Our results indicate that these rich set o o S
P IO scheduling in a hypervisor introduces many new

QoS controls are quite effective in isolating VM perfor- hall dt . h hared
mance and providing lower latencies to applications. weohalenges compared fo managing other shared re-

also show adaptation of mClock (calleéthCloch to a sources. First, virtualized servers typically access a

o . e hared storage device using either a clustered file sys-
distributed storage environment, where storage is JomtlyS
provided by multiple nodes. tem such as VMFST11] or NFS volumes. A storage de-

vice in the guest OS or a VM is just a large file on the

shared storage device. Second, the IO scheduler in the
1 Introduction hypervisor is running one layer below the elevator based

scheduling in the guest OS. So it needs to handle issues
The increasing trend towards server virtualization has elsuch as locality of accesses across VMs, high variability
evated hypervisors to first class entities in today’s datain 10 sizes, different request priority based on the appli-
centers. Virtualized hosts run tens to hundreds of virtuaFation running in a VM, and bursty workloads.
machines (VMs), and the hypervisor needs to provide The amount of 10 throughput available to any partic-
each virtual machine with an illusion of owning dedi- ular host can fluctuate widely based on the behavior of
cated physical resources in terms of CPU, memory, netether hosts accessing the shared device. Consider a sim-
work and storage 10. Strong isolation is needed for sucple scenario shown in Figuk& 1 with 3 hosts and 5 VMs.
cessful consolidation of VMs with diverse requirementsEach VM is running a DvdStoré&][2] benchmark, which
on a shared infrastructure. Existing products such ass an IO intensive OLTP workload. Initially VM 5 is
VMware ESX Server provide guarantees for CPU andrunning on host 3 and it achieves a transaction rate of
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gure 1: Highly fluctuating IOPS and orders/sec seen
VMs as the load on the shared storage changes.
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roughly 500 orders/second. Later, as we start four other
VMs (1-4) on two separate hosts sharing the same stor-

control; instead changes in one host can affect the 1O re-
sources available to all other hosts. As shown above this
can cause large variation in the IOPS available to a VM
and impact application-level performance. Other events Figure 2: System Model
that can cause this sort of fluctuation are: (1) changes in
workloads (2) background tasks scheduled at the storage
array, and (3) changes in SAN paths between hosts ancapacity fluctuates dynamically as in the case for shared
storage device. 1O. In this case the allocations need to be continuously
PARDA [L9] provided a distributed control algorithm Mmonitored (rather than only at VM entry and exit) to en-
to allocate queue slots at the storage device to hosts iure that no VM falls below its minimum. A brute-force
proportion to the aggregate 10 shares of the VMs run-Solution is to emulate the method used for fixed-capacity
ning on them. The local 10 scheduling at each host'esources by recomputing the allocations at the end of
was done using SFQ(DIR3] a traditional fair-scheduler,every fixed time interval. This method, while conceptu-
which divides the aggregate host throughput among th&lly simple, is not very effective in practice.
VMs in proportion to their shares. Unfortunately, when Finally, limits provide an upper bound on the absolute
allocation is based on proportional shares alone, the atresource allocations. Such a limit on 10 performance
solute throughput for a VM can get diluted quickly as is desirable to prevent competing 10-intensive applica-
the throughput fluctuates. This open-ended dilution istions, such as virus scanners, virtual-disk migrations, or
unacceptable in many applications that require minimunbackup operations, from consuming all the spare band-
resource requirements to function. Lack of QoS supportvidth in the system, which can resultin high latencies for
for 10 resources can have widespread effects, renderingursty and ON-OFF workloads. There are yet other rea-
existing CPU and memory controls ineffective when ap-sons cited by service providers for wanting to explicitly
plications block on 10 requests. Arguably, this limita- limit IO throughput; for example, to avoid giving VMs
tion is one of the reasons for the slow adoption of 10-more throughput than has been paid for, or to avoid rais-
intensive applications in cloud environments as well.  ing expectations on performance which cannot generally
Resource controls such ahares(a.k.a. weights), be sustained[L] 8].
reservationsandlimits are used for predictable service ~ Towards this goal, we presentClock an 10 sched-
allocation with strong isolatiori.]8,22,142.]43]. The gen- uler that provides all three controls mentioned above at
eral idea is to allocate the resource to the VMs in propora per VM level. We believe that mClock is the first
tion to their shares, subject to the constraints that eacBcheduler to provide such controls in the presence of ca-
VM receives at least its reservation and no more than itgacity fluctuations at short time scales. We have imple-
limit. These controls have primarily been employed for mentedmClockalong with certain storage-specific opti-
allocating resources like CPU time and memory pagegnizations, as a prototype scheduler in the VMware ESX
where the resource capacity is fixed and time-invarianthypervisor and showed its effectiveness for various use
unlike the case with IO where the aggregate amountases.
available to a host can vary with time as discussed above. We also demonstratémClock,a distributed version
Sharesare a relative allocation measure that specifyof the algorithm that can be used in clustered storage
the ratio in which the different VMs receive service. systems, where the storage is distributed across multiple
Reservationare used to provide a lower bound on abso-nodes €.g, LeftHand [4], Seanode$§l[6], IceCulie[45],
lute service allocatioe.g. MHz for CPU or MBytes for  FAB [29]). dmClockensures an overall allocation to each
memory. For similar reasons, it is desirable to provide aVM based on the specified shares, reservation, and limit
minimum reservation on the 10 throughput of the VMs parameters even when the VM load is non-uniformly dis-
as well. When scheduling fixed-capacity resources théributed across the storage nodes.
allocations to the VMs can be calculated whenever a new The remainder of the paper is organized as follows. In
VM enters or leaves the system, since these are the onigection[® we discuss mClock’s scheduling goal and its
events at which the allocation is affected. However, encomparison with existing approaches. Sedfibn 3 presents
forcing this requirement is much more difficult when the the mClock algorithm in detail along with storage-
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Algorithm class Proportional | Latency Reservation | Limit Handle Capacity
allocation control Support Support fluctuation
Proportional Sharing (PS) Algorithms Yes No No No No
PS + Latency support Yes Yes No No No
PS + Reservations Yes Yes Yes No No
mClock Yes Yes Yes Yes Yes

Table 1: Comparison of mClock with existing scheduling t@ghes

specific optimizations. Distributed implementation for aggregate minimum reservations of all admitted clients.
a clustered storage system is discussed in SeEfidn 3.Zhe behavior of the system if the assumption does not
Detailed performance evaluation using micro and macrohold is discussed later in the section, along with alterna-
benchmarks is presented in Sectidn 4. Finally we contive approaches.
clude with some directions for future work in Sectldn 5.  Consider a simple setup with three VMs: one support-
ing remote desktop (RD), one running Online Transac-
tion Processing (OLTP) application and a Data Migration
(DM) VM. The RD VM has a low throughput require-
The work related to QoS-based 10 resource allocatiorment but needs low 10 latency for usability. OLTP runs a
can be divided into three broad areas. First is the clasgansaction processing workload requiring high through-
of algorithms that provide proportional allocation of IO put and low IO latency. The data migration workload
resources, such as Stoneherigé [21] SFQID) [23], Arrequires high throughput but is insensitive to 10 latency.
gon [40] and Aquall47]. Many of these algorithms are Based on these requirements, the shares for RD, OLTP,
variants of weighted fair queuing mechanisms (Virtualand DM can be assigned as 100, 200 and 300 respec-
Clock [49], WFQ [13], PGPS[28], W2Q [10], SCFQ tively. To provide low latency and a minimum degree of
[15], Leap Forward[[37], SFQCI18] and Latency-rate responsiveness, reservations of 250 IOPS each are spec-
scheduling[[3R]) proposed in the networking literature, ified for RD and OLTP. An upper limit of 10000 IOPS is
but they handle various storage-specific concerns sucket for the DM workload so that it cannot consume all the
as concurrency, minimizing seek delays and improvingspare bandwidth in the system and cause high delays for
throughput. The goal of these algorithms is to allocatethe other workloads. The values chosen here are some-
throughput or bandwidth in proportion to the weights what arbitrary, but were selected to highlight the use of
of the clients. Second is the class of algorithms thatvarious controls in a diverse workload scenario.
provide support for latency-sensitive applications along  First consider how a conventional proportional sched-
with proportional sharing. These algorithms include uler would divide the total throughpt of the storage
SMART [27], BVT [14], pClock [20], Avatar([[48] and device. Since throughput is allocated to VMs in pro-
service curve based techniqués][12,[26[30, 35]. Thirghortion to their weights, an active VM will receive a
is the class of algorithms that support reservation alonghroughpuf x (w;/ ¥ ; Wj), where the summation is over
with proportional allocation, such as Rialto[24], ESX the weights of the active VMs (i.e. with pending 10s
memory managemerit [43] and other reservation based). If the storage device’s throughput is 1200 IOPS in the
CPU scheduling methods 71831 34]. Teldle 1 provides above example, RD will receive 200 IOPS, which is be-
quick comparison of mClock with existing algorithms in |ow its required minimum of 250 IOPS. This can lead to
three categories. a poor experience for the RD user, even though there is
sufficient system capacity for both RD and OLTP to re-
2.1 Scheduling Goals of mClock ceive their re_servati(_)ns of 250 IOPS: In our model, VMs
always receive service between their minimum reserva-
We first discuss a simple example describing the schedulion and maximum limit (as long as system throughputis
ing policy of mClock. As mentioned earlier, three param-at least the aggregate of the reservations of active VMs).
eters are specified for each VM in the systenshareor  In this example, the RD would receive its minimum 250
weightrepresented bw;, areservation r, and alimit I;. IOPS and the remaining 950 IOPS will be divided be-
We assume these parameters are externally provided; déwveen OLTP and DM in the ratio 2 : 3, resulting in allo-
termining the appropriate parameter settings to meet apsations of 380 and 570 IOPS respectively.
plication requirements is an important but separate prob- Table[2 shows the IOPS allocation to the three VMs
lem, outside the scope of this paper. We also assume that the example above, depending upon the current sys-
the system includes an admission control component thaem throughput, T. IT > 20000 IOPS, then DM will be
ensures that the system capacity is adequate to serve thapped at 10000 IOPS because its shafe/@is higher

2 Overview and Related Work



VMs RD oLTP DM puted at VM entry and exit times. The mClock scheduler
Weight 100 200 300 ensures that the goals in EGl (1) alldl (2) are satisfied con-
Reservation 250 250 0 tinuously, even as the system’s throughput varies, using
Limit ® ® 10K a novel lightweight tagging scheme.
T (IOPS) Allocations (IOPS)
0<T <500 T2 T2 0 _ _
500< T < 875 250 250 T-500 2.2 Proportional Share Algorithms
875<T < 1.5K 250 2(T-250)/5 | 3(T-250)/5 A number of approaches such as Stonehengé [21],
15K T <20K T/6 T/3 T/2
T= 20K (T-10K)73 | 2(T-10K)/3 | 10000 SFQ(D) [23], Argon [4D0] have been proposed for pro-

portional sharing of storage between applications. Wang
Table 2: Allocation based on different overall system’sand Merchant([44] extended proportional sharing to dis-
throughput values tributed storage. Argori_[40] and AquR[47] propose
service-time-based disk allocation to provide fairness as
) o ) o well as high efficiency. Brandit al. [46] have proposed
than its upper limit, and the remainder is divided betweenps that uses hierarchical token buckets to provide iso-

RD and OLTP in the ratio 1: 2. Similarly, if <875,  |ation and bandwidth reservation among clients access-
RD and OLTP will each receive their reservations of 25Oing the same disk. However, measuring per-request ser-

IOPS and the remainder will be allocated to DM. Finally, jice times in our environment is difficult because multi-

for T < 500 IOPS, the reservations of RD and OLTP e requests will typically be pending at the storage de-
cannot be met; the available throughput will be dividedyice  Overall, none of these algorithms offers support
equally between RD and OLTP (since their reservationgoy the combination of shares, reservations, and limits.
are the same) and DM will receive no service. Thee laspiher methods for resource management in virtual clus-
case should be rare if the admission controller estimateg, g [16.3B] have been proposed but they mainly focus on

the overall throughput conservatively. _ CPU and memory resources and do not address variable
The allocation to a VM varies dynamically with the capacity challenges likeClock

current throughput and the set of active VMs. At any
time, VMs are partitioned into three setseservation- . )
clamped(#), limit-clamped(.%) or proportional (%), 2.3 Latency Supporting Algorithms
based on whether their current allocation is clamped a}
the lower or upper bound or is in betweenT Ifs the cur-
rent throughput, we define =T — 5 e 1 — Yjc vl
The allocationy, made to active VMy; for Tp > 0, is

n the case of CPU scheduling, lottery scheduling [42,
[34], BVT [14], and SMART [[2¥] provide proportional
allocation, latency-reducing mechanisms, and methods
to handle priority inversion by exchanging tickets. Bor-

given by: rowed Virtual Time [14] and SMARTI[[27] shift the
virtual tag of latency-sensitive applications relative to
I Vi€ R the others to provide them with short-term advantage.
v o= I vie.# (1) PClock [20] and service-curve based meth@d$ (12,26, 30,
Tox (Wi/SjcrW)) Vi€ P ] decouple latency and throughput requirements,_ but
and like the other methods also do not support reservations
and limits.
>uv = T (2)
|

2.4 Reservation-Based Algorithms
When Tp < 0 the system throughput is insufficient 9

to meet the reservations; in this case mClock simplyFor CPU scheduling and memory management, several
gives each VM throughput proportional to its reservation.approaches have been proposed for integrating reserva-
When the system throughpttis known, the allocations tions with proportional-share allocatiois L 7] 33, 34]. In

y can be computed explicitly. Such explicit computationthese models, clients either receiveyaaranteed frac-

is sometimes used for calculating CPU time allocationgion of the server capacity (reservation-based clients) or
to virtual machines with service requirement specifica-a share(ratio) of the remaining capacity after satisfying
tions similar to these. When a VM exits or is powered reservations (proportional-share-based clients). A-stan
on at the host, new service allocations are computed. ldlard proportional-share scheduler can be used in con-
the case of a storage arrdyjs highly dependent on the junction with an allocator that adjusts the weights of the
presence of other hosts and the workload presented to ttetive clients whenever there is a client arrival or depar-
array. Since the throughput varies dynamically, the storture. Guaranteeing minimum allocations for CPU time
age scheduler cannot rely upon service allocations comis relatively straightforward since its capacity (in terms



Symbol | Meaning ing. We will explain each of these in more detail below.
P Share based tag of requesind VM v;
R Reservation tag of requestrom v Algorithm 1: Components of mClock algorithm
L Limit tag of request from v h=32
Wi Weight of VM v, Max_QueueDepth = 32;
ri Reservation of VI RequestArrival (requestr, time t, viw;)
li Maximum service allowance (Limit) fou; begin

Table 3: Symbols used and their descriptions

of MHz) is fixed and known, and allocating a given pro-
portion would guarantee a certain minimum amount. The
same idea does not apply to storage allocation where sys-
tem throughput can fluctuate. In our model the clients
are not statically partitioned into reservation-based or
proportional-share-based clients. Our model automati-
cally modifies the entitlement of a client when service
capacity changes due to changes in the workload char-
acteristics or due to the arrival or departure of clients.

if vi was idlethen

/* Tag Adjustment */

minPtag= minimum of all P tags;

foreachactive VM y do

| Pl — = minPtag—t;

[* Tag Assignment */
R =max{R~1+1/r;, t} /* Reservation tag */
L =max{L "1 +1/l;, t} /*Limit tag */
Pr =max{P" 1+ 1/w;, t} /* Shares tag */
ScheduleRequest();

end

The entitlement is at least equal to the reservation and ScheduleRequesf)
can be higher if there is sufficient capacity. Since 2003, begin

the VMware ESX Server has provided both reservation-
based and proportional-share controls for both CPU and
memory resources in a commercial prodid{ 841, 43].
These mechanisms support the same rich set of controls
as in mClock, but do not handle varying service capacity.

Finally, operating system based frameworks like Ri-
alto [22] provide fixed reservations for known-capacity
CPU service, while allowing additional service requests
to be honored on an availability basis. Again Rialto re-
quires re-computation of an allocation graph on each new
arrival, which is then used for CPU scheduling.

3 mClock Algorithm

The intuitive idea behind the algorithm is to logi-
cally interleave a constraint-satisfying scheduler and a
weight-based scheduler in a fine-grained manner. The

if ActivelOs> Max QueueDeptlthen
| return;

Let E be the set of requests withtag < t

if E not emptythen

/* constraint-based scheduling */

select 10 request with minimuiR tag from

E
else

/* weight-based scheduling */

Let E’ be the set of requests withtag < t

if E’ not empty OR ActivéOs == 0 then
select |10 request with minimui tag
fromE’
/* Assuming request belong to VM ¥/
Subtract I from R tags of VM vy

if_IO request selected != NULthen
| Active_lOs++;

constraint-satisfying scheduler ensures that VMs receive
their minimum reserved service and no more than the
upper limit in a time interval, while the weight-based
scheduler allocates the remaining throughput to achieve
proportional sharing. The scheduler alternates between
phases during which one of these schedulers is active to
maintain the desired allocation. Tag Assignment: This routine assigng, L andP tags to
mClock uses two main ideasultiple real-time clocks  a request from VM v; arriving at timet. TheR tag as-
anddynamic clock selectiorEach VM 10 request is as-  signed to this request is at leagtrilbeyond the lasR tag
signed three tags, one for each clock: a reservatioRtag value. However, if the current time is beyond this value
a limit tagL, and a proportional share t&gfor weight-  due tov; becoming active after a period of inactivity, the
based allocation. Different clocks are used to keep trackequest is assigned @tag equal to the current time.
of each of the three controls, and tags based on one of thEhe R tags of a continuously backlogged VM are spaced
clocks are dynamically chosen to do the constraint-based/r; apart. In an interval of lengtfi, a backlogged VM
or weight-based scheduling. will have roughlyT x ri requests withR tags in that in-
The scheduler has three main componenjstgg As-  terval. Similarly, thel tag is set to the maximum of the
signment ii) Tag Adjustment andi() Request Schedul- currenttime and Al; + Lir’l. Thel tags of a backlogged

end

RequestCompletion(request r, vny;)
Active_|IOs —— ;
ScheduleRequest();




VM are spaced out by/l;. Hence if thel tag of the first  size, locality of requests and reservation settings.
pending request of a VM is less than the current time, itBurst Handling. Storage workloads are known to be
has received less than its upper limit at this time. bursty, and requests from the same VM often have a high
The proportional share tagassigned to a request de- spatial locality. We help bursty workloads that were idle
pends on the total number of requests of that VM thatto gain a limited preference in scheduling when the sys-
have completed service by the time it is dispatched. Théem next has spare capacity. This is similar to some of
proportional Share tag' is the larger of the arrival time  the ideas proposed in BVI[14] and SMART]27]. How-
of the requestand/iv; + Pir’l. Similar to the othertags, ever, we do itin a manner so that reservations are not im-
subsequent backlogged requests are spacegvay 1 pacted. To accomplish this, we allow VMs to gaithe
Tag Adjustment: Tag adjustment is used to calibrate the credits In particular, when an idle VM becomes active,
proportional share tags against real time. This is requiregve compare the previou? tag with current time: and
whenever an idle VM gets active again. In virtual time allow it to lag behind by a bounded amount based on
based schedulels]L0]15] this synchronization is done us VM-specific burst parameter. Instead of setting fhe
ing global virtual time. Since the spacing Bftags is  tag to the current time, we set it equakte- oj * (1/w).
based on relative weights while the initial tag value is Hence the actual assignment looks like:
determined by the actual arrival time, there needs to be
some mechanism to calibrate the tag values against real

time. In the absence of such a mechanism starvation may o parameter; can be specified per VM and deter-
. . |

occedr, as tags of freshly _act|ve VM_S _W'” be gnrelated 0 mines the maximum amount of credit that can be gained
the existing tags. we a_djugt the origin of existingags by becoming idle. Note that adjusting only tReag has

to the current time, which is aIsp the tag of a newly_ac-the nice property that does not affect the reservations
tlvatec_i \./M' In the |mplgmen_tat|on, an offset specifying of other VMs however if there is spare capacity in the
the origin for each VM is ad!usted and ad.ded to the & ystem, it will be preferentially given to the VM that was
value when used in scheduling. The relative ordering otdie. This is because the andL tags have strict prior-

existing talgs |st_no;c ac\]:ts/r'\e/ld b%/ t?'s _'E{rhansl‘ormat;on; hOW'Iity over theP tags, so adjusting tags cannot affect the
ever, newly-activate s start with a tag value equa constraint-satisfying phase of the scheduler.

to the smallest existing tag and, consequently, Compmﬁequest Type. mClock treats reads and writes identi-

fairly with eX|st|ng VMs, ) cally. in practice writes show lower latency due to write
Request Scheduling:As noted earlier, the scheduler al- buffering in the array. However doing any re-ordering of

ternates between constraint-satisfying and Weight-basel%ads before writes for a single VM can lead to an incon-

phases. First, the scheduler checks if there are any eligEistent state of the virtual disk on a crash. Hence mClock

ble Y\MS with R ta_g; no Tgé?t tha}n (;he currr]ergjtftime. If tries to schedule all 10s within a VM in a FCFS manner
S0, the request with sma ag Is dispatched for ser- iy g ¢ distinguishing between reads and writes.

vic_e. This is defined as the c_onstraint satisfying ph_asero size. Since larger 10 sizes take longer to complete,
Th|shp:|as|_e ends (and ;he Wﬁ)lg"g[-based pha:jsehbeglns) (ﬂ‘ferently-sized IOs should not be treated equally by the
ascnhedu mg 'r?Sta”t W _eﬂ ab t ;agﬁ excee” \t/'\;} CL”' IO scheduler. We propose a technique to handle 10s with
rent time. During a weight-based phase, a S NAVE€51ge sizes during tagging. The IO latency witrandom

received their reservations guaranteed up to the Currerbtutstanding 10s with an 10 size &feach can be written
time. The scheduler therefore allocates server capacit&s.

to achieve proportional service. It chooses the request _

with smallestP tag, but only from VMs which have not L= n(Tm +/Bpear 3
reached their limit (whosk tag is smaller than the cur- HereTn denotes the mechanical delay due to seek and
rent time). Whenever a request from piis scheduled  disk rotation andBpeax denotes the peak transfer band-
in a weight-based phase, tiRetags of the outstanding Width of a disk. Converting latency observed for an 10
requests of; are decreased by/fi. This maintains the 0f size$, to a IO of a reference siz&,, keeping other
condition thaiR tags are always spaced apart byjlso  factors constant would give:

that reserved service is not affected by the service pro- S S

vided in the weight-based phase. Algorithin 1 provides Ly =1L3x(1
pseudo code of various components of mClock.

R =maxP 1+ 1/w, t— o/w}

N Tm X Bpeak Tm X Bpeak @
Using typical value of Bis of mechanical delay and
3.1 Storage-specific Issues 60MB/s peak transfer rate, for a smaller reference size
of 8KB, the numerator = % 8/300~ 1. So for tagging
There are several storage-specific issues that an IQurposes, a single request of 10 size S is treated equiva-
scheduler needs to handle: 10 bursts, request types, I@nt to: (1 + S{Tm x Bpeay) 10 requests.



Request Location. mClock can detect sequentiality provide per-VM globally (cluster-wide) proportional ser-
within a VM’s workload, but in most virtualized envi- vice, reservations, and limits.
ronments the 10 stream seen by the underlying storage
may not be sequential due to high degrees of multiplex3.2.1  dmClock Algorithm
ing. mClock improves the overall efficiency of the sys- - .
tem by scheduling 10s with high locality as a batch. A dmClockruns a modified version omClock at each
VM is allowed to issue 10 requests in a batch as longServer. There is only one modification to the algorithm to
as the requests are close in logical block number spacaccount for the d_istributed n_10de| in the Tag-Assignment
(i.e. within 4 MB). Also the size of batch is bounded component. During tag assignment each server needs to
by a configurable parameter (set to 8). This optimizatiord€termine two things: the aggregate service received by
does impact the reservations to some extent mainly ovel® VM from all the servers in the system and the amount
short time intervals. Note that the benefit of batching ancPf Service that was done as part of reservation. This in-
improved efficiency is distributed among all the VMs in- formation will be provided implicitly by the host running
stead of giving it just to the VM with high sequentiality. @ VM by piggybacking two integers and with each
Allocating the benefit of locality to the concerned VM is réquest that it forwards to a storage seisjeiHere de-
part of future work. notes number of 10 requests from Wlthat have com-
Reservation Setting Admission control is a well known pleted service at all the servers between the previous re-
and difficult problem for storage devices due to theirduest (fromv) to the serves; and the current request.
stateful nature and dependence of throughput on workSimilarly, pi denotes the number of 10 requests from
load. We propose a simple approach of using worst cas¥ that have been serve(_j as part of constraint-satisfying
IOPS from a storage device as an upper bound on suffhase between the previous requesjtand the current
of reservations for admission control. For example, aff€quest. This information can be easily maintained by
enterprise FC disk can service 200 to 250 random I0P$N€ host running the VM. The host forwards the values
and a SATA disk can do roughly 80-100 IOPS. Basedof pi and g along withvi’s request to a server. (Note
on the number and type of disk drives backing a storagdhat for the single server cageands will always be 1.)
LUN, one can get a conservative estimate of reservablé the Tag-Assignment routine, these values are used to
throughput. This is what we have used to set paramete/@Mmpute the tags as follows:
in our experiments._AI?o in order to set the. reservations R = maxR +p/r, t}
to meet an application’s latency for a certain number of r f
outstanding 10s, we use Little’s law: L = maxli"+a/li, t}
r r—1

0l0 = IOPSx Latency (5) i max(RT g/,

Hence, the new request may receive a tag further into

Thus for an application designed to keep 8 outstandinghe future, to reflect the fact that has received addi-
I0s, and requiring 25 ms average latency, the reservatiofional service at other servers. The greater the value of

should be set to & 1000/25 = 320 IOPS. 5, the lower the priority the request has for service. Note
that this also doesn’t require any synchronization among
3.2 Distributed mClock storage servers. The remainder of the algorithm remains

) unchanged. The values pf and & may, in the worst
Cluster-based storage systems are emerging as a coglse, be inaccurate by up to 1 request at each of the other

disk arrays. By using commodity hardware (both hostsyization between the servefS]31].
and disks) and using software to glue together the stor-

age distributed across the cluster, these systems allo
for lower cost and more flexible provisioning than con-
ventional disk arrays. The software can be designedo illustrate the behavior @fmClockand compare it with

to compensate for the reliability and consistency issue®ther existing approaches, we implemerdetuClockand
introduced by the distributed components. Several reseveral other algorithms using a discrete event simulation
search prototypes (e.g., CMU’s Ursa Mindr [9], HP environment.

Labs’ FAB [29], IBM’s Intelligent Bricks [45]) have Each storage server with capadilyservices requests
been built, and several companies (such as LeftHand [4]lising an exponentially distributed service times with
Seanoded[6]) are offering iSCSI-based storage devicemean JC. The clients can send requests to some or all
using local disks at virtualized hosts. In this section,of the servers. This simplified setup provides a conve-
we extendmClockto run on each storage server, with nient platform to compare various approaches and ob-
minimal communication between the servers, and yeserve their behavior in a controlled environment. Note

¥ 2.2 dmClock Comparison



800 different cases, with uniform 10 distribution across the

20 Constraint-based servers, hot-spotting on one server, and variable capac-
700 1 I Weight-based ity.
600 ] As mentioned earliedmClockdoes scheduling in two
2 phases: constraint-based and weight-based. We looked
Q 500 1 at the distribution of requests done in each of these
3 400 ] phases to get insight into the behavior. Fiddre 3(a) shows
= the distribution when all servers were accessed uni-
2 300 | formly. Notice that the throughput during the constraint-
"~ 200 ] based phase met the minimum requirement, and the rest
100 | of the requests were done during the weight-based phase.
In this case clients received overall throughputs close to
cl1c2C3 Cc1C2C3 Cc1C2C3 750, 500 and 250, which is in proportion to their weights.

(a) (b) (c) We ran another experiment with a similar capacity and
requirements, but with; hot-spotting by accessing only
half of the servers. Figulld 3(b) again shows the overall
JOPS and the distribution of IOPS in two phases of the
algorithm. Note that all three clients still meet their nese
vation and overall capacity is again allocated in ratio of
their weights. At individual servers we observe that

is getting more service at the servers at which it is hot-
that these simulation results here are only intended tgpotting. Also the service received byandcs increased
gain insight and to compa@mClockwith other algo- in a proportional manner on the remaining servers.
rithms. A more detailed performance evaluation of dm-  Next, we changed the overall capacity by reducing the
Clock using an implementation in a real testbed is prenumber of servers to four. In this case a proportional
sented in Sectiofl 4. scheduler would have allocated about 366- 133 IOPS

to clientcs, lower than its minimum requirement. Fig-
urel3(c) shows that, usir@dmClockclient cz still met its

Figure 3: Distribution of requests done in constraint-
based and weight-based phases mglock for three
cases. (a) All clients are uniformly accessing the server
(b) Client 2 is hot-spotting on half of the servers. (c)
Capacity is reduced to half.

350
st reservation of 200 IOPS, and the remaining performance
300 2 was divided betweer; andc, as 350 and 250 IOPS,
— which is again in the proportion of their weights (3:2).
g250 These experiments show thdinClock always meets
= %00 reservations (when possible) even in the distributed set-
2 ting and uses any spare capacity to maintain global fair-
3 150 ness.
<}
F 100
50 3.2.3 Comparison With Other Approaches
H Next, we comparedimClockwith a centralized SFQ
cic2 cic2 cic2 ith i i
PARCE c-ar0 e scheduler and with independent SFQ schedulers running

at each server. Our experiment used a simple combina-
Figure 4: Comparison afmClockwith centralized SFQ tion of two serversS; and S, and two clientsc; and
and local SFQ running each server, whenis hot-  c,. As in the previous experiment, the clienyt repre-
spotting atS; sented a latency-sensitive workload that does not have
a large throughput requirement. Accordingly, the ratio
dmClock Allocation: We experimented with three of weights was set to 1 : 3 and the reservations were
clients (denotedcy,cp,c3) and eight servers (denoted set to 150 and 50 IOPS fa@q andc, respectively. The
$1,S,...,.S). Each server had an average capacity ofserver capacity was set to 200 IOPS per server. To high-
200 I0PS. The weights were set to 300, 200 and 100ight the differences, we maag hot spot, accessing only
for clientsc,, ¢, andcs, respectively. The corresponding serverS;. We compared our algorithm with two other ap-
reservations were set to 100, 150 and 200 IOPS and thgroaches: (1) C-SFQ: a centralized SFQ scheduler run-
limits were set to infinity. These values were chosen toning as a shim appliance between all the clients and the
imitate a scenario where a client with a small share haservers, and (2) L-SFQ: independent, local SFQ sched-
a large reservation to obtain low latency. We tested threalers, one on each server, each with weights in the ratio



1:3. ditions. We used two kinds of VMs: (1) Linux (RHEL)
Figure[4 shows the average throughput obtained usinyMs each with a 10GB virtual disk, one VCPU and 512
dmClock C-SFQ, and L-SFQ. MB memory, and (2) Windows server 2003 VMs each
dmClock allocated about 150 IOPS 1, all from Sy, with a 16GB virtual disk, one VCPU and 1 GB of mem-
and the remaining IOPS (around 50 frd®n plus 200 ory. The disks hosting the VM operating system were
from ) to c; . S was completely allocated ty be-  on a different storage LUN. Three parameter were con-
cause there was no contention there. Tlugeceived figured for each VM: a minimum reservationlOPS, a
its reservation on Sand no more This shows thattim-  global weightw; and maximum limit; IOPS. The work-
Clockis globally fair while meeting reservations. loads were generated using lomefér [5] in the Windows
C-SFQallocated the overall 100 and 300 IOPS to clientsserver VMs and our own micro-workload generator in
which is in ratio 1:3, causing; to miss its reservation. the Linux RHEL VMs. For both cases, the workloads
This result is as we expect, since C-SFQ tries to be globwere specified using 10 sizes, Read %, Randomness %
ally fair based on the weights, and does not use reservand number of concurrent 10s. We used 32 concurrent
tions. IOs per workload in all experiments, unless otherwise
L-SFQ allocated both servers in a locally fair (weight- stated. In addition to these micro-benchmark workloads,
proportional) manner by giving IOPS inratio 1 : 3 at both we used macro-benchmark workloads generated using
servers.c; received only about 50 IOPS &t andc, re-  Filebench[[25].
ceived the remaining 350 (150 + 200) IOPS available in
the system. Thus, the global throughput distribution was 2000
neither proportional to the weights, nor did it meet the
application minimum requirements. Again, this result is
as expected, since L-SFQ neither uses information about
global access pattern of different clients, nor does it use
reservations.
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4 Performance Evaluation
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In this section, we present results from a detailed evalu- Time (s)
ation ofmClockusing a prototype implementation in the
VMware ESX server hypervisdrl[Z.B9]. We examine the
following key questions about mClock in this evaluation:
(1) Why ismClockneeded? (2) CamClockallocate ser-
vice in proportion to weights, while meeting the reserva-
tion and limit constraints? (3) CanClockhandle bursts
effectively and reduce latency by giving idle credit? (4) First we show the need for the limit control by demon-
How effective isdmClockin providing isolation among strating that pure proportional sharing cannot guarantee
dynamic workloads in a distributed storage environmenta specified number of IOPS and sufficiently low latency
to a VM. We experimented with three workloads similar
to those in the example of Sectidn 2: RD, OLTP and DM.
RD is a bursty workload sending 32 random 10s (75%
We implemented mClock by modifying the SCSI reads) of 4KB size every 250 ms. OLTP sends 8KB ran-
scheduling layer in the 1/0 stack of VMware ESX serverdom 10s, 75% reads, and keeps 16 10s pending at all
hypervisor to construct our prototype. The host is a Delltimes. The data migration workload DM does 32KB se-
Poweredge 2950 server with 2 Intel Xeon 3.0 GHz dual-quential reads, and keeps 32 10s pending at all times.
core processors, 8GB of RAM and two Qlogic HBAs RD and OLTP are latency-sensitive workloads, requir-
connected to an EMC CLARIiON CX3-40 storage array ing a response time under 30ms, while DM is not sen-
over FC SAN. We used two different storage volumes:sitive to latency. Accordingly, we set the weights in
one hosted on a 10 disk RAID 0 disk group and other orthe ratio 2:2:1 for the RD, OLTP, and DM workloads.
a 10 disk, RAID 5 disk group. The host is configured First, we ran them with zero reservations and no limits in
to keep 32 10s pending per LUN at the array, which is amClock, which is equivalent to running them with a stan-
typical setting. dard fair scheduler such as SFQ(D)I[23]. The throughput
We used a diverse set of workloads, using differentand latency achieved is shown in Figukés 5(a) and (b),
operating systems, workload generators, and configurabetween times zero and 140sec. Since RD is not fully
tions, to test that mClock is robust under a variety of con-backlogged, and OLTP has only 16 concurrent IOs, the

Figure 6: mClock limits the throughput of VM2 and
VM3 to 400 and 500 IOPS as desired.

4.1.1 Limit Enforcement

4.1 Experimental Setup
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Figure 5: Average throughput and latency for RD, OLTP and Ddfkloads, with weights = 2:2:1. AE140 the limit
for DM is set to 300 IOPS. mClock is able to restrict the DM wodd to 300 IOPS and improve the latency of RD
and OLTP workloads.

1800

1800 [ "Total throughput (SFQ) —+— | VM1 (w=1) —— " VM1 (w=1, min=300) ——
alGOO 5 w5 Total throughput (mClock) - 0 1600 VM2 (w=1) 1 0 1600 VM2 (w=1, min=250) === -
a = . 1 VM3 (w=2) VM3 (w=2)

Q 1400 % Q 1400 VM4 (w=2) Q 1400 VM4 (w=2)
= P VM5 (w=2 = VM5 (w=2
31200 Overall IOPS decrease by 20% 31200 w=2) 31200 w=2)
=) i ; 51000 51000 1
3 1000 with more VM contention E 2VmS 3ums E Minimums always met
= 800 £ 800 £ 800 ¢ - 1
[ = H = . " for VM1, VM2
© 600 o 600 o 600 [
=3 =4 H 2 » o]
£ 400 € 400 € 400 soene®
< 200 | 2 200 2 200
0 : . . . . . 0 8880609880006 — . 0 5-8-8:69-9-9-9-9-00-06—+ e :
50 100 150 200 250 300 50 100 150 200 250 300 50 100 150 200 250 300
Time (s) Time (s) Time (s)
(a) Overall array throughput (b) SFQ (D) (c) mClock, Restoresr;=300,r,=250

Figure 7: Five VMs with weights in ratio 1:1:2:2:2. VMs areaed at 60 sec intervals. The overall throughput
decreases as more VMs are added. mClock enforces resessatid SFQ only does proportional allocation.

work-conserving scheduler gives all the remaining queudectively enforces limits in a diverse setting. Using lome-
slots (16 of them) to the DM workload. As a result, RD ter on Windows Server VMs, we ran three workloads
and OLTP get less than the specified proportion of IO(VM1, VM2, and VM3), each generating 16KB random
throughput, while DM receives more. Since the devicereads. We set the weights in the ratio 1:1:2 and limits of
gueue is always heavily occupied by IO requests fron400 IOPS on VM2 and 500 IOPS on VM3. We began
DM, the latency seen by RD and OLTP is higher thanwith just VM1 and a new workload was started every 60
desirable. We also experimented with other weight ratiosseconds. The system has a capacity of approximately
(which are not shown here for lack of space), but saw nd.600 random reads per second. Without the limits and
significant improvement, because the primary cause obased on the weights alone, we would expect the appli-
the poor performance seen by RD and OLTP is that thereations to receive 800 IOPS each when VM1 and VM2
are too many 10s from DM in the device queue. are running, and 400, 400, and 800 IOPS respectively

To provide better throughput and lower latency to RDWhen VM1, VM2, and VM3 are running together.
and OLTP workloads, we changed the upper limit for

DM to 300 IOs att = 140sec This caused the OLTP gy shows the throughput obtained by each of the
workload to see a 100% increase in throughput and thg,,rkjoads. When we added the VM2 (at time 60sec), it
latency is reduced to half (36 ms to 16 ms). The RDqp|y received 400 IOPS based on its limit, and not 800
workload also sees lower latency, while its throughputops which it would have gotten based on the weights
remains equal to its demand. This result shows that USinQIone. When we started VM3 (at time 120sec), it only re-
limits with proportional sharing can be quite effective in gived its maximum limit, 500 IOPS, again smaller than
reducing contention for critical workloads, and this effec ji¢ throughput share based on the weights alone. This
cannot be produced using proportional sharing alone. - ghos that mClock is able to limit the throughput of VMs
Next, we did an experiment to show that mClock ef- based on specified upper limits.
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Figure 8: Average throughput for VMs using SFQ(D) and mClauiClock is able to restrict the allocation of VM2
to 700 IOPS and always provide at least 250 IOPS to VM4,

4.1.2 Reservations Enforcement VM | size, read%, random% ri li Wi

VM1 | 4K, 75%, 100% 0 MAX 2
To test the ability ofmClockin enforcing reservations, ~Vm2 | 8K, 90%. 80% 0 700 | 2
we used a combination of 5 workloads VM1 — VM5, all ~VM3 | 16K, 75%, 20% 0 [ MAX | 1
generated using lometer on Windows Server VMs. Each VM4 | 8K, 50%,60% 250 | MAX | 1

workload maintained 32 outstanding 10s, all 16 KB ran-
dom reads, at all times. We set their shares to the ratioTable 4: VM workloads characteristics and parameters
1:1:2:2:2. VM1 required a minimum of 300 IOPS, VM2
required 250 IOPS, and the rest had no minimum require-
ment. Again to demonstrate the working of mClock ina  Figurel#(a) and (b) show the throughput allocated by
dynamic environment, we begin with just VM1, and a SFQ(D) (weight-based allocation) and mClock for these
new workload is started every 60 seconds. workloads. mClock is able to restrict VM2 to 700 IOPS
FiguresT(a),(b) and (c) show the overall throughputas desired when only two VMs are doing 10s. Later,
observed by the host, and the throughput obtained fowhen VM4 becomes active, mClock is able to meet the
each workload using mClock. The throughputs usingreservation of 250 IOPS for it, whereas SFQ only pro-
SFQ(D) withD = 32 are also shown as a baseline. As thevides around 190 IOPS. While meeting these constraints,
number of workloads increased, the overall throughputnClock is able to keep the allocation in proportion to the
from the array decreased because the combined workveights of the VMs; for example, VM1 gets twice as
load spanned larger numbers of tracks on the disksnany IOPS as VM3 does.
When we used SFQ(D), the throughput of each VM de- We next used the same workloads to demonstrate how
creased with increasing load, down to 160 IOPS for VM1an administrator may determine the reservation to use. If
and VM2, while the remaining VMs received around 320 the maximum latency desired and the maximum concur-
IOPS. In contrast, mClock provided 300 IOPS to VM1 rency of the application is known, then the reservation
and 250 IOPS to VM2, as desired. This also led to bettecan be simply estimated using Little’s law as the ratio
latency for VM1 and VM2 which would not have been of the concurrency to the desired latency. In our case, if

possible just using proportional shares. it is desired that the latency not exceed 65ms, the reser-
vation can be computed as Z2065= 492, since the
413 Diverse VM Workloads the number of concurrent I0s from each application is

32. First, we ran the four VMs together with a reserva-
In the experiments above, we used mostly homogetion r; = 1 each, and weights in the ratio 1:1:2:2. The
neous workloads for ease of exposition and understandhroughput (IOPS) and latencies received by each in this
ing. To demonstrate the effectiveness of mClock with asimultaneous run are shown in Table 5. Note that work-
non-homogeneous combination of workloads, we expertoads received IOPS in proportion to their weights, but
imented with workloads having very different 10 charac- the latencies of VM1 and VM2 were much higher than
teristics. We used four workloads, generated using lomedesired. We then set the reservatiof {for each VM to
ter on Windows VMs, each keeping 32 I0s pending atbe 512 IOPS; the results are shown in the last column of
all times. The workload configurations and the resourceTable[. Note that first two VMs received higher IOPS
control settings (reservations, limits, and weights) &e d of around 500 instead of 330 and 390, which allowed
scribed in Tabl€l4. them to meet their reservations and also their latency tar-
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VM | w | ri=1, [IOPS, ms]| ri=512, [[OPS,ms] of 256 in our implementation. This result indicates that
VM1 | 1 330, 96ms 490, 68ms using idle credits is an effective mechanism to help lower
VM2 | 1 390, 82ms 496, 64ms the latency of bursts.
VM3 | 2 660, 48ms 514, 64ms
VM4 | 2 665, 48ms 530, 65ms 4.1.5 Filebench Workloads
Table 5: Throughput and Latency observed by VMs run-To test mClock with more realistic workloads, we ex-
ning different workloads for; = 1 and 512 IOPS perimented with two Linux RHEL VMs running OLTP
workload using Filebench25]. Each VMs is configured
VM | o=1, [IOPS, ms] | 0=64, [IOPS,ms] with 1 vCPU, 512 MB of RAM, 10GB database disk and
VM1 | 312,49ms 316,30.8ms 1 GB log virtual disk. To introduce throughput fluctu-
VM2 | 2420, 13.2ms 2460, 12.9ms ation another Windows 2003 VM running lometer was

used. The lometer produced 32 concurrent, 16KB ran-
Table 6: Throughput and Latency observed by VMs run-dom reads. We assigned the weights in the ratio 2:1:1
ning different workloads for idle credit values 1 and 64 to the two OLTP and the lometer workload, respecti\/e|y’
and gave a reservation of 500 IOPS to each OLTP work-

gets. The other VMs saw a corresponding decline in thei#oad' We initially started the two OLTP workloads to-

throughput. This experiment demonstrates that mCIockqether and then the lometer workload at 115

. . . Figure a) and (b) show the IOPS received by the
is able to provide a stronger control to storage admins t?hreg worSIEI?)(aés as rﬁezasured inside the h ervisorywith
meet their IOPS and latency targets for a given VM. yp '

and without mClock. Without mClock, as soon as the
lometer workload started, VM2 started missing its reser-
4.1.4  Bursty VM Workloads vation and received around 250 IOPS. When run with
Next, we experimented with the use of idle credits givenMClock, both the OLTP workloads were able to achieve

to a workload for handling bursts. Recall that idle creditstheir reservation of 500 I0PS. This shows that mClock
allow a workload to receive service in a burst only if the c@n protect critical workloads from a sudden change in
workload has been idle in the past and also that the resefivailable throughput. The application-level metrics -
vations for all VMs have priority. This ensures that if an "umber of operations/sec and transaction latency as re-
application is idle for a while, it gets preference when Ported by Filebench are summarized in Fidire 9(c). Note
next there is spare capacity in the system. In this experithat mClock was able to keep the latency of OLTP work-
ment, we used two workloads generated with lometer od0ad (480 ms) in VM2 from increasing, even with an in-
Windows Server VMs. The first workload was bursty, crease in the overall 10 contention.
generating 128 10s every 400ms, all 4KB reads, 80%
random. The second was steady, produciqg 16 KBreadsy 2  dmClock Evaluation
20% of them random and the rest sequential with 32 out-
standing 10s. Both VMs have equal shares, no reservan this section, we present results @mClockimple-
tion and no limit in terms of IOPS. We used idle-credit mentation in a distributed storage system. The system
(o) values of 1 and 64 for our experiment. consists of multiple storage servers (nodes). Each node
Table[® shows the IOPS and average latency obtainei$ implemented using a virtual machine running RHEL
by the bursty VM for the two settings of the idle credit. Linux with a 10GB OS disk and a 10GB experimental
The number of IOPS is almost equal in either case bedisk. Each experimental disk is placed on a different
cause idle credits do notimpact the overall bandwidth al-RAID-5 group with six disks, on a storage array. A sin-
location over time, and VM1 has a bounded request rategle storage device is constructed using all storage nodes
VM2 also sees almost the same IOPS for the two setwith data serviced from the local experimental disks.
tings of idle credits. However, we notice that the latencyThis represents a clustered-storage system where multi-
seen by the bursty VM1 decreases as we increase the idf#e storage nodes have dedicated storage devices that are
credits. VM2 also sees similar or slightly smaller latency,used for servicing 10s. We used three storage servers for
perhaps due to the increase in efficiency of doing a seveur experiment. Each experimental disk provided about
eral 10s at a time from a single VM which are likely to 1500 IOPS for a random workload and the storage device
be spatially closer on the storage device. In the extremds striped over 3 such experimental disks.
however, a very high setting of idle credits can lead to We implementedimClockas a user-space module in
high latencies for non-bursty workloads by distorting theeach server node. The module receives 10 requests con-
effect of the weights (although not the reservations ortaining 10 size, offset, type (read/write) and theand
limits), and so we limit the setting with an upper bound p parameters, and data in the case of write requests.
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Figure 9: (a) Without mClock, VM2 misses its minimum requirent when WinVM starts (b) With mClock, both
OLTP workloads get their reserved IOPS despite WinVM waaklldc) Application-level metrics: ops/s, avg Latency

The module can keep up to 16 outstanding 10s (using 2500
16 server threads) to execute the requests, and the re-
guests are scheduled on these threads usingrnit&ock
algorithm. The clients were run on a separate physi-
cal machine. Each client generated an 10 workload for
one or more storage nodes and also acted as a gateway,
piggy-backing thed andp values onto each request sent

to the storage nodes. Each client workload consisted of
8KB random reads with 64 concurrent 10s, uniformly 0 ‘ ‘
distributed over the nodes it used. Here we have used 20 40 60 80 100
our own workload generator because of the need to add Time (s)
appropriate andp values with each request.

2000 ¢
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Figure 11: IOPS obtained by the two clients. Orgés
startedg; still meets its reservation target.

3000
[ Iconstraint-based

2500 I weight-based

these two cases is shown in Figliré 10 (a) and (b). Case
2000 (a) shows the overall 10 throughput obtained by three
clients without reservations. As expected, each client re-
ceives total service in proportion to its weight. In case

Throughput (IOPS)
=
al
o
o

1000 (b), dmClockis able to meet the reservation goal of 800
IOPS forc; which would have been missed with a pro-
500 H portional share scheduler. The remaining throughput is
0 divided among clients; andcs in the ratio 2:3 as they
Cl C2 C8 Cl C2 C38

(@R=[1,1,1] (b)R=[B00,1000,100] respectively receive around 1750 and 2700 IOPS.
Next, we experimented with non-uniform accesses
Figure 10: IOPS obtained by the three clients for two dif-from clients. In this case we used two cliemsand
ferent cases. (@) All clients are uniformly accessing thec,. The reservations were set to 800 and 1000 IOPS and
servers, with no reservation. (b) Clients have reservatiohe weights were again in the ratio 1:4; sent IOs to
of 800, 1000 and 100 respectively. the first storage nodes() only and we started, after
approximately 40 seconds. Figdrd 11 shows the IOPS
In first experiment, we used three clien{s;, ¢z, c3}, obtained by the two clients with time. Note that ini-
each accessing all three server nodes. The weights wetwlly c; gets the full capacity from serv&; and when
set in ratio 1:4:6, with no upper limit on IOPS. We ex- ¢, is started,c; is still able to meet its reservation of
perimented with two different cases: (1) No reservation800 IOPS. The remaining capacity is allocatedcto
per client, (2) Reservations of 800, 1000 and 100 forwhich received around 1400 IOPS. A distributed weight-
clients {cy,cp,c3} respectively. These values are usedproportional schedulefI44] would have given approxi-
to highlight a use case where allocation based on resemately 440 IOPS t@; and the remainder to,, which
vations may be higher as compared to allocation basedould have missed the minimum requirementpfThis
on weights or shares for some clients. The output forexperiment shows that even when the access pattern is
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non-uniform in a distributed environmerdmClockis
able to meet reservations and assign overall IOPS in ratio

of weights to the extent possible.

5

In this paper, we presented a novel IO scheduling al{13]

(12]

Conclusions

gorithm, mClock that provides per-VM quality of ser-
vice in presence of variable overall throughput. The QoS

requirements are expressed as minimum reservation, a
maximum limit and proportional shares. The key aspec{14]

of mClock is its ability to enforce such control even in
presence of fluctuating capacity, as shown by our imple-

mentation in the VMware ESX hypervisor. We also pre-[15]

senteddmClock,a distributed version of our algorithm

that can be used in clustered storage system architectures

(such as FAB and IceCube). We implementkedClock
in a distributed storage environment and showed that it
works as specified, maintaining global per-client reser-

vations, limits and proportional shares, even though the
schedulers run locally on the storage nodes.

We believe that the controls provided bwClock
would allow stronger isolation among VMs. Although

we

scheduling, we think that the techniques are quite generi
and can be applied to array level scheduling and to other

have shown the effectiveness for hypervisor 10

resources such as network bandwidth allocation as well.

(19]
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